1
|
Zhang H, Liu D, Zhang J, Adams E, Gong J, Li W, Wang B, Liu X, Yang R, Wei F, Allen HC. GMP affected assembly behaviors of phosphatidylethanolamine monolayers elucidated by multi-resolved SFG-VS and BAM. Colloids Surf B Biointerfaces 2024; 241:113995. [PMID: 38870647 DOI: 10.1016/j.colsurfb.2024.113995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 05/18/2024] [Accepted: 05/26/2024] [Indexed: 06/15/2024]
Abstract
The interaction between nucleotide molecules and lipid molecules plays important roles in cell activities, but the molecular mechanism is very elusive. In the present study, a small but noticeable interaction between the negatively charged phosphatidylethanolamine (PE) and Guanosine monophosphate (GMP) molecules was observed from the PE monolayer at the air/water interface. As shown by the sum frequency generation (SFG) spectra and Pi-A isotherm of the PE monolayer, the interaction between the PE and GMP molecules imposes very small changes to the PE molecules. However, the Brewster angle microscopy (BAM) technique revealed that the assembly conformations of PE molecules are significantly changed by the adsorption of GMP molecules. By comparing the SFG spectra of PE monolayers after the adsorption of GMP, guanosine and guanine, it is also shown that the hydrogen bonding effect plays an important role in the nucleotide-PE interactions. These results provide fundamental insight into the structure changes during the nucleotide-lipid interaction, which may shed light on the molecular mechanism of viral infection, DNA drug delivery, and cell membrane curvature control in the brain or neurons.
Collapse
Affiliation(s)
- Hongjuan Zhang
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Dongqi Liu
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Jiawei Zhang
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Ellen Adams
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA
| | - Jingjing Gong
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Wenhui Li
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Bing Wang
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Xueqing Liu
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Renqiang Yang
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China
| | - Feng Wei
- School of Optoelectronic Materials and Technology, & Key Laboratory of Optoelectronic Chemical Materials and Devices, Ministry of Education, Jianghan University, Wuhan 430056, China.
| | - Heather C Allen
- Department of Chemistry and Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH 43210, USA.
| |
Collapse
|
2
|
Sun M, Liu D, Yin G, Li W, Zhou Y, Lu W, Chen Y, Zhang H, Wei F. Magnesium Ion Responses of Zwitterionic Phosphatidylethanolamine Head and Tail Groups Elucidated by Frequency-Resolved SFG-VS. J Phys Chem Lett 2023; 14:2433-2440. [PMID: 36862126 DOI: 10.1021/acs.jpclett.2c03593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In the present study, the effects of magnesium ions on the conformational changes of the deuterated 1,2-dimyristoyl-sn-glycero-3-phosphoethanolamine (D54-DMPE) monolayer were elucidated by frequency-resolved sum frequency generation vibrational spectroscopy (SFG-VS) and surface pressure-area isotherm measurements. It is found that the tilt angles of the methyl in tail groups decrease, while the tilt angles of the phosphate and methylene in head groups increase during the compression of the DMPE monolayers at both the air/water interface and the air/MgCl2 solution interfaces. It is also shown that the tilt angle of the methyl in the tail groups slightly decreases, while the tilt angles of the phosphate and methylene in the head groups significantly increase as the MgCl2 concentration increases from 0 to 1.0 M. These results indicate that both the tail groups and the head groups of the DMPE molecules become closer to the surface normal, as the MgCl2 concentration increases in the subphase.
Collapse
Affiliation(s)
- Meng Sun
- School of Optoelectronic Materials and Technology & Institute of Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Dongqi Liu
- School of Optoelectronic Materials and Technology & Institute of Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Guogeng Yin
- School of Optoelectronic Materials and Technology & Institute of Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Wenhui Li
- School of Optoelectronic Materials and Technology & Institute of Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Youhua Zhou
- School of Optoelectronic Materials and Technology & Institute of Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Wangting Lu
- School of Optoelectronic Materials and Technology & Institute of Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Yijie Chen
- College of Food Science and Technology & Key Laboratory of Environment Correlative Dietology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Hongjuan Zhang
- School of Optoelectronic Materials and Technology & Institute of Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| | - Feng Wei
- School of Optoelectronic Materials and Technology & Institute of Interdisciplinary Research, Jianghan University, Wuhan 430056, China
| |
Collapse
|
3
|
Hybrid bilayer membranes as platforms for biomimicry and catalysis. Nat Rev Chem 2022; 6:862-880. [PMID: 37117701 DOI: 10.1038/s41570-022-00433-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2022] [Indexed: 11/08/2022]
Abstract
Hybrid bilayer membrane (HBM) platforms represent an emerging nanoscale bio-inspired interface that has broad implications in energy catalysis and smart molecular devices. An HBM contains multiple modular components that include an underlying inorganic surface with a biological layer appended on top. The inorganic interface serves as a support with robust mechanical properties that can also be decorated with functional moieties, sensing units and catalytic active sites. The biological layer contains lipids and membrane-bound entities that facilitate or alter the activity and selectivity of the embedded functional motifs. With their structural complexity and functional flexibility, HBMs have been demonstrated to enhance catalytic turnover frequency and regulate product selectivity of the O2 and CO2 reduction reactions, which have applications in fuel cells and electrolysers. HBMs can also steer the mechanistic pathways of proton-coupled electron transfer (PCET) reactions of quinones and metal complexes by tuning electron and proton delivery rates. Beyond energy catalysis, HBMs have been equipped with enzyme mimics and membrane-bound redox agents to recapitulate natural energy transport chains. With channels and carriers incorporated, HBM sensors can quantify transmembrane events. This Review serves to summarize the major accomplishments achieved using HBMs in the past decade.
Collapse
|
4
|
Lam RK, Smith JW, Rizzuto AM, Karslıoğlu O, Bluhm H, Saykally RJ. Reversed interfacial fractionation of carbonate and bicarbonate evidenced by X-ray photoemission spectroscopy. J Chem Phys 2017. [DOI: 10.1063/1.4977046] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Royce K. Lam
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Jacob W. Smith
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Anthony M. Rizzuto
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Osman Karslıoğlu
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Hendrik Bluhm
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
- Advanced Light Source, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - Richard J. Saykally
- Department of Chemistry, University of California, Berkeley, California 94720, USA
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
5
|
Doğangün M, Hang MN, Troiano JM, McGeachy AC, Melby ES, Pedersen JA, Hamers RJ, Geiger FM. Alteration of Membrane Compositional Asymmetry by LiCoO2 Nanosheets. ACS NANO 2015; 9:8755-8765. [PMID: 26247387 DOI: 10.1021/acsnano.5b01440] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Given the projected massive presence of redox-active nanomaterials in the next generation of consumer electronics and electric vehicle batteries, they are likely to eventually come in contact with cell membranes, with biological consequences that are currently not known. Here, we present nonlinear optical studies showing that lithium nickel manganese cobalt oxide nanosheets carrying a negative ζ-potential have no discernible consequences for lipid alignment and interleaflet composition in supported lipid bilayers formed from zwitterionic and negatively charged lipids. In contrast, lithiated and delithiated LiCoO2 nanosheets having positive and neutral ζ-potentials, respectively, alter the compositional asymmetry of the two membrane leaflets, and bilayer asymmetry remains disturbed even after rinsing. The insight that some cobalt oxide nanoformulations induce alterations to the compositional asymmetry in idealized model membranes may represent an important step toward assessing the biological consequences of their predicted widespread use.
Collapse
Affiliation(s)
- Merve Doğangün
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | | | - Julianne M Troiano
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Alicia C McGeachy
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | | | | | | | - Franz M Geiger
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
6
|
Keszthelyi T, Holló G, Nyitrai G, Kardos J, Héja L. Bilayer Charge Reversal and Modification of Lipid Organization by Dendrimers as Observed by Sum-Frequency Vibrational Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7815-7825. [PMID: 26099064 DOI: 10.1021/acs.langmuir.5b00734] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Polyamidoamine (PAMAM) dendrimers are hyperbranched, nanosized polymers with promising biomedical applications as nanocarriers in targeted drug delivery and gene therapy. For the development of safe dendrimer-based biomedical applications it is necessary to gain an understanding of the detailed mechanism of the interactions of both cationic and anionic dendrimers with cell membranes. To characterize dendrimer-membrane interactions we applied solid-supported lipid bilayers as biomembrane models and utilized infrared-visible sum-frequency vibrational spectroscopy to independently probe the interactions of cationic G5-NH2 and anionic G4.5-COONa dendrimers with the two leaflets of the lipid bilayers. Interaction with both dendrimers led to changes in the interfacial water structure and charge density as evidenced by the changes in the OH band intensities in the sum-frequency spectra of the bilayers. Interaction with the G5-NH2 dendrimer also led to a unique inversion of the sign of the OH-stretch amplitudes, in addition to a decrease in their absolute values. We suggest that the positively charged amino groups on the G5-NH2 dendrimer surface bind to the negatively charged bilayer, while uncompensated positive charges not involved in the binding cause a reversal of the electric field and thus an opposite orientation of the interfacial water molecules. More subtle but nonetheless significant changes were seen in the relative magnitudes of the CH amplitudes. The methyl antisymmetric to symmetric stretch amplitude ratios are altered, implying changes in the tilt angles of the phospholipid alkyl chains. The conformational order of the phospholipid alkyl chains of both leaflets is also influenced by the G5-NH2 dendrimer while G4.5-COONa has no effect on the alkyl chain conformation.
Collapse
Affiliation(s)
- Tamás Keszthelyi
- †Institute of Materials and Environmental Chemistry and ‡Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Gábor Holló
- †Institute of Materials and Environmental Chemistry and ‡Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Gabriella Nyitrai
- †Institute of Materials and Environmental Chemistry and ‡Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - Julianna Kardos
- †Institute of Materials and Environmental Chemistry and ‡Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| | - László Héja
- †Institute of Materials and Environmental Chemistry and ‡Institute of Organic Chemistry, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok körútja 2, H-1117 Budapest, Hungary
| |
Collapse
|
7
|
Wei F, Xiong W, Li W, Lu W, Allen HC, Zheng W. Assembly and relaxation behaviours of phosphatidylethanolamine monolayers investigated by polarization and frequency resolved SFG-VS. Phys Chem Chem Phys 2015; 17:25114-22. [DOI: 10.1039/c5cp03977k] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polarization and frequency resolved SFG-VS to distinguish the head/tail groups of lipids, to resolve the assembly and relaxation kinetics of monolayers.
Collapse
Affiliation(s)
- Feng Wei
- Institution for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
| | - Wei Xiong
- Institution for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
| | - Wenhui Li
- Institution for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
| | - Wangting Lu
- Institution for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
| | - Heather C. Allen
- Department of Chemistry and Biochemistry
- The Ohio State University
- Columbus
- USA
| | - Wanquan Zheng
- Institution for Interdisciplinary Research
- Jianghan University
- Wuhan
- China
- Institut des Sciences Moléculaires d'Orsay
| |
Collapse
|
8
|
Zhang X, Li Y, Hankett JM, Chen Z. The molecular interfacial structure and plasticizer migration behavior of “green” plasticized poly(vinyl chloride). Phys Chem Chem Phys 2015; 17:4472-82. [DOI: 10.1039/c4cp05287k] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Both oxygen and argon plasma treatment made TBAC–PVC surfaces hydrophilic, but that of argon enhanced the migration of TBAC to water.
Collapse
Affiliation(s)
- Xiaoxian Zhang
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Yaoxin Li
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | | | - Zhan Chen
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| |
Collapse
|
9
|
Advanced experimental methods toward understanding biophysicochemical interactions of interfacial biomolecules by using sum frequency generation vibrational spectroscopy. Sci China Chem 2014. [DOI: 10.1007/s11426-014-5233-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
10
|
Toyota T, Banno T, Nitta S, Takinoue M, Nomoto T, Natsume Y, Matsumura S, Fujinami M. Molecular Building Blocks and Their Architecture in Biologically/Environmentally Compatible Soft Matter Chemical Machinery. J Oleo Sci 2014; 63:1085-98. [DOI: 10.5650/jos.ess14190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
11
|
Liu W, Wang Z, Fu L, Leblanc RM, Yan ECY. Lipid compositions modulate fluidity and stability of bilayers: characterization by surface pressure and sum frequency generation spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:15022-31. [PMID: 24245525 DOI: 10.1021/la4036453] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Cell membranes are crucial to many biological processes. Because of their complexity, however, lipid bilayers are often used as model systems. Lipid structures influence the physical properties of bilayers, but their interplay, especially in multiple-component lipid bilayers, has not been fully explored. Here, we used the Langmuir-Blodgett method to make mono- and bilayers of 1,2-dihexadecanoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DPPG), 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (POPG), and 1-hexadecanoyl-2-(9Z-octadecenoyl)-sn-glycero-3-phospho-L-serine (POPS) as well as their 1:1 binary mixtures. We studied the fluidity, stability, and rigidity of these structures using sum frequency generation (SFG) spectroscopy combined with analyses of surface pressure-area isotherms, compression modulus, and stability. Our results show that single-component bilayers, both saturated and unsaturated, may not be ideal membrane mimics because of their low fluidity and/or stability. However, the binary saturated and unsaturated DPPG/POPG and DPPG/POPS systems show not only high stability and fluidity but also high resistance to changes in surface pressure, especially in the range of 25-35 mN/m, the range typical of cell membranes. Because the ratio of saturated to unsaturated lipids is highly regulated in cells, our results underline the possibility of modulating biological properties using lipid compositions. Also, our use of flat optical windows as solid substrates in SFG experiments should make the SFG method more compatible with other techniques, enabling more comprehensive future surface characterizations of bilayers.
Collapse
Affiliation(s)
- Wei Liu
- Department of Chemistry, Yale University , 225 Prospect Street, New Haven, Connecticut 06520, United States
| | | | | | | | | |
Collapse
|
12
|
Kett PJN, Casford MTL, Davies PB. Orientation of cholesterol in hybrid bilayer membranes calculated from the phases of methyl resonances in sum frequency generation spectra. J Chem Phys 2013; 138:225101. [DOI: 10.1063/1.4807854] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Affiliation(s)
- P J N Kett
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| | | | | |
Collapse
|
13
|
Kett PJN, Casford MTL, Davies PB. Sum Frequency Generation Vibrational Spectroscopy of Cholesterol in Hybrid Bilayer Membranes. J Phys Chem B 2013; 117:6455-65. [DOI: 10.1021/jp403584j] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Peter J. N. Kett
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Michael T. L. Casford
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Paul B. Davies
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
14
|
Lis D, Guthmuller J, Champagne B, Humbert C, Busson B, Peremans A, Cecchet F. Vibrational Sum-Frequency Generation Activity of a 2,4-Dinitrophenyl Phospholipid Hybrid Bilayer: Retrieving Orientational Parameters from a DFT Analysis of Experimental Data. Chemphyschem 2013; 14:1227-36. [DOI: 10.1002/cphc.201201063] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Indexed: 12/18/2022]
|
15
|
Prudovsky I, Kumar TKS, Sterling S, Neivandt D. Protein-phospholipid interactions in nonclassical protein secretion: problem and methods of study. Int J Mol Sci 2013; 14:3734-72. [PMID: 23396106 PMCID: PMC3588068 DOI: 10.3390/ijms14023734] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/24/2013] [Accepted: 01/25/2013] [Indexed: 12/30/2022] Open
Abstract
Extracellular proteins devoid of signal peptides use nonclassical secretion mechanisms for their export. These mechanisms are independent of the endoplasmic reticulum and Golgi. Some nonclassically released proteins, particularly fibroblast growth factors (FGF) 1 and 2, are exported as a result of their direct translocation through the cell membrane. This process requires specific interactions of released proteins with membrane phospholipids. In this review written by a cell biologist, a structural biologist and two membrane engineers, we discuss the following subjects: (i) Phenomenon of nonclassical protein release and its biological significance; (ii) Composition of the FGF1 multiprotein release complex (MRC); (iii) The relationship between FGF1 export and acidic phospholipid externalization; (iv) Interactions of FGF1 MRC components with acidic phospholipids; (v) Methods to study the transmembrane translocation of proteins; (vi) Membrane models to study nonclassical protein release.
Collapse
Affiliation(s)
- Igor Prudovsky
- Maine Medical Center Research Institute, 81 Research Drive, Scarborough, ME 04074, USA
| | | | - Sarah Sterling
- Department of Chemical and Biological Engineering, University of Maine, Orono, ME 04469, USA; E-Mails: (S.S.); (D.N.)
| | - David Neivandt
- Department of Chemical and Biological Engineering, University of Maine, Orono, ME 04469, USA; E-Mails: (S.S.); (D.N.)
| |
Collapse
|
16
|
Ma W, Ying YL, Qin LX, Gu Z, Zhou H, Li DW, Sutherland TC, Chen HY, Long YT. Investigating electron-transfer processes using a biomimetic hybrid bilayer membrane system. Nat Protoc 2013; 8:439-50. [PMID: 23391888 DOI: 10.1038/nprot.2013.007] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Here we report a protocol to investigate the electron-transfer processes of redox-active biomolecules in biological membranes by electrochemistry using biomimetic hybrid bilayer membranes (HBMs) assembled on gold electrodes. Redox-active head groups, such as the ubiquinone moiety, are embedded in HBMs that contain target molecules, e.g., nicotinamide adenine dinucleotide (NADH). By using this approach, the electron-transfer processes between redox molecules and target biomolecules are mediated by mimicking the redox cycling processes in a natural membrane. Also included is a procedure for in situ surface-enhanced Raman scattering (SERS) to confirm the electrochemically induced conformational changes of the target biomolecules in the HBMs. In addition, each step in constructing the HBMs is characterized by electrochemical impedance spectroscopy (EIS), high-resolution X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). The time required for the entire protocol is ∼12 h, whereas the electrochemical measurement of electron-transfer processes takes less than 1 h to complete.
Collapse
Affiliation(s)
- Wei Ma
- State Key Laboratory of Bioreactor Engineering, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, P. R. China
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Pop-Georgievski O, Verreault D, Diesner MO, Proks V, Heissler S, Rypácek F, Koelsch P. Nonfouling poly(ethylene oxide) layers end-tethered to polydopamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:14273-83. [PMID: 22989020 PMCID: PMC3489920 DOI: 10.1021/la3029935] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Nonfouling surfaces capable of reducing protein adsorption are highly desirable in a wide range of applications. Coating of surfaces with poly(ethylene oxide) (PEO), a water-soluble, nontoxic, and nonimmunogenic polymer, is most frequently used to reduce nonspecific protein adsorption. Here we show how to prepare dense PEO brushes on virtually any substrate by tethering PEO to polydopamine (PDA)-modified surfaces. The chain lengths of hetero-bifunctional PEOs were varied in the range of 45-500 oxyethylene units (M(n) = 2000-20,000). End-tethering of PEO chains was performed through amine and thiol headgroups from reactive polymer melts to minimize excluded volume effects. Surface plasmon resonance (SPR) was applied to investigate the adsorption of model protein solutions and complex biologic medium (human blood plasma) to the densely packed PEO brushes. The level of protein adsorption of human serum albumin and fibrinogen solutions was below the detection limit of the SPR measurements for all PEO chains end-tethered to PDA, thus exceeding the protein resistance of PEO layers tethered directly on gold. It was found that the surface resistance to adsorption of lysozyme and human blood plasma increased with increasing length and brush character of the PEO chains end-tethered to PDA with a similar or better resistance in comparison to PEO layers on gold. Furthermore, the chain density, thickness, swelling, and conformation of PEO layers were determined using spectroscopic ellipsometry (SE), dynamic water contact angle (DCA) measurements, infrared reflection-absorption spectroscopy (IRRAS), and vibrational sum-frequency-generation (VSFG) spectroscopy, the latter in air and water.
Collapse
|
18
|
Kett P, Casford M, Davies P. Effect of multiple group orientations on sum frequency generation spectra. Mol Phys 2012. [DOI: 10.1080/00268976.2012.711492] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
19
|
Barth C, Jakubczyk D, Kubas A, Anastassacos F, Brenner-Weiss G, Fink K, Schepers U, Bräse S, Koelsch P. Interkingdom signaling: integration, conformation, and orientation of N-acyl-L-homoserine lactones in supported lipid bilayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:8456-62. [PMID: 22568488 PMCID: PMC3388113 DOI: 10.1021/la301241s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
N-Acyl-L-homoserine lactones (AHLs) are small cell-to-cell signaling molecules involved in the regulation of population density and local gene expression in microbial communities. Recent evidence shows that contact of this signaling system, usually referred to as quorum sensing, to living eukaryotes results in interactions of AHL with host cells in a process termed "interkingdom signaling". So far details of this process and the binding site of the AHLs remain unknown; both an intracellular and a membrane-bound receptor seem possible, the first of which requires passage through the cell membrane. Here, we used sum-frequency-generation (SFG) spectroscopy to investigate the integration, conformation, orientation, and translocation of deuterated N-acyl-L-homoserine lactones (AHL-d(n)) with varying chain length (8, 12, and 14 C atoms) in lipid bilayers consisting of a 1:1 mixture of POPC:POPG supported on SiO(2) substrates (prepared by vesicle fusion). We found that all AHL-d(n) derivatives are well-ordered within the supported lipid bilayer (SLB) in a preferentially all-trans conformation of the deuterated alkyl chain and integrated into the upper leaflet of the SLB with the methyl terminal groups pointing downward. For the bilayer system described above, no flip-flop of AHL-d(n) from the upper leaflet to the lower one could be observed. Spectral assignments and interpretations were further supported by Fourier transform infrared and Raman spectroscopy.
Collapse
Affiliation(s)
- Christoph Barth
- Institute for Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Dorota Jakubczyk
- Institute for Functional Interfaces, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Adam Kubas
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Frances Anastassacos
- Institute for Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Gerald Brenner-Weiss
- Institute for Functional Interfaces, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Karin Fink
- Institute of Nanotechnology, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Ute Schepers
- Institute for Toxicology and Genetics, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Stefan Bräse
- Institute of Organic Chemistry, Karlsruhe Institute of Technology, Postfach 3640, 76021 Karlsruhe, Germany
| | - Patrick Koelsch
- National ESCA and Surface Analysis Center for Biomedical Problems, Department of Bioengineering, University of Washington, Box 35170, Seattle, WA 98195-1750
- Corresponding author.
| |
Collapse
|
20
|
Padermshoke A, Konishi S, Ara M, Tada H, Ishibashi TA. Novel SiO2-deposited CaF2 substrate for vibrational sum-frequency generation (SFG) measurements of chemisorbed monolayers in an aqueous environment. APPLIED SPECTROSCOPY 2012; 66:711-718. [PMID: 22732544 DOI: 10.1366/11-06583] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A novel SiO(2)-deposited CaF(2) (SiO(2)/CaF(2)) substrate for measuring vibrational sum-frequency generation (SFG) spectra of silane-based chemisorbed monolayers in aqueous media has been developed. The substrate is suitable for silanization and transparent over a broad range of the infrared (IR) probe. The present work demonstrates the practical application of the SiO(2)/CaF(2) substrate and, to our knowledge, the first SFG spectrum at the solid/water interface of a silanized monolayer observed over the IR fingerprint region (1780-1400 cm(-1)) using a back-side probing geometry. This new substrate can be very useful for SFG studies of various chemisorbed organic molecules, particularly biological compounds, in aqueous environments.
Collapse
Affiliation(s)
- Adchara Padermshoke
- Center for Quantum Life Sciences, Hiroshima University, Higashi-Hiroshima, Japan
| | | | | | | | | |
Collapse
|
21
|
Kett PJN, Casford MTL, Davies PB. Structure of mixed phosphatidylethanolamine and cholesterol monolayers in a supported hybrid bilayer membrane studied by sum frequency generation vibrational spectroscopy. J Phys Chem B 2011; 115:6465-73. [PMID: 21542565 DOI: 10.1021/jp1112685] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The structure of hybrid bilayer membranes (HBMs) containing either a pure cholesterol or mixed cholesterol/dipalmitoylphosphatidylethanolamine (DPPE) proximal layer adsorbed onto an octadecanethiol (ODT) self-assembled monolayer (SAM) on a gold substrate have been investigated by sum frequency generation (SFG) spectroscopy. The HBMs were formed by the adsorption of either a pure cholesterol or mixed DPPE/cholesterol monolayer from the air/water interface of a Langmuir-Blodgett trough at surface pressures of 1, 20, or 40 mN·m(-1). SFG spectra were also recorded of HBMs where cholesterol was replaced by cholesterol-d(7), in which the terminal isopropyl group of the alkyl chain of cholesterol was isotopically labeled. In order to isolate the contribution to the SFG spectra from the cholesterol in the mixed cholesterol/phospholipid films, DPPE-d was used, in which the alkyl chains of the phospholipid were deuterated. The infrared spectra of solvent-cast cholesterol and cholesterol-d(7) films were recorded to aid with assignment of the SFG spectra of the HBMs. Features corresponding to methyl, methylene, and methine stretches of cholesterol were identified in the SFG spectra. Information on the polar orientation of SFG-active groups was obtained from the phases of the spectral features. The structure of the HBMs showed little dependence on the surface pressure at which they were formed. SFG spectra of HBMs with a mixed cholesterol/DPPE proximal layer were very similar to the spectra of HBMs with a pure cholesterol proximal layer, although the features in the spectra were more intense than anticipated for a film with half the number of cholesterol molecules, indicating that DPPE did have some effect on the orientation of cholesterol molecules in the film.
Collapse
Affiliation(s)
- P J N Kett
- Department of Chemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|