1
|
Penfold J, Thomas RK. The Gibbs and Butler Equations and the Surface Activity of Dilute Aqueous Solutions of Strong and Weak Linear Polyelectrolyte-Surfactant Mixtures: The Roles of Surface Composition and Polydispersity. J Phys Chem B 2024; 128:8084-8102. [PMID: 39140373 PMCID: PMC11345831 DOI: 10.1021/acs.jpcb.4c03541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/15/2024]
Abstract
In a previous paper, we applied a combination of direct measurements of both surface tension and surface excess in conjunction with the Gibbs equation to explain features of the adsorption and surface tension of mixtures of surfactants and strong linear polyelectrolytes at the air-water interface. This paper extends that model by including (i) the restrictions of the Butler equation for the behavior of the surface tension of mixed systems and (ii) the surface behavior of surfactant and linear weak polyelectrolyte mixtures, for which the inclusion of measurements of the surface excess and composition is shown to be particularly important. In addition, a closer examination of earlier data at higher concentrations provides evidence that the surface layering that is often observed in polyelectrolyte-surfactant systems is also an average equilibrium phenomenon and is driven by particular aggregation patterns that occur in some systems and not in others. Although the successful application of the Gibbs and Butler equations indicates that strong polyelectrolyte-surfactant systems can be described in terms of an average equilibrium over wide ranges of concentration, we have identified two concentration ranges where polydispersity in either polyelectrolyte molecular weight or composition results in significant time dependence of the surface behavior.
Collapse
Affiliation(s)
- Jeffrey Penfold
- Rutherford-Appleton
Laboratory, Chilton, Didcot, Oxfordshire OX11 0RA, U.K.
| | - Robert K. Thomas
- Physical
and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K.
| |
Collapse
|
2
|
Fa K, Liu H, Li Z, Gong H, Petkov J, Ren Lu J. Acyl Chain Length Tuning Improves Antimicrobial Potency and Biocompatibility of Short Designed Lipopeptides. J Colloid Interface Sci 2022; 630:911-923. [DOI: 10.1016/j.jcis.2022.10.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 10/16/2022] [Accepted: 10/22/2022] [Indexed: 11/06/2022]
|
3
|
Pal T, Sahu K. Comparison of interaction patterns of a triblock copolymer micelle with zwitterionic vs. cationic surfactant: An excited-state proton transfer dynamics investigation. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
4
|
Penfold J, Thomas RK. Neutron reflection and the thermodynamics of the air-water interface. Phys Chem Chem Phys 2022; 24:8553-8577. [PMID: 35352746 DOI: 10.1039/d2cp00053a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By means of isotopic substitution, measurements of the neutron reflectivity (NR) from a flat water surface generally give model independent measurements of the amount of a chosen solute at the surface irrespective of whether the layer is a mixture or whether there is any aggregation in the bulk solution. Previously, adsorption at air-water interfaces has been determined by applying the Gibbs equation to surface tension (ST) measurements, which requires assumptions about the composition of the surface and about the activity of the solute in the bulk, which, in turn, means that in practice the surface is assumed to consist of the pure solute or of a mixture of pure solutes, and that the activity of the solute in the bulk solution is known. The use of NR in combination with ST-Gibbs measurements makes it possible to (i) avoid these assumptions and hence understand several patterns of ST behaviour previously considered to be anomalous and (ii) to start to analyse quantitatively the behaviour of mixed surfactants both below and above the critical micelle concentration. These two developments in our understanding of the thermodynamics of the air-water interface are described with recent examples.
Collapse
Affiliation(s)
- Jeffrey Penfold
- ISIS Facility, Rutherford Appleton Laboratory, Harwell Campus, Didcot, Oxon, UK. .,Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, UK
| | - Robert K Thomas
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, UK
| |
Collapse
|
5
|
Ramirez JC, Hernández‐Belmares PJ, Herrera‐Ordonez J. On the association between poly(vinyl alcohol) and sodium dodecyl sulfate and its effect on liquid–liquid interfacial tension: A mathematical model. J SURFACTANTS DETERG 2022. [DOI: 10.1002/jsde.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jorge C. Ramirez
- Centro de Investigación en Química Aplicada (CIQA) Saltillo Coahuila Mexico
| | | | - Jorge Herrera‐Ordonez
- Centro de Física Aplicada y Tecnología Avanzada (CFATA), UNAM Campus Juriquilla Juriquilla Querétaro Mexico
| |
Collapse
|
6
|
|
7
|
Akanno A, Guzmán E, Ortega F, Rubio RG. Behavior of the water/vapor interface of chitosan solutions with an anionic surfactant: effect of polymer-surfactant interactions. Phys Chem Chem Phys 2020; 22:23360-23373. [PMID: 33047113 DOI: 10.1039/d0cp02470h] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The adsorption of mixtures formed by chitosan and sodium lauryl ether sulfate (SLES) at the water/vapor interface has been studied on the basis of their impact on the equilibrium surface tension of the interface, and the response of such an interface to mechanical deformations. The analysis of the surfactant binding to the chitosan chains evidenced that the chitosan-SLES solutions were mixtures of polyelectrolyte-surfactant complexes and a non-negligible amount of free surfactant molecules. The interfacial properties showed two well-differentiated regions for interfacial adsorption as a function of the SLES concentration: (i) at a low surfactant concentration, co-adsorption of chitosan and SLES occurs, and (ii) at high concentrations, the surface is mostly occupied by SLES molecules. This behavior may be interpreted in terms of a complex equilibration mechanism of the interfacial layers, where different coupled dynamic processes may be involved. Furthermore, the use of the time-concentration superposition principle has confirmed the different dynamic behaviors of the chitosan-SLES adsorption as a function of the SLES concentration. This work sheds light on some of the most fundamental bases governing the physico-chemical behavior of mixtures formed by a biopolymer and a surfactant, where their complex behavior is governed by an intricate balance of bulk and interfacial interactions.
Collapse
Affiliation(s)
- Andrew Akanno
- Departamento de Química Física-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040 Madrid, Spain.
| | | | | | | |
Collapse
|
8
|
Fernández-Peña L, Abelenda-Nuñez I, Hernández-Rivas M, Ortega F, Rubio RG, Guzmán E. Impact of the bulk aggregation on the adsorption of oppositely charged polyelectrolyte-surfactant mixtures onto solid surfaces. Adv Colloid Interface Sci 2020; 282:102203. [PMID: 32629241 DOI: 10.1016/j.cis.2020.102203] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 12/28/2022]
Abstract
The understanding of the deposition of oppositely charged polyelectrolytes-surfactant mixtures onto solid surfaces presents a high interest in current days due to the recognized impact of the obtained layers on different industrial sectors and the performance of several consumer products (e.g. formulations of shampoos and hair conditioners). This results from the broad range of structures and properties that can present the mixed layers, which in most of the cases mirror the association process occurring between the polyelectrolyte chains and the oppositely charged surfactants in the bulk. Therefore, the understanding of the adsorption processes and characteristics of the adsorbed layers can be only attained from a careful examination of the self-assembly processes occurring in the solution. This review aims to contribute to the understanding of the interaction of polyelectrolyte-surfactant mixtures with solid surfaces, which is probably one of the most underexplored aspects of these type of systems. For this purpose, a comprehensive discussion on the correlations between the aggregates formed in the solutions and the deposition of the obtained complexes upon such association onto solid surfaces will be presented. This makes it necessary to take a closer look to the most important forces driving such processes.
Collapse
Affiliation(s)
- Laura Fernández-Peña
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Centro de Espectroscopia Infrarroja-Raman-Correlación, Universidad Complutense de Madrid, Ciudad Universitaria, s/n, Madrid 28040, Spain.
| | - Irene Abelenda-Nuñez
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - María Hernández-Rivas
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain
| | - Francisco Ortega
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Ramón G Rubio
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain
| | - Eduardo Guzmán
- Departamento de Química Física, Universidad Complutense de Madrid, Ciudad Universitaria s/n, Madrid 28040, Spain; Instituto Pluridisciplinar, Universidad Complutense de Madrid, Paseo Juan XXIII 1, Madrid 28040, Spain.
| |
Collapse
|
9
|
Penfold J, Thomas RK. Counterion Condensation, the Gibbs Equation, and Surfactant Binding: An Integrated Description of the Behavior of Polyelectrolytes and Their Mixtures with Surfactants at the Air-Water Interface. J Phys Chem B 2020; 124:6074-6094. [PMID: 32608983 DOI: 10.1021/acs.jpcb.0c02988] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
By applying the Gibbs equation to the bulk binding isotherms and surface composition of the air-water (A-W) interface in polyelectrolyte-surfactant (PE-S) systems, we show that their surface behavior can be explained semiquantitatively in terms of four concentration regions, which we label as A, B, C, and D. In the lowest-concentration range A, there are no bound PE-S complexes in the bulk but there may be adsorption of PE-S complexes at the surface. When significant adsorption occurs in this region, the surface tension (ST) drops with increasing concentration like a simple surfactant solution. Region B extends from the onset of bulk PE-S binding to the end of cooperative binding, in which the slow variation of surfactant activity with cooperative binding means that the ST changes relatively little, although adsorption may be significant. This leads to an approximate plateau, which may be at high or low ST. Region C starts where the binding in the bulk complex loses its cooperativity leading to a rapid change of surfactant activity with the total concentration. This, combined with significant adsorption, often leads to a sharp drop in ST. Region D is where precipitation and redissolution of the bulk PE-S complex occur. ST peaks may arise in region D because of loss of the solution complex that matches the value of the preferred surface stoichiometry, which seems to have a well-defined value for each system. The analysis is applied to the experimental systems, sodium polystyrene sulfonate-alkyltrimethylammonium bromides and poly(diallyldimethyl chloride)-sodium alkyl sulfates, with and without the added electrolyte, and includes data from bulk binding isotherms, phase diagrams, aggregation behavior, and direct measurements of the surface excess and stoichiometry of the surface. The successful fits of the Gibbs equation to the data confirm that the surfaces in these systems are largely equilibrated.
Collapse
Affiliation(s)
- Jeffrey Penfold
- STFC, Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire OX11 0RA, U.K
| | - Robert K Thomas
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford OX1 3QZ, U.K
| |
Collapse
|
10
|
Mateos H, Valentini A, Lopez F, Palazzo G. Surfactant Interactions with Protein-Coated Surfaces: Comparison between Colloidal and Macroscopically Flat Surfaces. Biomimetics (Basel) 2020; 5:biomimetics5030031. [PMID: 32630198 PMCID: PMC7559326 DOI: 10.3390/biomimetics5030031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2020] [Revised: 06/13/2020] [Accepted: 06/29/2020] [Indexed: 11/16/2022] Open
Abstract
Surface interactions with polymers or proteins are extensively studied in a range of industrial and biomedical applications to control surface modification, cleaning, or biofilm formation. In this study we compare surfactant interactions with protein-coated silica surfaces differing in the degree of curvature (macroscopically flat and colloidal nanometric spheres). The interaction with a flat surface was probed by means of surface plasmon resonance (SPR) while dynamic light scattering (DLS) was used to study the interaction with colloidal SiO2 (radius 15 nm). First, the adsorption of bovine serum albumin (BSA) with both SiO2 surfaces to create a monolayer of coating protein was studied. Subsequently, the interaction of these BSA-coated surfaces with a non-ionic surfactant (a decanol ethoxylated with an average number of eight ethoxy groups) was investigated. A fair comparison between the results obtained by these two techniques on different geometries required the correction of SPR data for bound water and DLS results for particle curvature. Thus, the treated data have excellent quantitative agreement independently of the geometry of the surface suggesting the formation of multilayers of C10PEG over the protein coating. The results also show a marked different affinity of the surfactant towards BSA when the protein is deposited on a flat surface or individually dissolved in solution.
Collapse
Affiliation(s)
- Helena Mateos
- CSGI (Center for Colloid and Surface Science), via Orabona 4, 70125 Bari, Italy
- Correspondence:
| | - Alessandra Valentini
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK;
| | - Francesco Lopez
- Department of Agricultural, Environmental and Food Sciences (DiAAA) and CSGI, University of Molise, Via De Sanctis, 86100 Campobasso, Italy;
| | - Gerardo Palazzo
- Department of Chemistry, University of Bari, via Orabona 4, 70125 Bari, Italy;
| |
Collapse
|
11
|
Solution and rheological properties of cationic cellulose/gemini surfactant: Effect of the alkyl chain and spacer length. Carbohydr Polym 2020; 238:116200. [DOI: 10.1016/j.carbpol.2020.116200] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 03/14/2020] [Accepted: 03/19/2020] [Indexed: 11/19/2022]
|
12
|
Two Different Scenarios for the Equilibration of Polycation—Anionic Solutions at Water–Vapor Interfaces. COATINGS 2019. [DOI: 10.3390/coatings9070438] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The assembly in solution of the cationic polymer poly(diallyldimethylammonium chloride) (PDADMAC) and two different anionic surfactants, sodium lauryl ether sulfate (SLES) and sodium N-lauroyl-N-methyltaurate (SLMT), has been studied. Additionally, the adsorption of the formed complexes at the water–vapor interface have been measured to try to shed light on the complex physico-chemical behavior of these systems under conditions close to that used in commercial products. The results show that, independently of the type of surfactant, polyelectrolyte-surfactant interactions lead to the formation of kinetically trapped aggregates in solution. Such aggregates drive the solution to phase separation, even though the complexes should remain undercharged along the whole range of explored compositions. Despite the similarities in the bulk behavior, the equilibration of the interfacial layers formed upon adsorption of kinetically trapped aggregates at the water–vapor interface follows different mechanisms. This was pointed out by surface tension and interfacial dilational rheology measurements, which showed different equilibration mechanisms of the interfacial layer depending on the nature of the surfactant: (i) formation layers with intact aggregates in the PDADMAC-SLMT system, and (ii) dissociation and spreading of kinetically trapped aggregates after their incorporation at the fluid interface for the PDADMAC-SLES one. This evidences the critical impact of the chemical nature of the surfactant in the interfacial properties of these systems. It is expected that this work may contribute to the understanding of the complex interactions involved in this type of system to exploit its behavior for technological purposes.
Collapse
|
13
|
Li R, Qian F, Ren X. Amphiphilic Copolymers PDMAEMA
m
‐
b
‐PAA
n
and Their Complexes with Surfactants at the Air/Water Interface. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Rong Li
- Key Laboratory of Eco‐textiles of Ministry of Education, College of Textiles and ClothingJiangnan University Wuxi Jiangsu 214122 China
| | - Fengyi Qian
- Key Laboratory of Eco‐textiles of Ministry of Education, College of Textiles and ClothingJiangnan University Wuxi Jiangsu 214122 China
| | - Xuehong Ren
- Key Laboratory of Eco‐textiles of Ministry of Education, College of Textiles and ClothingJiangnan University Wuxi Jiangsu 214122 China
| |
Collapse
|
14
|
Li P, Penfold J, Thomas RK, Xu H. Multilayers formed by polyelectrolyte-surfactant and related mixtures at the air-water interface. Adv Colloid Interface Sci 2019; 269:43-86. [PMID: 31029983 DOI: 10.1016/j.cis.2019.04.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/13/2019] [Accepted: 04/13/2019] [Indexed: 01/01/2023]
Abstract
The structure and occurrence of multilayered adsorption at the air-water interface of surfactants in combination with other oppositely charged species is reviewed. The main species that trigger multilayer formation are multiply charged metal, oligo- and polyions. The structures vary from the attachment of one or two more or less complete surfactant bilayers to the initial surfactant monolayer at the air-water interface to the attachment of a greater number of bilayers with a more defective structure. The majority of the wide range of observations of such structures have been made using neutron reflectometry. The possible mechanisms for the attraction of surfactant bilayers to an air-water interface are discussed and particular attention is given to the question of whether these structures are true equilibrium structures.
Collapse
Affiliation(s)
- Peixun Li
- STFC, Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0RA, United Kingdom
| | - Jeffery Penfold
- STFC, Rutherford-Appleton Laboratory, Chilton, Didcot, Oxfordshire, OX11 0RA, United Kingdom
| | - Robert K Thomas
- Physical and Theoretical Chemistry Laboratory, South Parks Road, Oxford, OX1 3QZ, United Kingdom.
| | - Hui Xu
- KLK OLEO, Room 1603, 16th Floor, LZY Tower, 4711 Jiao Tong Road, Putuo District, Shanghai 200331, China
| |
Collapse
|
15
|
Akanno A, Guzmán E, Fernández-Peña L, Llamas S, Ortega F, Rubio RG. Equilibration of a Polycation-Anionic Surfactant Mixture at the Water/Vapor Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7455-7464. [PMID: 29856927 DOI: 10.1021/acs.langmuir.8b01343] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The adsorption of concentrated poly(diallyldimethylammonium chloride) (PDADMAC)-sodium lauryl ether sulfate (SLES) mixtures at the water/vapor interface has been studied by different surface tension techniques and dilational viscoelasticity measurements. This work tries to shed light on the way in which the formation of polyelectrolyte-surfactant complexes in the bulk affects the interfacial properties of mixtures formed by a polycation and an oppositely charged surfactant. The results are discussed in terms of a two-step adsorption-equilibration of PDADMAC-SLES complexes at the interface, with the initial stages involving the diffusion of kinetically trapped aggregates formed in the bulk to the interface followed by the dissociation and spreading of such aggregates at the interface. This latter process becomes the main contribution to the surface tension decrease. This work aids our understanding of the most fundamental basis of the physicochemical behavior of concentrated polyelectrolyte-surfactant mixtures which present complex bulk and interfacial interactions with interest in both basic and applied sciences.
Collapse
Affiliation(s)
- Andrew Akanno
- Departamento de Química Física , Universidad Complutense de Madrid, Ciudad Universitaria s/n , 28040 Madrid , Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid , Paseo Juan XXIII, 1 , 28040 Madrid , Spain
| | - Eduardo Guzmán
- Departamento de Química Física , Universidad Complutense de Madrid, Ciudad Universitaria s/n , 28040 Madrid , Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid , Paseo Juan XXIII, 1 , 28040 Madrid , Spain
| | - Laura Fernández-Peña
- Departamento de Química Física , Universidad Complutense de Madrid, Ciudad Universitaria s/n , 28040 Madrid , Spain
| | - Sara Llamas
- Departamento de Química Física , Universidad Complutense de Madrid, Ciudad Universitaria s/n , 28040 Madrid , Spain
| | - Francisco Ortega
- Departamento de Química Física , Universidad Complutense de Madrid, Ciudad Universitaria s/n , 28040 Madrid , Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid , Paseo Juan XXIII, 1 , 28040 Madrid , Spain
| | - Ramón G Rubio
- Departamento de Química Física , Universidad Complutense de Madrid, Ciudad Universitaria s/n , 28040 Madrid , Spain
- Instituto Pluridisciplinar, Universidad Complutense de Madrid , Paseo Juan XXIII, 1 , 28040 Madrid , Spain
| |
Collapse
|
16
|
Li F, Zhu W, Song H, Wang K, Li W. Study of surfactant-polymer system containing a novel ternary sulfonated polyacrylamide on the oil-water interface properties. J DISPER SCI TECHNOL 2018. [DOI: 10.1080/01932691.2017.1421081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Feng Li
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang, China
| | - Wenxi Zhu
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang, China
| | - Hua Song
- Provincial Key Laboratory of Oil & Gas Chemical Technology, College of Chemistry & Chemical Engineering, Northeast Petroleum University, Daqing, Heilongjiang, China
| | - Keliang Wang
- College of Petroleum Engineering, Northeast Petroleum University, Daqing, Heilongjiang, China
| | - Wei Li
- College of Petroleum Engineering, Northeast Petroleum University, Daqing, Heilongjiang, China
| |
Collapse
|
17
|
Hofmann MJ, Motschmann H. Surface rheology and its relation to foam stability in solutions of sodium decyl sulfate. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.04.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
The Use of Polymer and Surfactants for the Microencapsulation and Emulsion Stabilization. COLLOIDS AND INTERFACES 2017. [DOI: 10.3390/colloids1010003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Noskov BA, Krycki MM. Formation of protein/surfactant adsorption layer as studied by dilational surface rheology. Adv Colloid Interface Sci 2017; 247:81-99. [PMID: 28716186 DOI: 10.1016/j.cis.2017.07.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 06/19/2017] [Accepted: 07/02/2017] [Indexed: 12/25/2022]
Abstract
The review discusses the mechanism of formation of protein/surfactant adsorption layers at the liquid - gas interface. The complexes of globular proteins usually preserve their compact structure a low surfactant concentrations. Therefore a simple kinetic model of the adsorption of charged compact nanoparticles is discussed first and compared with experimental data. The increase of surfactant concentrations results in various conformational transitions in the surface layer. One can obtain information on the changes of the adsorption layer structure using the dilational surface rheology. The kinetic dependencies of the dynamic surface elasticity are strongly different for the adsorption of unfolded macromolecules and compact globules, and have local maxima in the former case corresponding to different steps of the adsorption. These distinctions allow tracing the changes of the tertiary structure of protein/surfactant complexes in the surface layer. The adsorption from mixed solutions of ionic surfactants with β-casein, β-lactoglobulin, bovine serum albumin and myoglobin is discussed with some details.
Collapse
|
20
|
On describing the equilibria in mixed solutions of polyelectrolytes and simple salts using the law of mass action. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2016.09.122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
21
|
Llamas S, Guzmán E, Baghdadli N, Ortega F, Cazeneuve C, Rubio RG, Luengo GS. Adsorption of poly(diallyldimethylammonium chloride)—sodium methyl-cocoyl-taurate complexes onto solid surfaces. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.03.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
22
|
Guzmán E, Llamas S, Maestro A, Fernández-Peña L, Akanno A, Miller R, Ortega F, Rubio RG. Polymer-surfactant systems in bulk and at fluid interfaces. Adv Colloid Interface Sci 2016; 233:38-64. [PMID: 26608684 DOI: 10.1016/j.cis.2015.11.001] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 10/30/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022]
Abstract
The interest of polymer-surfactant systems has undergone a spectacular development in the last thirty years due to their complex behavior and their importance in different industrial sectors. The importance can be mainly associated with the rich phase behavior of these mixtures that confers a wide range of physico-chemical properties to the complexes formed by polymers and surfactants, both in bulk and at the interfaces. This latter aspect is especially relevant because of the use of their mixture for the stabilization of dispersed systems such as foams and emulsions, with an increasing interest in several fields such as cosmetic, food science or fabrication of controlled drug delivery structures. This review presents a comprehensive analysis of different aspects related to the phase behavior of these mixtures and their intriguing behavior after adsorption at the liquid/air interface. A discussion of some physical properties of the bulk is also included. The discussion clearly points out that much more work is needed for obtaining the necessary insights for designing polymer-surfactant mixtures for specific applications.
Collapse
Affiliation(s)
- Eduardo Guzmán
- Departamento de Química Física I-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain.
| | - Sara Llamas
- Departamento de Química Física I-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain; Istituto per l'Energetica e le Interfasi-U.O.S. Genova-Consiglio Nazionale delle Ricerche Via de Marini 6, 16149, Genova, Italy
| | - Armando Maestro
- Department of Physics, Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, CB3 0HE, Cambridge, United Kingdom
| | - Laura Fernández-Peña
- Departamento de Química Física I-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Andrew Akanno
- Departamento de Química Física I-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain; Instituto Pluridisciplinar-Universidad Complutense de Madrid, Avenida Juan XXIII 1, 28040, Madrid, Spain
| | - Reinhard Miller
- Max-Planck-Institut für Kolloid und Grenzflächenforschung, Am Mühlenberg 1, 14476-Golm, Potsdam, Germany
| | - Francisco Ortega
- Departamento de Química Física I-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain
| | - Ramón G Rubio
- Departamento de Química Física I-Universidad Complutense de Madrid, Ciudad Universitaria s/n, 28040, Madrid, Spain; Instituto Pluridisciplinar-Universidad Complutense de Madrid, Avenida Juan XXIII 1, 28040, Madrid, Spain.
| |
Collapse
|
23
|
Singh G, Singh G, Kang TS. Effect of alkyl chain functionalization of ionic liquid surfactants on the complexation and self-assembling behavior of polyampholyte gelatin in aqueous medium. Phys Chem Chem Phys 2016; 18:25993-26009. [DOI: 10.1039/c6cp04664a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The interactional behavior of ILSs towards gelatin forming structurally different ILS mediated self-assemblies depending on the nature of the ILS and counterion binding is shown.
Collapse
Affiliation(s)
- Gagandeep Singh
- Department of Chemistry
- UGC-Centre for Advance Studies–II
- Guru Nanak Dev University
- Amritsar
- India
| | - Gurbir Singh
- Department of Chemistry
- UGC-Centre for Advance Studies–II
- Guru Nanak Dev University
- Amritsar
- India
| | - Tejwant Singh Kang
- Department of Chemistry
- UGC-Centre for Advance Studies–II
- Guru Nanak Dev University
- Amritsar
- India
| |
Collapse
|
24
|
Shen LC, Nguyen XT, Hankins NP. Removal of heavy metal ions from dilute aqueous solutions by polymer–surfactant aggregates: A novel effluent treatment process. Sep Purif Technol 2015. [DOI: 10.1016/j.seppur.2015.07.065] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
25
|
Hu D, Chou KC. Re-Evaluating the Surface Tension Analysis of Polyelectrolyte-Surfactant Mixtures Using Phase-Sensitive Sum Frequency Generation Spectroscopy. J Am Chem Soc 2014; 136:15114-7. [DOI: 10.1021/ja5049175] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dan Hu
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Keng C. Chou
- Department
of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
26
|
Sharipova AA, Aidarova SB, Fainerman VB, Aksenenko EV, Bekturganova NE, Tarasevich YI, Miller R. Effect of electrolyte on adsorption of polyallyl amine hydrochloride/sodium dodecyl sulphate at water/tetradecane interface. Colloids Surf A Physicochem Eng Asp 2014. [DOI: 10.1016/j.colsurfa.2014.01.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Lindman B, Antunes F, Aidarova S, Miguel M, Nylander T. Polyelectrolyte-surfactant association—from fundamentals to applications. COLLOID JOURNAL 2014. [DOI: 10.1134/s1061933x14050111] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Interaction of Quillaja bark saponins with food-relevant proteins. Adv Colloid Interface Sci 2014; 209:185-95. [PMID: 24802169 DOI: 10.1016/j.cis.2014.04.005] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 04/09/2014] [Accepted: 04/10/2014] [Indexed: 11/22/2022]
Abstract
The surface activity and aggregation behaviour of two Quillaja bark saponins (QBS) are compared using surface tension, conductometry and light scattering. Despite formally of the same origin (bark of the Quillaja saponaria Molina tree), the two QBS show markedly different ionic characters and critical micelle concentrations (7.7·10(-6) mol·dm(-3) and 1.2·10(-4) mol·dm(-3)). The new interpretation of the surface tension isotherms for both QBS allowed us to propose an explanation for the previous discrepancy concerning the orientation of the saponin molecules in the adsorbed layer. The effect of three food-related proteins (hen egg lysozyme, bovine β-lactoglobulin and β-casein) on surface tension of the saponins is also described. Dynamic surface tension was measured at fixed protein concentrations and QBS concentrations varying in the range 5·10(-7)-1·10(-3) mol·dm(-3). Both dynamic and extrapolated equilibrium surface tensions of the protein/QBS mixtures depend not only on the protein, but also on the QBS source. In general, the surface tension for mixtures of the QBS with lower CMC and less ionic character shows less pronounced synergistic effects. This is especially well visible for β-casein/QBS mixtures, where a characteristic maximum in the surface tension isotherm around the molar ratio of one can be noticed for one saponin product, but not for the other.
Collapse
|
29
|
Ábrahám Á, Kardos A, Mezei A, Campbell RA, Varga I. Effects of ionic strength on the surface tension and nonequilibrium interfacial characteristics of poly(sodium styrenesulfonate)/dodecyltrimethylammonium bromide mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:4970-4979. [PMID: 24712308 DOI: 10.1021/la500637v] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
We rationalize the surface tension behavior and nonequilibrium interfacial characteristics of high molecular weight poly(sodium styrenesulfonate)/dodecyltrimethylammonium bromide (NaPSS/DTAB) mixtures with respect to the ionic strength. Excellent agreement is achieved between experimental data and our recent empirical model [Langmuir 2013, 29, 11554], which is based on the lack of colloidal stability of bulk aggregates in the phase separation region and has no free fitting parameters. We show that the size of a surface tension peak positioned at the edge of the phase separation region can be suppressed by the addition of inert electrolyte, which lowers the critical micelle concentration in relation to the phase separation region. Such manipulation of the peak is possible for the 100 ppm NaPSS/DTAB system because there is a high free surfactant concentration in the phase separation region. The close agreement of our model with the experimental data of samples in the phase separation region with respect to the ionic strength indicates that the surface tension behavior can be rationalized in terms of comprehensive precipitation regardless of whether there is a peak or not. The time scale of precipitation for the investigated system is on the order of one month, which emphasizes the need to understand the dynamic changes in the state of bulk aggregation in order to rationalize the surface properties of strongly interacting mixtures; steady state surface properties measured in the interim period will represent samples far from equilibrium. We show also that the surface properties of samples of low ionic strength outside the equilibrium phase separation region can be extreme opposites depending on the sample history, which is attributed to the generation of trapped nonequilibrium states. This work highlights the need to validate the underlying nature of oppositely charged polyelectrolyte/surfactant systems prior to the interpretation of experimental data within an equilibrium framework.
Collapse
Affiliation(s)
- Ágnes Ábrahám
- Institute of Chemistry, Eötvös Loránd University , Budapest 112, P.O. Box 32, H-1518 Hungary
| | | | | | | | | |
Collapse
|
30
|
Szilagyi I, Trefalt G, Tiraferri A, Maroni P, Borkovec M. Polyelectrolyte adsorption, interparticle forces, and colloidal aggregation. SOFT MATTER 2014; 10:2479-2502. [PMID: 24647366 DOI: 10.1039/c3sm52132j] [Citation(s) in RCA: 222] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
This review summarizes the current understanding of adsorption of polyelectrolytes to oppositely charged solid substrates, the resulting interaction forces between such substrates, and consequences for colloidal particle aggregation. The following conclusions can be reached based on experimental findings. Polyelectrolytes adsorb to oppositely charged solid substrates irreversibly up to saturation, whereby loose and thin monolayers are formed. The adsorbed polyelectrolytes normally carry a substantial amount of charge, which leads to a charge reversal. Frequently, the adsorbed films are laterally heterogeneous. With increasing salt levels, the adsorbed mass increases leading to thicker and more homogeneous films. Interaction forces between surfaces coated with saturated polyelectrolyte layers are governed at low salt levels by repulsive electric double layer interactions, and particle suspensions are stable under these conditions. At appropriately high salt levels, the forces become attractive, principally due to van der Waals interactions, but eventually also through other forces, and suspensions become unstable. This situation can be rationalized with the classical theory of Derjaguin, Landau, Verwey, and Overbeek (DLVO). Due to the irreversible nature of the adsorption process, stable unsaturated layers form in colloidal particle suspensions at lower polyelectrolyte doses. An unsaturated polyelectrolyte layer can neutralize the overall particle surface charge. Away from the charge reversal point, electric double layer forces are dominant and particle suspensions are stable. As the charge reversal point is approached, attractive van der Waals forces become important, and particle suspensions become unstable. This behaviour is again in line with the DLVO theory, which may even apply quantitatively, provided the polyelectrolyte films are sufficiently laterally homogeneous. For heterogeneous films, additional attractive patch-charge interactions may become important. Depletion interactions may also lead to attractive forces and suspension destabilization, but such interactions become important only at high polyelectrolyte concentrations.
Collapse
Affiliation(s)
- Istvan Szilagyi
- Department of Inorganic and Analytical Chemistry, University of Geneva, Sciences II, Quai Ernest-Ansermet 30, 1205 Geneva, Switzerland.
| | | | | | | | | |
Collapse
|
31
|
Fegyver E, Mészáros R. The impact of nonionic surfactant additives on the nonequilibrium association between oppositely charged polyelectrolytes and ionic surfactants. SOFT MATTER 2014; 10:1953-1962. [PMID: 24652458 DOI: 10.1039/c3sm52889h] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The effect of uncharged surfactant additives on the oppositely charged polyion/ionic surfactant complexation is usually described as a direct equilibrium association between the polyelectrolyte molecules and free mixed micelles analogous to the polyion/colloidal particle interactions. This approach predicts that the binding of the ionic surfactant to the polyelectrolyte molecules can be completely suppressed by increasing the nonionic-to-ionic surfactant ratio. In the present work, it is shown that the addition of nonionic surfactants to poly(diallyldimethylammonium chloride)/sodium dodecyl sulfate mixtures considerably enhances the binding of the anionic surfactant to the polycation in the dilute surfactant concentration regime. The dynamic light scattering, turbidity, electrophoretic mobility and fluorescence spectroscopic measurements are consistent with the synergic binding of the ionic and nonionic surfactants to the polyelectrolyte molecules. The enhanced surfactant binding could be utilized for the preparation of stable colloidal dispersions of novel polyion/mixed surfactant nanoparticles over a wide composition range provided that adequate mixing protocols are used. These results clearly indicate that the nonionic surfactant additives can be successfully used to tune the nonequilibrium association of oppositely charged macromolecules and amphiphiles.
Collapse
Affiliation(s)
- Edit Fegyver
- Laboratory of Interfaces and Nanosized Systems, Institute of Chemistry, Eötvös Loránd University, Pázmány Péter sétány 1/A, 1117 Budapest, Hungary.
| | | |
Collapse
|
32
|
Bahramian A, Thomas RK, Penfold J. The Adsorption Behavior of Ionic Surfactants and Their Mixtures with Nonionic Polymers and with Polyelectrolytes of Opposite Charge at the Air–Water Interface. J Phys Chem B 2014; 118:2769-83. [DOI: 10.1021/jp500672f] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Alireza Bahramian
- Institute
of Petroleum Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| | - Robert K. Thomas
- Physical
and Theoretical Chemistry Laboratory, University of Oxford, South Parks
Road, Oxford, OX1 3QZ, United Kingdom
| | - Jeffrey Penfold
- Rutherford-Appleton
Laboratory, STFC, Chilton, Didcot, Oxfordshire, OX11 0RA, United Kingdom
| |
Collapse
|
33
|
Aidarova S, Sharipova A, Krägel J, Miller R. Polyelectrolyte/surfactant mixtures in the bulk and at water/oil interfaces. Adv Colloid Interface Sci 2014; 205:87-93. [PMID: 24268973 DOI: 10.1016/j.cis.2013.10.007] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2013] [Revised: 10/04/2013] [Accepted: 10/06/2013] [Indexed: 11/26/2022]
Abstract
Stabilization of emulsions by mixed polyelectrolyte/surfactant systems is a prominent example for the application in modern technologies. The formation of complexes between the polymers and the surfactants depends on the type of surfactant (ionic, non-ionic) and the mixing ratio. The surface activity (hydrophilic-lipophilic balance) of the resulting complexes is an important quantity for its efficiency in stabilizing emulsions. The interfacial adsorption properties observed at liquid/oil interfaces are more or less equivalent to those observed at the aqueous solution/air interface, however, the corresponding interfacial dilational and shear rheology parameters differ quite significantly. The interfacial properties are directly linked to bulk properties, which support the picture for the complex formation of polyelectrolyte/surfactant mixtures, which is the result of electrostatic and hydrophobic interactions. For long alkyl chain surfactants the interfacial behavior is strongly influenced by hydrophobic interactions while the complex formation with short chain surfactants is mainly governed by electrostatic interactions.
Collapse
|
34
|
|
35
|
Effect of surfactant hydrophobicity on the interfacial properties of polyallylamine hydrochloride/sodium alkylsulphate at water/hexane interface. Colloids Surf A Physicochem Eng Asp 2013. [DOI: 10.1016/j.colsurfa.2012.12.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Bharmoria P, Singh T, Kumar A. Complexation of chitosan with surfactant like ionic liquids: Molecular interactions and preparation of chitosan nanoparticles. J Colloid Interface Sci 2013; 407:361-9. [DOI: 10.1016/j.jcis.2013.06.032] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 06/14/2013] [Accepted: 06/15/2013] [Indexed: 10/26/2022]
|
37
|
Ábraham Á, Campbell RA, Varga I. New method to predict the surface tension of complex synthetic and biological polyelectrolyte/surfactant mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11554-11559. [PMID: 23964990 DOI: 10.1021/la402525w] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Although the surface tension of complex mixtures determines the fate of many important natural processes, the property is notoriously difficult to interpret. Here we announce a new method that successfully predicts the surface tension of two synthetic and one biological polyelectrolyte/surfactant mixtures in the phase-separation region after dynamic changes in the bulk phase behavior have reached completion. The approach is based on the nonequilibrium framework of a lack of colloidal stability of bulk complexes in compositions around the charge match point of the oppositely charged components and requires as input parameters only the surface tension isotherm of the pure surfactant and some bulk measurements of the mixtures; no surface measurements of the mixtures are required. The complexity of the problem is reduced to a single empirical equation. This simplification in our understanding of the surface properties of strongly interacting mixtures involving macromolecules can lead to the optimization of applications involving synthetic polymers and biomacromolecules such as DNA at surfaces.
Collapse
Affiliation(s)
- Ágnes Ábraham
- Institute of Chemistry, Eötvös Loránd University , Budapest 112, P.O. Box 32, H-1518 Hungary
| | | | | |
Collapse
|
38
|
Fechner M, Koetz J. Polyampholyte/surfactant complexes at the water-air interface: a surface tension study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:7600-7606. [PMID: 23721398 DOI: 10.1021/la401576q] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The present paper is related to interactions between strongly alternating polyampholytes, i.e., copolymers of N,N'-diallyl-N,N'-dimethylammonium chloride and maleamic acid derivatives, varying in hydrophobicity and excess charges and the oppositely charged anionic surfactant sodium dodecyl sulfate (SDS). Surface tension measurements have revealed a complex behavior with the formation of polyampholyte-SDS complexes at water-air interfaces which depends on both the hydrophobic character of the polyampholyte and electrostatic attractive forces between the polyampholyte and the anionic surfactant in dependence on pH. Hereby, maleamic acid copolymers with additional carboxylic groups in the phenylic side chain show a significant lower surface tension at the critical association concentration (CAC) due to the formation of surface-active SDS complexes and multicomplexes. In the presence of only one carboxylic group in the p-position the CAC can be strongly shifted by varying the pH due to repulsive electrostatic interactions.
Collapse
Affiliation(s)
- Mabya Fechner
- Institut für Chemie, Universität Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 25, 14476 Potsdam (Golm), Germany
| | | |
Collapse
|
39
|
Halacheva SS, Penfold J, Thomas RK, Webster JRP. Solution pH and oligoamine molecular weight dependence of the transition from monolayer to multilayer adsorption at the air-water interface from sodium dodecyl sulfate/oligoamine mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:5832-5840. [PMID: 23641792 DOI: 10.1021/la400929z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Neutron reflectivity and surface tension have been used to investigate the solution pH and oligoamine molecular weight dependence of the adsorption of sodium dodecyl sulfate (SDS)/oligoamine mixtures at the air-water interface. For diethylenetriamine, triamine, or triethylenetetramine, tetramine mixed with SDS, there is monolayer adsorption at pH 7 and 10, and multilayer adsorption at pH 3. For the slightly higher molecular weight tetraethylenepentamine, pentamine, and pentaethylenehexamine, hexamine, the adsorption is in the form of a monolayer at pH 3 and multilayers at pH 7 and 10. Hence, there is a pH driven transition from monolayer to multilayer adsorption, which shifts from low pH to higher pH as the oligoamine molecular weight increases from tetramine to pentamine. This results from the relative balance between the electrostatic attraction between the SDS and amine nitrogen group which decreases as the charge density decreases with increasing pH, the ion-dipole interaction between the amine nitrogen and SDS sulfate group which is dominant at higher pH, and the hydrophobic interalkyl chain interaction between bound SDS molecules which changes with oligoamine molecular weight.
Collapse
Affiliation(s)
- S S Halacheva
- Physical and Theoretical Chemistry Laboratory, Oxford University, Oxford, United Kingdom
| | | | | | | |
Collapse
|
40
|
Halacheva SS, Penfold J, Thomas RK, Webster JRP. Effect of polymer molecular weight and solution pH on the surface properties of sodium dodecylsulfate-poly(ethyleneimine) mixtures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14909-14916. [PMID: 23020669 DOI: 10.1021/la302444b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The effect of polymer molecular weight and solution pH on the surface properties of the anionic surfactant sodium dodecylsulfate, SDS, and a range of small linear poly(ethyleneimine), PEI, polyelectrolytes of different molecular weights has been studied by surface tension, ST, and neutron reflectivity, NR, at the air-solution interface. The strong SDS-PEI interaction gives rise to a complex pattern of ST behavior which depends significantly on solution pH and PEI molecular weight. The ST data correlate broadly with the more direct determination of the surface adsorption and surface structure obtained using NR. At pH 3, 7, and 10, the strong SDS-PEI interaction results in a pronounced SDS adsorption at relatively low SDS and PEI concentrations, and is largely independent of pH and PEI molecular weight (for PEI molecular weights on the order of 320, 640, and 2000 Da). At pH 7 and 10, there are combinations of SDS and PEI concentrations for which surface multilayer structures form. For the PEI molecular weights of 320 and 640 Da, these surface multilayer structures are most well-developed at pH 10 and less so at pH 7. At the molecular weight of 2000 Da, they are poorly developed at both pH 7 and 10. This evolution in the surface structure with molecular weight is consistent with previous studies, (1) where for a molecular weight of 25,000 Da no multilayer structures were observed for the linear PEI. The results show the importance with increasing polymer molecular weight of the entropic contribution due to the polymer flexibility in control of the surface multilayer formation.
Collapse
Affiliation(s)
- Silvia S Halacheva
- Physical and Theoretical Chemistry Laboratory, Oxford University, Oxford, United Kingdom
| | | | | | | |
Collapse
|
41
|
Tucker IM, Petkov JT, Jones C, Penfold J, Thomas RK, Rogers SE, Terry AE, Heenan RK, Grillo I. Adsorption of polymer-surfactant mixtures at the oil-water interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14974-82. [PMID: 23025239 DOI: 10.1021/la303563j] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Small-angle neutron scattering, zeta potential measurements, and dynamic light scattering have been used to investigate the adsorption of polymer-surfactant mixtures at the oil-water interface. The water-hexadecane interface investigated was in the form of small oil-in-water emulsion droplets stabilized by the anionic surfactant sodium dodecyl sulfate, SDS. The impact of the addition of two different cationic polymers, poly(ethyleneimine), PEI, and poly(dimethyldiallylammonium chloride), polydmdaac, on the SDS adsorption at the oil-water interface was studied. For both polymers, the addition of the polymer enhances the SDS adsorption at low SDS concentrations at the oil-water interface due to a strong surface polyelectrolyte-surfactant interaction and complexation, but the effects are not as pronounced as at the air-water interface. For PEI/SDS, the adsorption was largely independent of solution pH and increasing PEI concentration. In marked contrast to the adsorption at the air-water interface, only monolayer adsorption and no multilayer adsorption was observed. For the SDS-polydmdaac mixture, the enhanced SDS adsorption was in the form of a monolayer, and the adsorption increased with increasing polymer concentration. The strong SDS/polydmdaac surface interaction resulted in regions of emulsion instability. The zeta potential measurements showed that the combination of SDS and polydmdaac at the interface resulted in charge reversal at the interface. This correlates with the regions of emulsion stability at both high and low polymer concentrations, such that the instabilities arise in the regions of low or zero surface charge. The results presented and their interpretation represent a development in the understanding of polymer-surfactant adsorption at the oil-water interface.
Collapse
Affiliation(s)
- Ian M Tucker
- Unilever Research and Development Laboratory, Port Sunlight, Bebington, Wirral, United Kingdom
| | | | | | | | | | | | | | | | | |
Collapse
|
42
|
Tucker IM, Petkov JT, Penfold J, Thomas RK. Interaction of the anionic surfactant SDS with a cellulose thin film and the role of electrolyte and poyelectrolyte. 2 Hydrophilic cellulose. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10223-9. [PMID: 22679930 DOI: 10.1021/la3019277] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The interaction of the anionic surfactant, sodium dodecylsulfate (SDS), with the hydrophilic surface of a thin cellulose film and the role of electrolyte (0.1 M NaCl) and the polyelectrolyte, poly(dimethyldiallyl ammonium chloride) [polydmdaac], have been studied by neutron reflectivity (NR). The thin cellulose films were prepared by Langmuir-Blodgett (LB) deposition of trimethylsilyl-cellulose (TMSC) on silicon, and the hydrophilic surface was produced by the cleaving of the terminal methyl groups of the TMSC by HCl vapor. Despite both the surfactant and cellulose surfaces being nominally anionic, SDS adsorption and swelling of the cellulose film occurred during adsorption. The results show that the nature of the adsorption and the extent of the penetration into the cellulose film can be controlled by the addition of electrolyte, NaCl, and cationic polyelectrolyte, polydmdaac.
Collapse
Affiliation(s)
- Ian M Tucker
- Unilever Research and Development Laboratory, Port Sunlight, Bebington, Wirral, United Kingdom
| | | | | | | |
Collapse
|
43
|
Pan H, Chen PY, Liu HX, Chen Y, Wei YP, Zhang MJ, Cheng F. Interactions of cellulose-based comb polyelectrolyte with oppositely charged surfactant dodecyl-trimethylammonium bromide. Carbohydr Polym 2012; 89:899-905. [DOI: 10.1016/j.carbpol.2012.04.032] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 04/04/2012] [Accepted: 04/10/2012] [Indexed: 10/28/2022]
|
44
|
Halacheva SS, Penfold J, Thomas RK, Webster JRP. Effect of architecture on the formation of surface multilayer structures at the air-solution interface from mixtures of surfactant with small poly(ethyleneimine)s. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:6336-6347. [PMID: 22433069 DOI: 10.1021/la3003977] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The impact of ethyleneimine architecture on the adsorption behavior of mixtures of small poly(ethyleneimines) and oligoethyleneimines (OEIs) with the anionic surfactant sodium dodecylsulfate (SDS) at the air-solution interface has been studied by surface tension (ST) and neutron reflectivity (NR). The strong surface interaction between OEI and SDS gives rise to complex surface tension behavior that has a pronounced pH dependence. The NR data provide more direct access to the surface structure and show that the patterns of ST behavior are correlated with substantial OEI/SDS adsorption and the spontaneous formation of surface multilayer structures. The regions of surface multilayer formation depend upon SDS and OEI concentrations, on the solution pH, and on the OEI architecture, linear or branched. For the linear OEIs (octaethyleneimine, linear poly(ethyleneimine) or LPEI(8), and decaethyleneimine, LPEI(10)) with SDS, surface multilayer formation occurs over a range of OEI and SDS concentrations at pH 7 and to a much lesser extent at pH 10, whereas at pH 3 only monolayer adsorption occurs. In contrast, for branched OEIs BPEI(8) and BPEI(10) surface multilayer formation occurs over a wide range of OEI and SDS concentrations at pH 3 and 7, and at pH 10, the adsorption is mainly in the form of a monolayer. The results provide important insight into how the OEI architecture and pH can be used to control and manipulate the nature of the OEI/surfactant adsorption.
Collapse
Affiliation(s)
- Silvia S Halacheva
- Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford, UK
| | | | | | | |
Collapse
|
45
|
Jiang LX, Huang JB, Bahramian A, Li PX, Thomas RK, Penfold J. Surface behavior, aggregation and phase separation of aqueous mixtures of dodecyl trimethylammonium bromide and sodium oligoarene sulfonates: the transition to polyelectrolyte/surfactant behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:327-338. [PMID: 22098149 DOI: 10.1021/la2040938] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The properties and phase diagrams of aqueous mixtures of dodecyltrimethylammonium bromide (C(12)TAB) with the sodium oligoarene sulphonates (POSn), POS2, POS3, POS4, and POS6 have been studied using surface tension and neutron reflectometry to study the surface, and neutron small angle scattering and fluorescence to study the bulk solution. The behavior of POS2 and POS3 is reasonably consistent with mixed micelles of C(12)TAB and POSn-(C(12)TA)(n). These systems exhibit a single critical micelle concentration (CMC) at which the surface tension reaches the usual plateau. This is contrary to a recent report which suggests that the onset of the surface tension plateau does not coincide with the CMC. In the POS3 system, the micelles conform to the core-shell model, are slightly ellipsoidal, and have aggregation numbers in the range 70-100. In addition, the dissociation constant for ionization of the micelles is significantly lower than for free C(12)TAB micelles, indicating binding of the POS3 ion to the micelles. Estimation of the CMCs of the POSn-(C(12)TA)(n) from n = 1-3 assuming ideal mixing of the two component surfactants and the observed values of the mixed CMC gives values that are consistent with the nearest related gemini surfactant. The POS4 and POS6 systems are different. They both phase separate slowly to form a dilute and a concentrated (dense) phase. Fluorescence of POS4 has been used to show that the onset of aggregation of surfactant (critical aggregation concentration, CAC) occurs at the onset of the surface tension plateau and that, at the slightly higher concentration of the phase separation, the concentration of POS4 and C(12)TAB in the dilute phase is at or below its concentration at the CAC, that is, this is a clear case of complex coacervation. The surface layer of the C(12)TA ion in the surface tension plateau region, studied directly by neutron reflectometry, was found to be higher than a simple monolayer (observed for POS2 and POS3) for both the POS4 and POS6 systems. In POS6 this evolved after a few hours to a structure consisting of a monolayer with an attached subsurface bilayer, closely resembling that observed for one class of polyelectrolyte/surfactant mixtures. It is suggested that this structured layer, which must be present on the surface of the dilute phase of the coacervated system, is a thin wetting film of the dense phase. The close resemblance of the properties of the POS6 system to that of one large group of polyelectrolyte/surfactant mixtures shows that the surface behavior of oligoion/surfactant mixtures can quickly become representative of that of true polyelectrolyte/surfactant mixtures. In addition, the more precise characterization possible for the POS6 system identifies an unusual feature of the surface behavior of some polyelectrolyte/surfactant systems and that is that the surface tension can remain low and constant through a precipitation/coacervation region because of the characteristics of two phase wetting. The well-defined fixed charge distribution in POS6 also suggests that rigidity and charge separation are the factors that control whether a given system will exhibit a flat surface tension plateau or the alternative of a peak on the surface tension plateau.
Collapse
Affiliation(s)
- Ling Xiang Jiang
- Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, PR China
| | | | | | | | | | | |
Collapse
|
46
|
Nambam J, Philip J. Competitive adsorption of polymer and surfactant at a liquid droplet interface and its effect on flocculation of emulsion. J Colloid Interface Sci 2012; 366:88-95. [DOI: 10.1016/j.jcis.2011.07.100] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2011] [Revised: 06/28/2011] [Accepted: 07/08/2011] [Indexed: 11/26/2022]
|
47
|
Campbell RA, Yanez Arteta M, Angus-Smyth A, Nylander T, Varga I. Effects of Bulk Colloidal Stability on Adsorption Layers of Poly(diallyldimethylammonium Chloride)/Sodium Dodecyl Sulfate at the Air–Water Interface Studied by Neutron Reflectometry. J Phys Chem B 2011; 115:15202-13. [DOI: 10.1021/jp2088803] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Richard A. Campbell
- Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France
| | - Marianna Yanez Arteta
- Department of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Anna Angus-Smyth
- Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France
- Department of Chemistry, Durham University, South Road, DH1 3LE, United Kingdom
| | - Tommy Nylander
- Department of Physical Chemistry, Lund University, P.O. Box 124, S-221 00 Lund, Sweden
| | - Imre Varga
- Institute of Chemistry, Eötvös Loránd University, Budapest 112, P.O. Box 32, H-1518 Hungary
| |
Collapse
|
48
|
Noskov B, Loglio G, Miller R. Dilational surface visco-elasticity of polyelectrolyte/surfactant solutions: formation of heterogeneous adsorption layers. Adv Colloid Interface Sci 2011; 168:179-97. [PMID: 21435628 DOI: 10.1016/j.cis.2011.02.010] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2011] [Revised: 02/23/2011] [Accepted: 02/23/2011] [Indexed: 11/26/2022]
Abstract
Recent application of the methods of surface dilational rheology to solutions of the complexes between synthetic polyelectrolytes and oppositely charged surfactants (PSC) gave a possibility to determine some steps of the adsorption layer formation and to discover an abrupt transition connected with the formation of microaggregates at the liquid surface. The kinetic dependencies of the dynamic surface elasticity are always monotonous at low surfactant concentrations but can have one or two local maxima in the range beyond the critical aggregation concentration. The first maximum is accompanied by the generation of higher harmonics of induced surface tension oscillations and caused by heterogeneities in the adsorption layer. The formation of a multilayered structure at the surface for some systems leads to the second maximum in the dynamic surface elasticity. The hydrophobicity and charge density of a polymer chain influence strongly the surface structure, resulting in a variety of dynamic surface properties of PSC solutions. Optical methods and atomic force microscopy give additional information for the systems under consideration. Experimental results and existing theoretical frameworks are reviewed with emphasis on the general features of all studied PSC systems.
Collapse
|
49
|
Mukherjee S, Dan A, Bhattacharya SC, Panda AK, Moulik SP. Physicochemistry of interaction between the cationic polymer poly(diallyldimethylammonium chloride) and the anionic surfactants sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium N-dodecanoylsarcosinate in water and isopropyl alcohol-water media. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:5222-33. [PMID: 21466231 DOI: 10.1021/la200033x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The physicochemistry of interaction of the cationic polymer poly(diallyldimethylammonium chloride) (PDADMAC) with the anionic surfactants sodium dodecyl sulfate, sodium dodecylbenzenesulfonate, and sodium N-dodecanoylsarcosinate was studied in detail using tensiometry, turbidimetry, calorimetry, viscometry, dynamic light scattering (DLS), and scanning electron microscopy (SEM). Fair interaction initially formed induced small micelles of the surfactants and later on produced free normal micelles in solution. The interaction process yielded coacervates that initially grew by aggregation in the aqueous medium and disintegrated into smaller species at higher surfactant concentration. The phenomena observed were affected by the presence of isopropyl alcohol (IP) in the medium. The hydrodynamic sizes of the dispersed polymer and its surfactant-interacted species were determined by DLS measurements. The surface morphologies of the solvent-removed PDADMAC and its surfactant-interacted complexes from water and IP-water media were examined by the SEM technique. The morphologies witnessed different patterns depending on the composition and the solvent environment. The head groups of the dodecyl chain containing surfactants made differences in the interaction process.
Collapse
Affiliation(s)
- Suvasree Mukherjee
- Centre for Surface Science, Department of Chemistry, Jadavpur University, Kolkata-700032, West Bengal, India
| | | | | | | | | |
Collapse
|
50
|
The role of electrolyte and polyelectrolyte on the adsorption of the anionic surfactant, sodium dodecylbenzenesulfonate, at the air–water interface. J Colloid Interface Sci 2011; 356:656-64. [DOI: 10.1016/j.jcis.2011.01.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 01/06/2011] [Accepted: 01/08/2011] [Indexed: 11/22/2022]
|