1
|
Delic A, Lindgren M, Psarrou M, Economopoulos S, Mariussen E, Krivokapic A, Torsæter O, Omran M, Einarsrud MA. Design of Multi-Luminescent Silica-Based Nanoparticles for the Detection of Liquid Organic Compounds. Chemistry 2024; 30:e202303459. [PMID: 38230981 DOI: 10.1002/chem.202303459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 01/14/2024] [Accepted: 01/16/2024] [Indexed: 01/18/2024]
Abstract
Tracer testing in reservoir formations is utilised to determine residual oil saturation as part of optimum hydrocarbon production. Here, we present a novel detection method of liquid organic compounds by monodisperse SiO2 nanoparticles (NPs) containing two luminophores, a EuIII:EDTA complex and a newly synthesised fluorophore based on the organic boron-dipyrromethene (BODIPY)-moiety. The particles exhibited stable EuIII PL emission intensity with a long lifetime in aqueous dispersion. The fluorescence of the BODIPY was also preserved in the aqueous environment. The ratiometric PL detection technique was demonstrated by using toluene and 1-octanol as model compounds of crude oil. The optimal synthesis conditions were found to give NPs with a diameter of ~100 nm, which is suitable for transport through porous oil reservoir structures. The cytotoxicity of the NPs was confirmed to be very low for human lung cell and fish cell lines. These findings demonstrate the potential of the NPs to replace the hazardous chemicals used to estimate the residual oil saturation. Moreover, the ratiometric PL detection technique is anticipated to be of benefit in other fields, such as biotechnology, medical diagnostics, and environmental monitoring, where a reliable and safe detection of a liquid organic phase is needed.
Collapse
Affiliation(s)
- Asmira Delic
- Department of Materials Science and Engineering, Trondheim, Norway, Norwegian University of Science and Technology (NTNU), Sem Sælands vei 12, NO-7491, Trondheim, Norway
| | - Mikael Lindgren
- Department of Physics, Norwegian University of Science and Technology, Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Maria Psarrou
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Solon Economopoulos
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, NO-7491, Trondheim, Norway
| | - Espen Mariussen
- Norwegian Institute for Air Research, NO-2007, Kjeller, Norway
- Department of air quality and noise, Norwegian Institute of Public Health, NO-0456, Oslo, Norway
| | | | - Ole Torsæter
- Department of Geoscience and Petroleum, Norwegian University of Science and Technology, S. P. Andersens veg 15a, 7031, Trondheim, Norway
| | - Mohamed Omran
- Department of Geoscience and Petroleum, Norwegian University of Science and Technology, S. P. Andersens veg 15a, 7031, Trondheim, Norway
| | - Mari-Ann Einarsrud
- Department of Materials Science and Engineering, Trondheim, Norway, Norwegian University of Science and Technology (NTNU), Sem Sælands vei 12, NO-7491, Trondheim, Norway
| |
Collapse
|
2
|
Qi Q, Shen Q, Geng J, An W, Wu Q, Wang N, Zhang Y, Li X, Wang W, Yu C, Li L. Stimuli-responsive biodegradable silica nanoparticles: From native structure designs to biological applications. Adv Colloid Interface Sci 2024; 324:103087. [PMID: 38278083 DOI: 10.1016/j.cis.2024.103087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 12/24/2023] [Accepted: 01/05/2024] [Indexed: 01/28/2024]
Abstract
Due to their inherent advantages, silica nanoparticles (SiNPs) have greatly potential applications as bioactive materials in biosensors/biomedicine. However, the long-term and nonspecific accumulation in healthy tissues may give rise to toxicity, thereby impeding their widespread clinical application. Hence, it is imperative and noteworthy to develop biodegradable and clearable SiNPs for biomedical purposes. Recently, the design of multi-stimuli responsive SiNPs to improve degradation efficiency under specific pathological conditions has increased their clinical trial potential as theranostic nanoplatform. This review comprehensively summaries the rational design and recent progress of biodegradable SiNPs under various internal and external stimuli for rapid in vivo degradation and clearance. In addition, the factors that affect the biodegradation of SiNPs are also discussed. We believe that this systematic review will offer profound stimulus and timely guide for further research in the field of SiNP-based nanosensors/nanomedicine.
Collapse
Affiliation(s)
- Qianhui Qi
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China; Future Food Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Qian Shen
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Jiaying Geng
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Weizhen An
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China
| | - Nan Wang
- College of Biology and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yu Zhang
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xue Li
- Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Wei Wang
- School of Biological and Chemical Engineering, Zhejiang University of Science and Technology, Hangzhou 310023, China.
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing 211800, China; State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, China.
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, China.
| |
Collapse
|
3
|
Rex R, Siddhanta S, Barman I. Role of Aqueous-Phase Calcination in Synthesis of Ultra-Stable Dye-Embedded Fluorescent Nanoparticles for Cellular Probing. APPLIED SPECTROSCOPY 2021; 75:1012-1021. [PMID: 34251874 DOI: 10.1177/00037028211027597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fluorescence imaging is a major driver of discovery in biology, and an invaluable asset in clinical diagnostics. To overcome quenching limitations of conventional fluorescent dyes and further improve intensity, nanoparticle-based constructs have been the subject of intense investigation, and within this realm, dye-doped silica-coated nanoparticles have garnered significant attention. Despite their growing popularity in research, fluorescent silica nanoparticles suffer from a significant flaw. The degradation of these nanoparticles in biological media by hydrolytic dissolution is underreported, leading to serious misinterpretations, and limiting their applicability for live cell and in vivo imaging. Here, the development of an ultra-stable, dye-embedded, silica-coated metal nanoparticle is reported, and its superior performance in long-term live cell imaging is demonstrated. While conventional dye-doped silica nanoparticles begin to degrade within an hour in aqueous media, by leveraging a modified liquid calcination process, this new construct is shown to be stable for at least 24 h. The stability of this metal-enhanced fluorescent probe in biologically relevant temperatures and media, and its demonstrated utility for cell imaging, paves the way for its future adoption in biomedical research.
Collapse
Affiliation(s)
- Rachel Rex
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Mechanical Engineering, University of California, Berkeley, CA, USA
| | - Soumik Siddhanta
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, India
| | - Ishan Barman
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Oncology, Radiology and Radiological Science, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
4
|
Magadla A, Nyokong T. Enhanced photodynamic antimicrobial activity of surface modified SiNPs doped with zinc(II) phthalocyanines: The effect of antimicrobial ampicillin and extra charges from a sultone. Photodiagnosis Photodyn Ther 2020; 32:101996. [PMID: 32911079 DOI: 10.1016/j.pdpdt.2020.101996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 08/28/2020] [Accepted: 08/31/2020] [Indexed: 10/23/2022]
Abstract
1-(2-Methoxyethyl)piperidine sustituted Zn phthalocyanine complex (2) is synthesised and quartenised (3). These complexes are loaded into silica nanoparticles (SiNPs) that are futher surface modified with ampicillin and 1.3-propanesultone. The photophysical and photochemical properties of the complexes and their doped conjugates were investigated in dimethylsulfoxide. The cationic complex (3) is used for photodynamic antimicrobial activity. Log reduction values of above 9 are obtained towards the photoiactivation of Staphyloccocus aureus.
Collapse
Affiliation(s)
- Aviwe Magadla
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Grahamstown 6140, South Africa.
| |
Collapse
|
5
|
Dare EO, Vendrell‐Criado V, Consuelo Jiménez M, Pérez‐Ruiz R, Díaz Díaz D. Fluorescent-Labeled Octasilsesquioxane Nanohybrids as Potential Materials for Latent Fingerprinting Detection. Chemistry 2020; 26:13142-13146. [PMID: 32460420 PMCID: PMC7692944 DOI: 10.1002/chem.202001908] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 05/22/2020] [Indexed: 11/10/2022]
Abstract
The recent demand for fluorescent-labeled materials (FLMs) in forensic security concepts such as latent fingerprints (LFs) that encode information for anti-counterfeiting and encryption of confidential data makes necessary the development of building new and innovative materials. Here, novel FLMs based on polyhedral oligomeric silsesquioxanes (POSS) functionalized with fluorophores via "click" reactions have been successfully synthesized and fully characterized. A comprehensive study of their photophysical properties has displayed large Stokes's shift together with good photostability in all cases, fulfilling the fundamental requisites for any legible LF detection on various surfaces. The excellent performance of the hetero-bifunctional FLM in the visualization of LF is emphasized by their legibility, selectivity, sensitivity and temporal photostability. In this study, development mechanisms have been proposed and the overall concept constitute a novel approach for vis-à-vis forensic investigations to trace an individual's identity.
Collapse
Affiliation(s)
- Enock O. Dare
- Institute of Organic ChemistryUniversity of RegensburgUniversitaetsstr. 3193040RegensburgGermany
- Department of ChemistryFederal University of AgricultureP.M. B2240AbeokutaNigeria
| | | | - M. Consuelo Jiménez
- Departamento de QuímicaUniversitat Politècnica de ValènciaCamino de Vera, s/n46022ValenciaSpain
| | - Raúl Pérez‐Ruiz
- Departamento de QuímicaUniversitat Politècnica de ValènciaCamino de Vera, s/n46022ValenciaSpain
| | - David Díaz Díaz
- Institute of Organic ChemistryUniversity of RegensburgUniversitaetsstr. 3193040RegensburgGermany
- Departamento de Química OrgánicaUniversidad de La LagunaAvda. Astrofísico Francisco Sánchez38206La LagunaTenerifeSpain
- Instituto Universitario de Bio-Orgánica Antonio GonzálezUniversidad de La LagunaAvda. Astrofísico Francisco Sánchez 238206La LagunaTenerifeSpain
| |
Collapse
|
6
|
Li J, Sun J, Bai S, Wu X. Multifunctional Mesoporous CDQs/BMMs with Strong Fluorescent Property and Sustained Drug Releasing Performance. ChemistrySelect 2020. [DOI: 10.1002/slct.202000307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Junfang Li
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical EngineeringBeijing University of Technology 100 Ping Le Yuan Chaoyang District Beijing 100124 China
| | - Jihong Sun
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical EngineeringBeijing University of Technology 100 Ping Le Yuan Chaoyang District Beijing 100124 China
| | - Shiyang Bai
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical EngineeringBeijing University of Technology 100 Ping Le Yuan Chaoyang District Beijing 100124 China
| | - Xia Wu
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry and Chemical EngineeringBeijing University of Technology 100 Ping Le Yuan Chaoyang District Beijing 100124 China
| |
Collapse
|
7
|
Peteni S, Nyokong T. Effect of doping vs covalent linking of a low symmetry zinc phthalocyanine to silica nanoparticles on singlet oxygen production. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.06.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
8
|
Riccardi C, Russo Krauss I, Musumeci D, Morvan F, Meyer A, Vasseur JJ, Paduano L, Montesarchio D. Fluorescent Thrombin Binding Aptamer-Tagged Nanoparticles for an Efficient and Reversible Control of Thrombin Activity. ACS APPLIED MATERIALS & INTERFACES 2017; 9:35574-35587. [PMID: 28849915 DOI: 10.1021/acsami.7b11195] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Progress in understanding and treatment of thrombotic diseases requires new effective methods for the easy, rapid, and reversible control of coagulation processes. In this framework, the use of aptamers, and particularly of the thrombin binding aptamer (TBA), has aroused strong interest, due to its enormous therapeutic potential, associated with a large number of possible applications in biotechnological and bioanalytical fields. Here, we describe a new TBA analogue (named tris-mTBA), carrying three different pendant groups: a dansyl residue at the 3'- and a β-cyclodextrin moiety at the 5'-end-providing a host-guest system which exhibits a marked fluorescence enhancement upon TBA G-quadruplex folding-and a biotin tag, allowing the attachment of the aptamer onto biocompatible streptavidin-coated silica nanoparticles (NPs) of 50 nm hydrodynamic diameter (Sicastar). The use of nanoparticles for the in vivo delivery of TBA, expected to induce per se increased nuclease resistance and improved pharmacokinetic properties of this oligonucleotide, offers as an additional advantage the possibility to exploit multivalency effects, due to the presence of multiple copies of TBA on a single scaffold. In addition, the selected fluorescent system allows monitoring both the presence of TBA on the functionalized NPs and its correct folding upon immobilization, also conferring enhanced enzymatic resistance and bioactivity. The anticoagulant activity of the new tris-mTBA, free or conjugated to Sicastar NPs, was evaluated by dynamic light scattering experiments. Highly effective and reversible inhibition of thrombin activity toward fibrinogen was found for the free tris-mTBA and especially for the tris-mTBA-conjugated NPs, demonstrating great potential for the biomedical control of blood clotting.
Collapse
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia 21, I-80126, Napoli, Italy
| | - Irene Russo Krauss
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia 21, I-80126, Napoli, Italy
- CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase , Via della Lastruccia 3, I-50019, Sesto Fiorentino, Italy
| | - Domenica Musumeci
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia 21, I-80126, Napoli, Italy
- Institute of Biostructures and Bioimages, CNR , Via Mezzocannone 16, I-80134 Napoli, Italy
| | - François Morvan
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier, CNRS, ENSCM, University of Montpellier , place E. Bataillon, 34095 Montpellier Cedex 5, France
| | - Albert Meyer
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier, CNRS, ENSCM, University of Montpellier , place E. Bataillon, 34095 Montpellier Cedex 5, France
| | - Jean-Jacques Vasseur
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier, CNRS, ENSCM, University of Montpellier , place E. Bataillon, 34095 Montpellier Cedex 5, France
| | - Luigi Paduano
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia 21, I-80126, Napoli, Italy
- CSGI - Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase , Via della Lastruccia 3, I-50019, Sesto Fiorentino, Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences, University of Naples Federico II , Via Cintia 21, I-80126, Napoli, Italy
| |
Collapse
|
9
|
Felbeck T, Moss S, Botas AMP, Lezhnina MM, Ferreira RAS, Carlos LD, Kynast UH. Monitoring of nanoclay-protein adsorption isotherms via fluorescence techniques. Colloids Surf B Biointerfaces 2017. [PMID: 28623694 DOI: 10.1016/j.colsurfb.2017.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The investigation of nanoparticles and their interaction with bio-macromolecules have become an important issue; the widely discussed protein corona around nanoparticles and their biological fate in general have drawn particular attention. Here, we focus on nanoclay dispersions and the use of solvatochromic fluorescent dyes (Dansyl and Coumarin 153) for monitoring the interaction with two model proteins, bovine serum albumin and β-lactoglobulin. On one hand, these dyes are poorly emissive in water, but experience a boost in their fluorescence when adsorbed into the hydrophobic domains of proteins. On the other hand, (nano)clays and clay minerals have previously been investigated in terms of their individual protein adsorption isotherms and their usefulness for the solubilization of water-insoluble dyes into an aqueous environment. In the following, we have combined all three individual parts (nanoclay, fluorophore and protein) in dispersions in a wide range of concentration ratios to systematically study the various adsorption processes via fluorescence techniques. In order to clarify the extent of dye diffusion and adsorption-desorption equilibria in the investigations, nanoclay hybrids with an adsorbed dye (Coumarin 153) and a covalently conjugated dye (Dansyl) were compared. The results suggest that the fluorescence progression of protein titration curves correlate with the amount of protein adsorbed, matching their reported adsorption isotherms on hectorite clays. Furthermore, experimental data on the protein monolayer formation around the nanoclays could be extracted due to only minor alterations of the dispersions' optical quality and transparency. In this manner, a fluorescence-based monitor for the formation of the globular protein layer around the nanoclay was realized.
Collapse
Affiliation(s)
- Tom Felbeck
- Münster University of Applied Sciences, Institute for Optical Technologies, Stegerwaldstr. 39, 48565 Steinfurt, Germany; Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Sebastian Moss
- Münster University of Applied Sciences, Institute for Optical Technologies, Stegerwaldstr. 39, 48565 Steinfurt, Germany
| | - Alexandre M P Botas
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marina M Lezhnina
- Münster University of Applied Sciences, Institute for Optical Technologies, Stegerwaldstr. 39, 48565 Steinfurt, Germany
| | - Rute A S Ferreira
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Luís D Carlos
- Department of Physics and CICECO - Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ulrich H Kynast
- Münster University of Applied Sciences, Institute for Optical Technologies, Stegerwaldstr. 39, 48565 Steinfurt, Germany.
| |
Collapse
|
10
|
Riccardi C, Musumeci D, Irace C, Paduano L, Montesarchio D. RuIIIComplexes for Anticancer Therapy: The Importance of Being Nucleolipidic. European J Org Chem 2016. [DOI: 10.1002/ejoc.201600943] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Claudia Riccardi
- Department of Chemical Sciences; University of Napoli Federico II; Via Cintia 21 80126 Napoli Italy
| | - Domenica Musumeci
- Department of Chemical Sciences; University of Napoli Federico II; Via Cintia 21 80126 Napoli Italy
| | - Carlo Irace
- Department of Pharmacy; University of Napoli Federico II; Via D. Montesano 49 80131 Napoli Italy
| | - Luigi Paduano
- Department of Chemical Sciences; University of Napoli Federico II; Via Cintia 21 80126 Napoli Italy
| | - Daniela Montesarchio
- Department of Chemical Sciences; University of Napoli Federico II; Via Cintia 21 80126 Napoli Italy
| |
Collapse
|
11
|
Herrmann R, Rennhak M, Reller A. Synthesis and characterization of fluorescence-labelled silica core-shell and noble metal-decorated ceria nanoparticles. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:2413-2423. [PMID: 25671137 PMCID: PMC4311666 DOI: 10.3762/bjnano.5.251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2014] [Accepted: 11/21/2014] [Indexed: 05/29/2023]
Abstract
The present review article covers work done in the cluster NPBIOMEM in the DFG priority programme SPP 1313 and focuses on synthesis and characterization of fluorescent silica and ceria nanoparticles. Synthetic methods for labelling of silica and polyorganosiloxane/silica core-shell nanoparticles with perylenediimide derivatives are described, as well as the modification of the shell with thiol groups. Photometric methods for the determination of the number of thiol groups and an estimate for the number of fluorescent molecules per nanoparticles, including a scattering correction, have been developed. Ceria nanoparticles decorated with noble metals (Pt, Pd, Rh) are models for the decomposition products of automobile catalytic converters which appear in the exhaust gases and finally interact with biological systems including humans. The control of the degree of agglomeration of small ceria nanoparticles is the basis for their synthesis. Almost monodisperse agglomerates (40 ± 4-260 ± 40 nm diameter) can be prepared and decorated with noble metal nanoparticles (2-5 nm diameter). Fluorescence labelling with ATTO 647N gave the model particles which are now under biophysical investigation.
Collapse
Affiliation(s)
- Rudolf Herrmann
- Institut für Physik, Universität Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| | - Markus Rennhak
- Institut für Physik, Universität Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| | - Armin Reller
- Institut für Physik, Universität Augsburg, Universitätsstr. 1, D-86159 Augsburg, Germany
| |
Collapse
|
12
|
Genovese D, Rampazzo E, Bonacchi S, Montalti M, Zaccheroni N, Prodi L. Energy transfer processes in dye-doped nanostructures yield cooperative and versatile fluorescent probes. NANOSCALE 2014; 6:3022-3036. [PMID: 24531884 DOI: 10.1039/c3nr05599j] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Fast and efficient energy transfer among dyes confined in nanocontainers provides the basis of outstanding functionalities in new-generation luminescent probes. This feature article provides an overview of recent research achievements on luminescent Pluronic-Silica NanoParticles (PluS NPs), a class of extremely monodisperse core-shell nanoparticles whose design can be easily tuned to match specific needs for diverse applications based on luminescence, and that have already been successfully tested in in vivo imaging. An outline of their outstanding properties, such as tuneability, bright and photoswitchable fluorescence and electrochemiluminescence, will be supported by a critical discussion of our recent works in this field. Furthermore, novel data and simulations will be presented to (i) thoroughly examine common issues arising from the inclusion of multiple dyes in a small silica core, and (ii) show the emergence of a cooperative behaviour among embedded dyes. Such cooperative behaviour provides a handle for fine control of brightness, emission colour and self-quenching phenomena in PluS NPs, leading to significantly enhanced signal to noise ratios.
Collapse
Affiliation(s)
- Damiano Genovese
- Dipartimento di Chimica "Giacomo Ciamician", via Selmi 2, Bologna 40126, Bologna, Italy.
| | | | | | | | | | | |
Collapse
|
13
|
Li H, Mu Y, Lu J, Wei W, Wan Y, Liu S. Target-cell-specific fluorescence silica nanoprobes for imaging and theranostics of cancer cells. Anal Chem 2014; 86:3602-9. [PMID: 24576151 DOI: 10.1021/ac500173d] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
MicroRNAs (miRNAs) has been identified as diagnostic and prognostic biomarkers and predictors of drug response for many diseases, including a broad range of cancers, heart disease, and neurological diseases. The noninvasive theranostics system for miRNAs is very important for diagnosis and therapy of the cellular disease. Herein, a target-cell-specific theranostics nanoprobe for target-cell-specific delivery, cancer cells and intracellular miRNA-21 imaging, and cancer cell growth inhibition was proposed. The nanoprobe (FS-AS/MB) was prepared by simultaneously coupling of the AS1411 aptamer and miRNA-21 molecular beacon (miR-21-MB) onto the surface of Ru(bpy)₃²⁺-encapsulated silica (FS) nanoparticles. The FS nanoparticles synthesized by a facile reverse microemulsion method showed nearly monodisperse spherical shape with a smooth surface, good colloidal stability, a fluorescence quantum yield of ~21%, and low cytotoxicity. The antibiofouling polymer PEG grafted onto a silica shell reduced nonspecific uptake of cells. The ability of FS-AS/MB for target-specific cells delivery, simultaneous cancer cells, intracellular miRNA-21 imaging, and inhibition of miRNA-21 function and suppression of cell growth in vitro, were also demonstrated. The results of the present study suggested that the proposed nanoprobes would be a promising theranostics for different cancers by imaging and inhibiting other intracellular genes.
Collapse
Affiliation(s)
- Henan Li
- School of Chemistry and Chemical Engineering, Southeast University , Jiangning District, Nanjing 211189, P.R. China
| | | | | | | | | | | |
Collapse
|
14
|
Liang S, Shephard K, Pierce DT, Zhao JX. Effects of a nanoscale silica matrix on the fluorescence quantum yield of encapsulated dye molecules. NANOSCALE 2013; 5:9365-9373. [PMID: 23958712 DOI: 10.1039/c3nr02500d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The effects that nanometer-sized matrices have on the properties of molecules encapsulated within the nanomatrix are not fully understood. In this work, dye-doped silica nanoparticles were employed as a model for studying the effects of a nanomatrix on the fluorescence quantum yield of encapsulated dye molecules. Two types of dye molecules were selected based on their different responses to the surrounding media. Several factors that affect fluorescence quantum yields were investigated, including aggregation of dye molecules, diffusion of atmospheric oxygen, concentration of dye molecules, and size of the nanomatrix. The results showed that the silica nanomatrix has a varied effect on the fluorescence quantum yield of encapsulated dye molecules, including enhancement, quenching and insignificant changes. Both the properties of dye molecules and the conditions of the nanomatrix played important roles in these effects. Finally, a physical model was proposed to explain the varied nanomatrix effects on the fluorescence quantum yield of encapsulated dye molecules.
Collapse
Affiliation(s)
- Song Liang
- Department of Chemistry, University of North Dakota, Grand Forks, ND 58202, USA.
| | | | | | | |
Collapse
|
15
|
Mangiapia G, Vitiello G, Irace C, Santamaria R, Colonna A, Angelico R, Radulescu A, D’Errico G, Montesarchio D, Paduano L. Anticancer Cationic Ruthenium Nanovectors: From Rational Molecular Design to Cellular Uptake and Bioactivity. Biomacromolecules 2013; 14:2549-60. [DOI: 10.1021/bm400104b] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Gaetano Mangiapia
- Dipartimento
di
Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Complesso
Universitario di M. S. Angelo, Via Cinthia, 80126 Naples, Italy
- CSGI − Consorzio
interuniversitario per lo sviluppo di Sistemi a Grande Interfase, University of Florence, Via della Lastruccia
3, 50019 Sesto Fiorentino, Italy
| | - Giuseppe Vitiello
- Dipartimento
di
Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Complesso
Universitario di M. S. Angelo, Via Cinthia, 80126 Naples, Italy
- CSGI − Consorzio
interuniversitario per lo sviluppo di Sistemi a Grande Interfase, University of Florence, Via della Lastruccia
3, 50019 Sesto Fiorentino, Italy
| | - Carlo Irace
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Rita Santamaria
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Alfredo Colonna
- Dipartimento di Farmacia, Università degli Studi di Napoli “Federico II”, Via D. Montesano 49, 80131 Naples, Italy
| | - Ruggero Angelico
- CSGI − Consorzio
interuniversitario per lo sviluppo di Sistemi a Grande Interfase, University of Florence, Via della Lastruccia
3, 50019 Sesto Fiorentino, Italy
- DISTAAM, Università degli Studi del Molise, Via De Sanctis, 86100 Campobasso, Italy
| | - Aurel Radulescu
- Jülich Centre for Neutron Science, Garching Forschungszentrum, Lichtenbergstrasse
1, 85748 Garching bei München, Germany
| | - Gerardino D’Errico
- Dipartimento
di
Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Complesso
Universitario di M. S. Angelo, Via Cinthia, 80126 Naples, Italy
- CSGI − Consorzio
interuniversitario per lo sviluppo di Sistemi a Grande Interfase, University of Florence, Via della Lastruccia
3, 50019 Sesto Fiorentino, Italy
| | - Daniela Montesarchio
- Dipartimento
di
Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Complesso
Universitario di M. S. Angelo, Via Cinthia, 80126 Naples, Italy
| | - Luigi Paduano
- Dipartimento
di
Scienze Chimiche, Università degli Studi di Napoli “Federico II”, Complesso
Universitario di M. S. Angelo, Via Cinthia, 80126 Naples, Italy
- CSGI − Consorzio
interuniversitario per lo sviluppo di Sistemi a Grande Interfase, University of Florence, Via della Lastruccia
3, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
16
|
Murgia S, Bonacchi S, Falchi AM, Lampis S, Lippolis V, Meli V, Monduzzi M, Prodi L, Schmidt J, Talmon Y, Caltagirone C. Drug-loaded fluorescent cubosomes: versatile nanoparticles for potential theranostic applications. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6673-6679. [PMID: 23642193 DOI: 10.1021/la401047a] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In this work, monoolein-based cubosomes were doped with two fluorescent probes, namely, fluorescein and dansyl, properly modified with a hydrocarbon chain to increase their encapsulation efficiency within the monoolein palisade. The same nanocarriers were also loaded with quercetin, a hydrophobic molecule with potential anticancer activity. Particularly, the cubosomes doped with the modified fluorescein probe were successfully exploited for single living cell imaging. The physicochemical and photophysical characterizations reported here, along with the well-known ability of cubosomes in hosting molecules with pharmaceutical interest, strongly encourage the use of these innovative fluorescent nanocarriers for theranostic purposes.
Collapse
Affiliation(s)
- Sergio Murgia
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Monserrato (CA), Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Behnke T, Mathejczyk JE, Brehm R, Würth C, Gomes FR, Dullin C, Napp J, Alves F, Resch-Genger U. Target-specific nanoparticles containing a broad band emissive NIR dye for the sensitive detection and characterization of tumor development. Biomaterials 2012; 34:160-70. [PMID: 23072943 DOI: 10.1016/j.biomaterials.2012.09.028] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Accepted: 09/15/2012] [Indexed: 02/08/2023]
Abstract
Current optical probes including engineered nanoparticles (NPs) are constructed from near infrared (NIR)-emissive organic dyes with narrow absorption and emission bands and small Stokes shifts prone to aggregation-induced self-quenching. Here, we present the new asymmetric cyanine Itrybe with broad, almost environment-insensitive absorption and emission bands in the diagnostic window, offering a unique flexibility of the choice of excitation and detection wavelengths compared to common NIR dyes. This strongly emissive dye was spectroscopically studied in different solvents and encapsulated into differently sized (15, 25, 100 nm) amino-modified polystyrene NPs (PSNPs) via a one-step staining procedure. As proof-of-concept for its potential for pre-/clinical imaging applications, Itrybe-loaded NPs were surface-functionalized with polyethylene glycol (PEG) and the tumor-targeting antibody Herceptin and their binding specificity to the tumor-specific biomarker HER2 was systematically assessed. Itrybe-loaded NPs display strong fluorescence signals in vitro and in vivo and Herceptin-conjugated NPs bind specifically to HER2 as demonstrated in immunoassays as well as on tumor cells and sections from mouse tumor xenografts in vitro. This demonstrates that our design strategy exploiting broad band-absorbing and -emitting dyes yields versatile and bright NIR probes with a high potential for e.g. the sensitive detection and characterization of tumor development and progression.
Collapse
Affiliation(s)
- Thomas Behnke
- BAM Federal Institute for Materials Research and Testing, 1.10, Richard-Willstätter-Str. 11, 12489 Berlin, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
McCarthy SA, Davies GL, Gun'ko YK. Preparation of multifunctional nanoparticles and their assemblies. Nat Protoc 2012. [PMID: 22899335 DOI: 10.1038/nprot.2012.082.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
This article describes the synthesis of multifunctional nanoparticulate systems and a range of organic reactions for modifying the surface functionalities of these particles and their composites. The reactions include surface silanization, amine-azide conversion, azide-alkyne 'click' chemistry, thiol and amine click chemistry and amide coupling. In addition, we discuss a number of relevant nanoparticle preparations to exemplify the interrelationship of these reactions. This system can readily be adapted to produce a wide range of composites with different features, such as fluorescence, magnetism, plasmon resonance and multiple biofunctionalities.
Collapse
Affiliation(s)
- Sarah A McCarthy
- School of Chemistry and CRANN Institute, Trinity College Dublin, Dublin, Ireland
| | | | | |
Collapse
|
19
|
|
20
|
Rampazzo E, Bonacchi S, Genovese D, Juris R, Marcaccio M, Montalti M, Paolucci F, Sgarzi M, Valenti G, Zaccheroni N, Prodi L. Nanoparticles in metal complexes-based electrogenerated chemiluminescence for highly sensitive applications. Coord Chem Rev 2012. [DOI: 10.1016/j.ccr.2012.03.021] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
21
|
Moretti E, Storaro L, Chessa G, Talon A, Callone E, Mueller KJ, Enrichi F, Lenarda M. Stepwise dansyl grafting on the kaolinite interlayer surface. J Colloid Interface Sci 2012; 375:112-7. [DOI: 10.1016/j.jcis.2012.02.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2011] [Revised: 02/15/2012] [Accepted: 02/16/2012] [Indexed: 10/28/2022]
|
22
|
Rousseau G, Fensterbank H, Baczko K, Cano M, Allard E, Larpent C. Azido-Coated Nanoparticles: A Versatile Clickable Platform for the Preparation of Fluorescent Polystyrene Core–PAMAM Shell Nanoparticles. Macromolecules 2012. [DOI: 10.1021/ma300126h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Guillaume Rousseau
- Institut Lavoisier de Versailles
UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
| | - Hélène Fensterbank
- Institut Lavoisier de Versailles
UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
| | - Krystyna Baczko
- Institut Lavoisier de Versailles
UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
| | - Manuel Cano
- Institut Lavoisier de Versailles
UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
| | - Emmanuel Allard
- Institut Lavoisier de Versailles
UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
| | - Chantal Larpent
- Institut Lavoisier de Versailles
UMR-CNRS 8180, Université de Versailles-Saint-Quentin-en-Yvelines, 45 avenue des Etats-Unis, 78035 Versailles cedex, France
| |
Collapse
|
23
|
Carraro M, Modugno G, Fiorani G, Maccato C, Sartorel A, Bonchio M. Organic-Inorganic Molecular Nano-Sensors: A Bis-Dansylated Tweezer-Like Fluoroionophore Integrating a Polyoxometalate Core. European J Org Chem 2011. [DOI: 10.1002/ejoc.201101122] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
24
|
Oliveira E, Genovese D, Juris R, Zaccheroni N, Capelo JL, Raposo MMM, Costa SPG, Prodi L, Lodeiro C. Bioinspired Systems for Metal-Ion Sensing: New Emissive Peptide Probes Based on Benzo[d]oxazole Derivatives and Their Gold and Silica Nanoparticles. Inorg Chem 2011; 50:8834-49. [DOI: 10.1021/ic200792t] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Elisabete Oliveira
- REQUIMTE, Department of Chemistry, FCT-UNL, 2829-516 Monte de Caparica, Portugal
- BIOSCOPE Group, Faculty of Science, Physical Chemistry Department, University of Vigo, Campus Ourense, 32004 Ourense, Spain
| | - Damiano Genovese
- Department of Chemistry “G. Ciamician”, Università degli Studi di Bologna, 40126 Bologna, Italy
| | - Riccardo Juris
- Department of Chemistry “G. Ciamician”, Università degli Studi di Bologna, 40126 Bologna, Italy
| | - Nelsi Zaccheroni
- Department of Chemistry “G. Ciamician”, Università degli Studi di Bologna, 40126 Bologna, Italy
| | - José Luis Capelo
- REQUIMTE, Department of Chemistry, FCT-UNL, 2829-516 Monte de Caparica, Portugal
- BIOSCOPE Group, Faculty of Science, Physical Chemistry Department, University of Vigo, Campus Ourense, 32004 Ourense, Spain
| | - M. Manuela M. Raposo
- CQ-UM, Center of Chemistry, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Susana P. G. Costa
- CQ-UM, Center of Chemistry, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
| | - Luca Prodi
- Department of Chemistry “G. Ciamician”, Università degli Studi di Bologna, 40126 Bologna, Italy
| | - Carlos Lodeiro
- REQUIMTE, Department of Chemistry, FCT-UNL, 2829-516 Monte de Caparica, Portugal
- BIOSCOPE Group, Faculty of Science, Physical Chemistry Department, University of Vigo, Campus Ourense, 32004 Ourense, Spain
| |
Collapse
|
25
|
Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Glänzende Aussichten für lumineszierende Siliciumdioxidnanopartikel. Angew Chem Int Ed Engl 2011. [DOI: 10.1002/ange.201004996] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
26
|
Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Zaccheroni N. Luminescent Silica Nanoparticles: Extending the Frontiers of Brightness. Angew Chem Int Ed Engl 2011; 50:4056-66. [DOI: 10.1002/anie.201004996] [Citation(s) in RCA: 228] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2010] [Revised: 10/16/2010] [Indexed: 12/31/2022]
|
27
|
Abstract
Fluorescent chemosensors are chemical systems that can detect and signal the presence of selected analytes through variations in their fluorescence emission. Their peculiar properties make them arguably one of the most useful tools that chemistry has provided to biomedical research, enabling the intracellular monitoring of many different species for medical and biological purposes. In its simplest design, a fluorescent chemosensor is composed of a fluorescent dye and a receptor, with a built-in transduction mechanism that converts recognition events into variations of the emission properties of the fluorescent dye. As soon as fluorescent nanoparticles became available, several applications in the field of sensing were explored. Nanoparticles have been used not only as better-performing substitutes of traditional dyes but also as multivalent scaffolds for the realization of supramolecular assemblies, while their high surface to volume ratio allows for distinct spatial domains (bulk, external surface, pores and shells) to be functionalized to a comparable extent with different organic species. Over the last few years, nanoparticles proved to be versatile synthetic platforms for the implementation of new sensing schemes.
Collapse
Affiliation(s)
- Luca Baù
- Dipartimento di Scienze Chimiche, Università di Padova, via Marzolo 1, 35131, Padova, Italy.
| | | | | |
Collapse
|
28
|
Coppola C, Paciello A, Mangiapia G, Licen S, Boccalon M, De Napoli L, Paduano L, Tecilla P, Montesarchio D. Design, Synthesis and Characterisation of a Fluorescently Labelled CyPLOS Ionophore. Chemistry 2010; 16:13757-72. [DOI: 10.1002/chem.201000611] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
29
|
Martínez-Máñez R, Sancenón F, Hecht M, Biyikal M, Rurack K. Nanoscopic optical sensors based on functional supramolecular hybrid materials. Anal Bioanal Chem 2010; 399:55-74. [DOI: 10.1007/s00216-010-4198-2] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Revised: 09/02/2010] [Accepted: 09/05/2010] [Indexed: 01/10/2023]
|
30
|
Rampazzo E, Bonacchi S, Juris R, Montalti M, Genovese D, Zaccheroni N, Prodi L, Rambaldi DC, Zattoni A, Reschiglian P. Energy transfer from silica core-surfactant shell nanoparticles to hosted molecular fluorophores. J Phys Chem B 2010; 114:14605-13. [PMID: 21070057 DOI: 10.1021/jp1023444] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Very monodisperse water-soluble silica core-surfactant shell nanoparticles (SCSS NPs) doped with a rhodamine B derivative were prepared using micelles of F127 as nanoreactors for the hydrolysis and condensation of the silica precursor tetraethoxysilane (TEOS). The functionalization of the rhodamines with a triethoxysilane group allowed the covalent binding of the fluorophores to the silica core: no leaking of the dye was observed when the NPs were purified either by ultrafiltration (UF) or dialysis. The diameter of the core (d(c) = 10 ± 1 nm) was determined by TEM and subtracted from the hydrodynamic diameter, measured by DLS, (d(H) = 24 nm, PdI = 0.1) to calculate the shell thickness (∼7 nm). The presence of a single population of NPs with a radius compatible with the one measured by DLS after UF was confirmed by AF4-MALS-RI measurements. The concentration of the NPs was measured by MALS-RI. This allowed us to determine the average number of rhodamine molecules per NP (10). The ability of the NPs to host hydrophobic species as cyanines in the SS was confirmed by fluorescence anisotropy measurements. Steady-state and time-resolved fluorescence measurements allowed us to observe the occurrence of a very efficient Förster resonance energy transfer process from the covalently linked rhodamines to the hosted cyanines. In particular, the analysis of the TCSPC data and steady-state measurements revealed that the adsorption of a single cyanine molecule causes an almost complete quenching of the fluorescence of the NP. Thanks to these observations, it was possible to easily determine the concentration of the NPs by fluorescence titration experiments. Results are in good agreement with the concentration values obtained by MALS-RI. Finally, the hosted cyanine molecule could be extracted with (±)-2-octanol, demonstrating the reversibility of the adsorption process.
Collapse
Affiliation(s)
- Enrico Rampazzo
- Department of Chemistry G. Ciamician, University of Bologna, via Selmi 2, 40126 Bologna, Italy
| | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Bonacchi S, Genovese D, Juris R, Montalti M, Prodi L, Rampazzo E, Sgarzi M, Zaccheroni N. Luminescent Chemosensors Based on Silica Nanoparticles. LUMINESCENCE APPLIED IN SENSOR SCIENCE 2010; 300:93-138. [DOI: 10.1007/128_2010_104] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Lodeiro C, Capelo JL, Mejuto JC, Oliveira E, Santos HM, Pedras B, Nuñez C. Light and colour as analytical detection tools: A journey into the periodic table using polyamines to bio-inspired systems as chemosensors. Chem Soc Rev 2010; 39:2948-76. [DOI: 10.1039/b819787n] [Citation(s) in RCA: 178] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
33
|
Melucci M, Zambianchi M, Barbarella G, Manet I, Montalti M, Bonacchi S, Rampazzo E, Rambaldi DC, Zattoni A, Reschiglian P. Facile tuning from blue to white emission in silica nanoparticles doped with oligothiophene fluorophores. ACTA ACUST UNITED AC 2010. [DOI: 10.1039/c0jm01579b] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Yin J, Guan X, Wang D, Liu S. Metal-chelating and dansyl-labeled poly(N-isopropylacrylamide) microgels as fluorescent Cu2+ sensors with thermo-enhanced detection sensitivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2009; 25:11367-11374. [PMID: 19708645 DOI: 10.1021/la901377h] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We report on the fabrication of Cu2+-sensing thermoresponsive poly(N-isopropylacrylamide) (PNIPAM) microgels labeled with metal-chelating acceptor and fluorescent reporter moieties. Cu2+ detection sensitivity can be considerably enhanced via thermo-induced collapse of the sensing matrix, which can easily optimize the relative spatial distribution of Cu2+-binding sites and fluorescence readout functionalities. A novel picolinamine-containing monomer with Cu2+-binding capability, N-(2-(2-oxo-2-(pyridine 2-yl-methylamino)ethylamino)ethyl)acrylamide (PyAM, 3), was synthesized at first. Nearly monodisperse Cu2+-sensing microgels were prepared via emulsion polymerization of N-isopropylacrylamide (NIPAM) in the presence of a nonionic surfactant, N,N'-Methylene-bis(acrylamide) (BIS), PyAM (3), and fluorescent dansylaminoethyl- acrylamide (DAEAM, 5) monomers at around neutral pH and 70 degrees C. At 20 degrees C, as-synthesized microgels in their swollen state can selectively bind Cu2+ over other metal ions (Hg2+, Mg2+, Zn2+, Pb2+, Ag+, and Al3+), leading to prominent quenching of fluorescence emission intensity. Above the volume phase transition temperature, P(NIPAM-co-PyAM-co-DAEAM) microgels exhibit increased fluorescence intensity. It was observed that Cu2+ detection sensitivity can be dramatically enhanced via thermo-induced microgel collapse at elevated temperatures. At a microgel concentration of 3.0x10(-6) g/mL, the detection limit drastically improved from approximately 46 nM at 20 degrees C to approximately 8 nM at 45 degrees C. The underlying mechanism for this novel type of sensor with thermotunable detection sensitivity was tentatively proposed.
Collapse
Affiliation(s)
- Jun Yin
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | | | | | | |
Collapse
|
35
|
Frigoli M, Ouadahi K, Larpent C. A Cascade FRET-Mediated Ratiometric Sensor for Cu2+Ions Based on Dual Fluorescent Ligand-Coated Polymer Nanoparticles. Chemistry 2009; 15:8319-30. [DOI: 10.1002/chem.200900475] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
36
|
Zanarini S, Rampazzo E, Ciana LD, Marcaccio M, Marzocchi E, Montalti M, Paolucci F, Prodi L. Ru(bpy)3 Covalently Doped Silica Nanoparticles as Multicenter Tunable Structures for Electrochemiluminescence Amplification. J Am Chem Soc 2009; 131:2260-7. [DOI: 10.1021/ja8077158] [Citation(s) in RCA: 142] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Simone Zanarini
- Dipartimento di Chimica “G. Ciamician”, Universitá di Bologna, Via Selmi 2, 40126 Bologna, Italy and Cyanagen srl via Stradelli Guelfi, 40/c, 40138 Bologna, Italy
| | - Enrico Rampazzo
- Dipartimento di Chimica “G. Ciamician”, Universitá di Bologna, Via Selmi 2, 40126 Bologna, Italy and Cyanagen srl via Stradelli Guelfi, 40/c, 40138 Bologna, Italy
| | - Leopoldo Della Ciana
- Dipartimento di Chimica “G. Ciamician”, Universitá di Bologna, Via Selmi 2, 40126 Bologna, Italy and Cyanagen srl via Stradelli Guelfi, 40/c, 40138 Bologna, Italy
| | - Massimo Marcaccio
- Dipartimento di Chimica “G. Ciamician”, Universitá di Bologna, Via Selmi 2, 40126 Bologna, Italy and Cyanagen srl via Stradelli Guelfi, 40/c, 40138 Bologna, Italy
| | - Ettore Marzocchi
- Dipartimento di Chimica “G. Ciamician”, Universitá di Bologna, Via Selmi 2, 40126 Bologna, Italy and Cyanagen srl via Stradelli Guelfi, 40/c, 40138 Bologna, Italy
| | - Marco Montalti
- Dipartimento di Chimica “G. Ciamician”, Universitá di Bologna, Via Selmi 2, 40126 Bologna, Italy and Cyanagen srl via Stradelli Guelfi, 40/c, 40138 Bologna, Italy
| | - Francesco Paolucci
- Dipartimento di Chimica “G. Ciamician”, Universitá di Bologna, Via Selmi 2, 40126 Bologna, Italy and Cyanagen srl via Stradelli Guelfi, 40/c, 40138 Bologna, Italy
| | - Luca Prodi
- Dipartimento di Chimica “G. Ciamician”, Universitá di Bologna, Via Selmi 2, 40126 Bologna, Italy and Cyanagen srl via Stradelli Guelfi, 40/c, 40138 Bologna, Italy
| |
Collapse
|
37
|
Bringley JF, Penner TL, Wang R, Harder JF, Harrison WJ, Buonemani L. Silica nanoparticles encapsulating near-infrared emissive cyanine dyes. J Colloid Interface Sci 2008; 320:132-9. [DOI: 10.1016/j.jcis.2007.09.006] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2007] [Revised: 08/31/2007] [Accepted: 09/01/2007] [Indexed: 01/01/2023]
|
38
|
Zhang L, Liu B, Dong S. Bifunctional Nanostructure of Magnetic Core Luminescent Shell and Its Application as Solid-State Electrochemiluminescence Sensor Material. J Phys Chem B 2007; 111:10448-52. [PMID: 17696469 DOI: 10.1021/jp0734427] [Citation(s) in RCA: 109] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Bifunctional nanoarchitecture has been developed by combining the magnetic iron oxide and the luminescent Ru(bpy)32+ encapsulated in silica. First, the iron oxide nanoparticles were synthesized and coated with silica, which was used to isolate the magnetic nanoparticles from the outer-shell encapsulated Ru(bpy)32+ to prevent luminescence quenching. Then onto this core an outer shell of silica containing encapsulated Ru(bpy)32+ was grown through the Stöber method. Highly luminescent Ru(bpy)32+ serves as a luminescent marker, while magnetic Fe3O4 nanoparticles allow external manipulation by a magnetic field. Since Ru(bpy)32+ is a typical electrochemiluminescence (ECL) reagent and it could still maintain such property when encapsulated in the bifunctional nanoparticle, we explored the feasibility of applying the as-prepared nanostructure to fabricating an ECL sensor; such method is simple and effective. We applied the prepared ECL sensor not only to the typical Ru(bpy)32+ co-reactant tripropylamine (TPA), but also to the practically important polyamines. Consequently, the ECL sensor shows a wide linear range, high sensitivity, and good stability.
Collapse
Affiliation(s)
- Lihua Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Graduate School of the Chinese Academy of Sciences, Chinese Academy of Sciences, Changchun, 130022, China
| | | | | |
Collapse
|
39
|
|
40
|
Nakayama K, Endo M, Fujitsuka M, Majima T. Monitoring of three distinct structures of restriction enzyme complexes using characteristic fluorescence from site-selectively incorporated solvatochromic probe. Photochem Photobiol Sci 2007; 6:836-41. [PMID: 17668112 DOI: 10.1039/b705049f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The local change in the three different structures of restriction enzyme BamHI, which include DNA-free dimer and non-specific and specific complexes with DNA, were detected by the fluorescence from a site-selectively introduced solvatochromic fluorophore Nbeta-L-alanyl-5-(N,N-dimethylamino)naphthalene-1-sulfonamide (DanAla). According to the crystal structure, alpha-helices of the non-specific complex containing Ile82, Glu86 and Trp206 residues are converted into random coil by the formation of specific complex with a substrate. To understand the microenvironmental change caused by the structural transition around these positions, the DanAla probe was site-specifically introduced into the positions, and steady-state and time-resolved fluorescence was observed. The steady-state fluorescence gave us information that the rigidity of the polypeptide chains would be enhanced by the formation of the specific complex. The time-resolved fluorescence supported that the change in a water molecule-accessible space was induced by DNA-binding. We revealed that the change in rigidity and solvation around the specific positions was detected by the characteristic fluorescence using the combination of steady-state and time-resolved fluorescence techniques.
Collapse
Affiliation(s)
- Koji Nakayama
- The Institute of Scientific and Industrial Research, Osaka University Mihogaoka 8-1, Ibaraki, Osaka, 567-0047, Japan
| | | | | | | |
Collapse
|
41
|
Bertazza L, Celotti L, Fabbrini G, Loi MA, Maggini M, Mancin F, Marcuz S, Menna E, Muccini M, Tonellato U. Cell penetrating silica nanoparticles doped with two-photon absorbing fluorophores. Tetrahedron 2006. [DOI: 10.1016/j.tet.2006.08.044] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|