1
|
Kumar N, Singh H, Deep A, Khatri M, Bhardwaj N. Smartphone-assisted colorimetric detection of glutathione in food and pharmaceutical samples using MIL-88A(Fe). SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 326:125297. [PMID: 39461029 DOI: 10.1016/j.saa.2024.125297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 09/05/2024] [Accepted: 10/16/2024] [Indexed: 10/29/2024]
Abstract
Metal-organic frameworks (MOFs) have risen to prominence due to their unique structural features, including high porosity and tunable surface chemistry. As nanozymes, the MOFs replicate the catalytic activity of natural enzymes, thereby offering stability under diverse conditions and heightened efficiency. Glutathione (GSH) is a vital intracellular antioxidant and disease biomarker for cancer and neurodegenerative disorders. In this study, the intrinsic-oxidase activity of MIL-88A(Fe) was explored to develop a naked-eye-based colorimetric sensor for the detection of GSH. The 3,3',5,5',-tetramethyl benzidine (TMB) substrate was oxidized by MIL-88A(Fe), leading to the formation ofblue-colored oxidized TMB. The addition of GSH resultsin the reduction of oxidized TMB, causing the blue color to fade and a decrease in absorbance at 652 nm. Under optimal conditions, the developed sensor has a good linear relationship with GSH concentrations ranging from 0-40 μM with a detection limit of 150 nM. The developed methodwas successfully used to determine GSH accurately in real food and pharmaceutical samples. Further, the sensor demonstrated satisfactory performance for smartphone-based GSH detection on a paper-based assay. This work demonstrates the rapid, inexpensive, and ultrasensitive detection of GSH, opening new avenues for additional food quality and pharmaceuticalmonitoring.
Collapse
Affiliation(s)
- Nilmani Kumar
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Harpreet Singh
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Akash Deep
- Energy and Environment Unit, Institute of Nano Science and Technology, Sector 81, Mohali, Punjab, India
| | - Madhu Khatri
- Department of Biotechnology, University Institute of Engineering Technology (UIET), Panjab University, Chandigarh, India
| | - Neha Bhardwaj
- Energy and Environment Unit, Institute of Nano Science and Technology, Sector 81, Mohali, Punjab, India.
| |
Collapse
|
2
|
Sun Y, Yuan K, Mo X, Chen X, Deng Y, Liu C, Yuan Y, Nie J, Zhang Y. Tyndall-Effect-inspired assay with gold nanoparticles for the colorimetric discrimination and quantification of mercury ions and glutathione. Talanta 2022; 238:122999. [PMID: 34857332 DOI: 10.1016/j.talanta.2021.122999] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 10/23/2021] [Accepted: 10/25/2021] [Indexed: 11/15/2022]
Abstract
This work initially reports a new nanosening method for simple, sensitive, specific, visual detection of mercury (II) (Hg2+) and glutathione (GSH) using the Tyndall Effect (TE) of the same colloidal gold nanoparticle (GNP) probes for efficient colorimetric signaling amplification. For the TE-inspired assay (TEA) method, arginine (Arg) molecules are pre-modified on the GNPs' surfaces (Arg-GNPs). Upon the Hg2+ introduction, it can be specifically coordinated with the terminal -NH2 and -COOH groups of the Arg molecules to make the Arg-GNPs aggregate, producing a significantly-enhanced TE signal in the reaction solution after its irradiation by a 635-nm red laser pointer pen. On the other hand, the introduction of the GSH results in the production of the original Arg-GNPs' weak TE response, as it is able to bind such metal ion via mercury-thiol reactions to inhibit the above aggregation. Under the optimal conditions, the utility of the new TEA method is well demonstrated to quantitatively detect the Hg2+ and GSH with the aid of a smartphone as a portable TE reader during the linear concentration ranges of 50-3000 and 10-3000 nM, respectively. The detection limits for the Hg2+ and GSH are estimated to be as low as ∼3.5 and ∼0.3 nM, respectively. The recovery results obtained from the detection of Hg2+ in the complex tap and pond water samples and the assay of GSH in real human serum and urine samples are also satisfactory.
Collapse
Affiliation(s)
- Yao Sun
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Kaijing Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Xiaomei Mo
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Xuejiang Chen
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Yanan Deng
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Chang Liu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Yali Yuan
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China
| | - Jinfang Nie
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China.
| | - Yun Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering, Guilin University of Technology, 12 Jiangan Road, Guilin, 541004, PR China.
| |
Collapse
|
3
|
Halawa MI, Xia Q, Li BS. An ultrasensitive chemiluminescent biosensor for tracing glutathione in human serum using BSA@AuNCs as a peroxidase-mimetic nanozyme on a luminol/artesunate system. J Mater Chem B 2021; 9:8038-8047. [PMID: 34486628 DOI: 10.1039/d1tb01343b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In this work, a nanosensor chemiluminescent (CL) probe for sensing glutathione (GSH) was developed, for the first time, based on its inhibition of the intrinsic peroxidase-mimetic effect of BSA@AuNCs. The endoperoxide linkage of artesunate could be hydrolyzed by BSA@AuNCs resulting in the release of reactive oxygen species (ROS), and the consequent generation of strong CL emission. By virtue of the strong covalent interactions of -S⋯Au-, GSH could greatly suppress the peroxidase-mimetic effect of BSA@AuNCs, leading to a drastic CL quenching. The CL quenching efficiency increased proportionally to the logarithm of GSH concentration through the linearity range of 50.0-5000.0 nM with a limit of detection of 5.2 nM. This CL-based strategy for GSH tracing demonstrated the advantages of ultrasensitivity, high selectivity and simplicity. This strategy was successfully utilized to measure GSH levels in human serum with reasonable recovery results of 98.71%, 103.18%, and 101.68%, suggesting that this turn-off CL sensor is a promising candidate for GSH in biological and clinical samples.
Collapse
Affiliation(s)
- Mohamed Ibrahim Halawa
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China. .,College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China.,Department of Pharmaceutical Analytical Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt
| | - Qing Xia
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| | - Bing Shi Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
4
|
Halawa MI, Wu F, Zafar MN, Mostafa IM, Abdussalam A, Han S, Xu G. Turn-on fluorescent glutathione detection based on lucigenin and MnO 2 nanosheets. J Mater Chem B 2021; 8:3542-3549. [PMID: 31799572 DOI: 10.1039/c9tb02158b] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
In this work, a glutathione (GSH) sensing nano-platform using lucigenin as a fluorescent probe in the presence of MnO2 nanosheets was reported for the first time. Unlike the earlier fluorescent detection systems based on MnO2 nanosheets, which depend on Förster resonance energy transfer (FRET) or the dynamic quenching effect (DQE), the mechanism of the quenching process of MnO2 nanosheets on lucigenin fluorescence was attributed mainly to a static quenching effect (SQE) with a minor contribution of the inner filter effect (IFE). A double exponential fluorescence decay of lucigenin was obtained in various MnO2 nanosheet concentrations as a result of their SQE and IFE. Based on this phenomenon and taking advantage of the redox reaction between GSH and MnO2 nanosheets, we have developed a switch-on sensitive fluorescent method for GSH via the recovery of the MnO2 nanosheet-quenched fluorescence of lucigenin. A good linearity range of 1.0-150.0 μM with a low limit of detection (S/N = 3) of 180.0 nM was achieved, revealing the higher sensitivity for GSH determination in comparison with the previously reported MnO2 nanosheet-based turn-on fluorescent methods. The developed fluorescent nano-platform exhibits excellent selectivity with successful application for GSH detection in human serum plasma, indicating its good practicability for GSH sensing in biological and clinical applications.
Collapse
Affiliation(s)
- Mohamed Ibrahim Halawa
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
5
|
Zhang X, Huang Z, Guo Z, Han Y, Zhang L, Yang W. Fabrication of Bovine Serum Albumin@Au Particles for Colorimetric Detection of Glutathione. ACS APPLIED BIO MATERIALS 2020; 3:9109-9116. [PMID: 35019588 DOI: 10.1021/acsabm.0c01321] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Abnormal concentrations of glutathione (GSH) are important indicators of many human diseases such as cancers, liver damage, AIDS, and Alzheimer's disease. In this work, a kind of bovine serum albumin (BSA)@Au core-shell particles were fabricated using 110 nm BSA aggregates as a template, onto which gold shells composed of Au nanoparticles (NPs) were grown through a seeded growth approach. The morphology of the Au shells deposited on BSA aggregates was tuned from sparse to dense distribution of Au NPs by increasing the concentration of silver ions contained in the growth solutions. Surface plasmon resonance (SPR) peaks of BSA@Au particles were tunable in the range from 550 to 620 nm, corresponding to evolution in color from red to blue due to the enhanced plasmonic coupling among the Au NPs in the shell. The blue BSA@Au particles were qualified for colorimetric detection of GSH since GSH may act as a swelling agent for BSA@Au particles by breaking the intermolecular disulfide bonds in BSA aggregates. With an increased amount of GSH presented, the color of BSA@Au particles evolved from blue to red attributed to gradual swelling of BSA@Au particles and thus increased the distance among the Au NPs in the shell, which was readily recognized by naked eyes or recorded by ultraviolet-visible (UV-vis) spectroscopy. This colorimetric method exhibited good selectivity and anti-interference capability in the analysis of GSH in real samples. In addition, a solid sensing system for the detection of GSH was designed and fabricated by dispersing BSA@Au particles into an agarose hydrogel.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zhenzhen Huang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zilong Guo
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Yandong Han
- Institute of Molecular Plus, Tianjin University, Tianjin 300072, China
| | - Lijuan Zhang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, China
| |
Collapse
|
6
|
Apak R, Çekiç SD, Üzer A, Çapanoğlu E, Çelik SE, Bener M, Can Z, Durmazel S. Colorimetric sensors and nanoprobes for characterizing antioxidant and energetic substances. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2020; 12:5266-5321. [PMID: 33170182 DOI: 10.1039/d0ay01521k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The development of analytical techniques for antioxidant compounds is important, because antioxidants that can inactivate reactive species and radicals are health-beneficial compounds, also used in the preservation of food and protection of almost every kind of organic substance from oxidation. Energetic substances include explosives, pyrotechnics, propellants and fuels, and their determination at bulk/trace levels is important for the safety and well-being of modern societies exposed to various security threats. Most of the time, in field/on site detection of these important analytes necessitates the use of colorimetric sensors and probes enabling naked-eye detection, or low-cost and easy-to-use fluorometric sensors. The use of nanosensors brings important advantages to this field of analytical chemistry due to their various physico-chemical advantages of increased surface area, surface plasmon resonance absorption of noble metal nanoparticles, and superior enzyme-mimic catalytic properties. Thus, this critical review focuses on the design strategies for colorimetric sensors and nanoprobes in characterizing antioxidant and energetic substances. In this regard, the main themes and properties in optical sensor design are defined and classified. Nanomaterial-based optical sensors/probes are discussed with respect to their mechanisms of operation, namely formation and growth of noble metal nanoparticles, their aggregation and disaggregation, displacement of active constituents by complexation or electrostatic interaction, miscellaneous mechanisms, and the choice of metallic oxide nanoparticles taking part in such formulations.
Collapse
Affiliation(s)
- Reşat Apak
- Analytical Chemistry Division, Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpaşa, Avcilar 34320, Istanbul, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Lin TY, Lian ZJ, Yao CX, Du QQ, Liao SH, Wu SM. Rapid biosynthesis of fluorescent CdSe QDs in Bacillus licheniformis and correlative bacterial antibiotic change assess during the process. LUMINESCENCE 2020; 36:621-630. [PMID: 33171522 DOI: 10.1002/bio.3980] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/24/2020] [Accepted: 11/02/2020] [Indexed: 01/25/2023]
Abstract
Cadmium selenide (CdSe) quantum dots (QDs) were biosynthesized rapidly in 18 h in Bacillus licheniformis ATCC 11946 (B. licheniformis); this process benefited from the cellular machinery of bacteria metal metabolism, in which inorganic Na2 SeO3 and CdCl2 were chosen as raw materials to produce high quality CdSe QDs by a designed two-step protocol. Research outcomes demonstrated that the purified CdSe QDs possessed maximum fluorescence intensities at weak alkalinity solutions and had good fluorescence stabilities at 4°C as well as at room temperature after standing for 1 week. Glutathione (GSH) concentration and superoxide dismutase (SOD) content, both of which were reported to be greatly related to biosynthetic activities in some bacterial matrices, were monitored during the biosynthetic process in B. licheniformis. Bacterial resistance research further showed that the change in rates in bacterial inhibition zone diameter to seven different antibiotics was less than 9% after B. licheniformis was used to manufacture CdSe QDs, showing a relative lower environmental risk in short-term heavy metal exposure.
Collapse
Affiliation(s)
- Tian-Yang Lin
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, Gulou District, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, 24 Tongjia Lane, Nanjing, Gulou District, China
| | - Zong-Juan Lian
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, Gulou District, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, 24 Tongjia Lane, Nanjing, Gulou District, China
| | - Cai-Xia Yao
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, Gulou District, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, 24 Tongjia Lane, Nanjing, Gulou District, China
| | - Qing-Qing Du
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, Gulou District, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, 24 Tongjia Lane, Nanjing, Gulou District, China
| | - Sheng-Hua Liao
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, Gulou District, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, 24 Tongjia Lane, Nanjing, Gulou District, China
| | - Sheng-Mei Wu
- Department of Analytical Chemistry, China Pharmaceutical University, 24 Tongjia Lane, Nanjing, Gulou District, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, 24 Tongjia Lane, Nanjing, Gulou District, China
| |
Collapse
|
8
|
Kasprzyk W, Świergosz T, Koper F. Fluorescence Assay for the Determination of d-Panthenol Based on Novel Ring-Fused 2-Pyridone Derivative. Int J Mol Sci 2020; 21:E8386. [PMID: 33182251 PMCID: PMC7664857 DOI: 10.3390/ijms21218386] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 12/31/2022] Open
Abstract
Herein, a novel fluorescent method for the determination of d-panthenol (DP) level in solutions with no separate hydrolysis step has been revealed based on the utilization of citric acid (CA) as a derivatizing agent. Consequently, the essential parameters of the derivatization process were established, resulting in the development of sensitive, repeatable, and accurate determination of panthenol. The method was approved, and its usefulness in characterizing the concentration of DP in pharmaceutical formulations and selectivity in the determination of DP were validated. The chemical structure of the new fluorophore formulating in the reaction in DP with CA, i.e., 6-oxo-3,4-dihydro-2H,6H-pyrido[2,1-b][1,3]oxazine-8-carboxylic acid (ODPC), was elucidated using detailed NMR experiments: one-dimensional (1H, 13C) as well as two-dimensional NMR spectra (1H-1H COSY, 1H-13C HSQC, 1H-13C HMBC, 1H-15N HSQC, 1H-15N HMBC).
Collapse
Affiliation(s)
- Wiktor Kasprzyk
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| | - Tomasz Świergosz
- Department of Analytical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| | - Filip Koper
- Department of Biotechnology and Physical Chemistry, Faculty of Chemical Engineering and Technology, Cracow University of Technology, Warszawska 24, 31-155 Kraków, Poland;
| |
Collapse
|
9
|
Morita T, Ogawa Y, Imamura H, Ookubo K, Uehara N, Sumi T. Interaction potential surface between Raman scattering enhancing nanoparticles conjugated with a functional copolymer. Phys Chem Chem Phys 2019; 21:16889-16894. [PMID: 31114825 DOI: 10.1039/c9cp01946d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A novel Raman scattering enhancement was discovered using colloid nanoparticles conjugated with an amine-based copolymer. The interaction potential surface between Raman scattering enhancing nanoparticles was clarified by combining a small-angle scattering method and a model-potential-free liquid-state theory as an in situ observation in the solution state. The potential surface indicates that the most stable position is located around 0.9 nm from the particle surface, suggesting the existence of a nanogap structure between the nanocomposites. The change in Raman scattering enhancement was also acquired during the dispersion process of the aggregated nanocomposites through a glutathione-triggered nanosensing reaction.
Collapse
Affiliation(s)
- Takeshi Morita
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
| | - Yuki Ogawa
- Department of Chemistry, Graduate School of Science, Chiba University, Chiba 263-8522, Japan.
| | - Hiroshi Imamura
- Department of Applied Chemistry, College of Life Sciences, Ritsumeikan University, Shiga 525-8577, Japan
| | - Kouki Ookubo
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Tochigi 321-8585, Japan
| | - Nobuo Uehara
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Tochigi 321-8585, Japan
| | - Tomonari Sumi
- Research Institute for Interdisciplinary Science, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
10
|
Peng R, He H, Wang Q, Yan X, Yu Q, Qin H, Lei Y, Luo L, Feng Y. Cu(Ⅱ) triggering redox-regulated anti-aggregation of gold nanoparticles for ultrasensitive visual sensing of iodide. Anal Chim Acta 2018; 1036:147-152. [DOI: 10.1016/j.aca.2018.06.080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/13/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
|
11
|
Jazayeri MH, Aghaie T, Avan A, Vatankhah A, Ghaffari MRS. Colorimetric detection based on gold nano particles (GNPs): An easy, fast, inexpensive, low-cost and short time method in detection of analytes (protein, DNA, and ion). SENSING AND BIO-SENSING RESEARCH 2018. [DOI: 10.1016/j.sbsr.2018.05.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/17/2022] Open
|
12
|
Kailasa SK, Koduru JR, Desai ML, Park TJ, Singhal RK, Basu H. Recent progress on surface chemistry of plasmonic metal nanoparticles for colorimetric assay of drugs in pharmaceutical and biological samples. Trends Analyt Chem 2018. [DOI: 10.1016/j.trac.2018.05.004] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
13
|
“Gold rush” in modern science: Fabrication strategies and typical advanced applications of gold nanoparticles in sensing. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.01.006] [Citation(s) in RCA: 207] [Impact Index Per Article: 29.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
14
|
A sensitive and selective colorimetric sensor for reduced glutathione detection based on silver triangular nanoplates conjugated with gallic acid. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.01.016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
15
|
Detsri E, Seeharaj P. Colorimetric detection of glutathione based on phthalic acid assisted synthesis of silver nanoparticles. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.08.037] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
16
|
Li JF, Huang PC, Wu FY. Specific pH effect for selective colorimetric assay of glutathione using anti-aggregation of label-free gold nanoparticles. RSC Adv 2017. [DOI: 10.1039/c7ra00399d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
An operationally simple colorimetric method for measuring glutathione (GSH) concentration was developed using anti-aggregation of gold nanoparticles (AuNPs) in this work.
Collapse
Affiliation(s)
- Jian-Fang Li
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| | | | - Fang-Ying Wu
- College of Chemistry
- Nanchang University
- Nanchang 330031
- China
| |
Collapse
|
17
|
Wang Z, Cao M, Yang L, Liu D, Wei D. Hemin/Au nanorods/self-doped TiO2nanowires as a novel photoelectrochemical bioanalysis platform. Analyst 2017; 142:2805-2811. [DOI: 10.1039/c7an00783c] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A sensitive photoelectrochemical platform for GSH was developed by modifying self-doped TiO2nanowires with mixed Au nanorods at two different aspect ratios as the core sensing unit and hemin for recognition.
Collapse
Affiliation(s)
- Zhen Wang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Min Cao
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Lei Yang
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Donghua Liu
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| | - Dacheng Wei
- State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Fudan University
- Shanghai 200433
- China
| |
Collapse
|
18
|
Yoo S, Kim S, Eom MS, Kang S, Lim SH, Han MS. Development of a highly sensitive colorimetric thymidine triphosphate chemosensor using gold nanoparticles and the p-xylyl-bis(Hg2+-cyclen) complex: improved selectivity by metal ion tuning. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.08.075] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
19
|
Fluorescence turn-on and colorimetric dual readout assay of glutathione over cysteine based on the fluorescence inner-filter effect of oxidized TMB on TMPyP. Biosens Bioelectron 2016; 81:268-273. [DOI: 10.1016/j.bios.2016.02.068] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/19/2016] [Accepted: 02/26/2016] [Indexed: 11/21/2022]
|
20
|
Zhang Y, Qi S, Liu Z, Shi Y, Yue W, Yi C. Rapid determination of dopamine in human plasma using a gold nanoparticle-based dual-mode sensing system. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:207-13. [DOI: 10.1016/j.msec.2015.12.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Revised: 11/29/2015] [Accepted: 12/16/2015] [Indexed: 01/11/2023]
|
21
|
Wang Y, Jiang L, Leng Q, Wu Y, He X, Wang K. Electrochemical sensor for glutathione detection based on mercury ion triggered hybridization chain reaction signal amplification. Biosens Bioelectron 2016; 77:914-20. [DOI: 10.1016/j.bios.2015.10.071] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Revised: 10/20/2015] [Accepted: 10/26/2015] [Indexed: 01/12/2023]
|
22
|
Wang X, Wang D, Guo Y, Yang C, Liu X, Iqbal A, Liu W, Qin W, Yan D, Guo H. Fluorescent glutathione probe based on MnO 2 -phenol formaldehyde resin nanocomposite. Biosens Bioelectron 2016; 77:299-305. [DOI: 10.1016/j.bios.2015.09.044] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Revised: 09/10/2015] [Accepted: 09/19/2015] [Indexed: 10/23/2022]
|
23
|
Khodaveisi J, Shabani AMH, Dadfarnia S, Moghadam MR, Hormozi-Nezhad MR. Development of a novel method for determination of mercury based on its inhibitory effect on horseradish peroxidase activity followed by monitoring the surface plasmon resonance peak of gold nanoparticles. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2016; 153:709-713. [PMID: 26474243 DOI: 10.1016/j.saa.2015.10.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/24/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
A highly sensitive and simple indirect spectrophotometric method has been developed for the determination of trace amounts of inorganic mercury (Hg(2+)) in aqueous media. The method is based on the inhibitory effect of Hg(2+) on the activity of horseradish peroxidase (HRP) in the oxidation of ascorbic acid by hydrogen peroxide followed by the reduction of Au(3+) to Au-NPs by unreacted ascorbic acid and the measurement of the absorbance of localized surface plasmon resonance (LSPR) peak of gold nanoparticles (at 530 nm) which is directly proportional to the concentration of Hg(2+). Under the optimum conditions, the calibration curve was linear in the concentration range of 1-220 ng mL(-1). Limits of detection (LOD) and quantification (LOQ) were 0.2 and 0.7 ng mL(-1), respectively and the relative standard deviation at 100 ng mL(-1) level of Hg(2+) was 2.6%. The method was successfully applied to the determination of mercury in different water samples.
Collapse
Affiliation(s)
- Javad Khodaveisi
- Department of Chemistry, Faculty of Science, Yazd University, 89195-741 Yazd, Iran
| | | | - Shayessteh Dadfarnia
- Department of Chemistry, Faculty of Science, Yazd University, 89195-741 Yazd, Iran.
| | | | | |
Collapse
|
24
|
Mers SS, Kumar ETD, Ganesh V. Gold nanoparticles-immobilized, hierarchically ordered, porous TiO2 nanotubes for biosensing of glutathione. Int J Nanomedicine 2015; 10 Suppl 1:171-82. [PMID: 26491318 PMCID: PMC4599607 DOI: 10.2147/ijn.s80054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Glutathione (GSH) is vital for several functions of our human body such as neutralization of free radicals and reactive oxygen compounds, maintaining the active forms of vitamin C and E, regulation of nitric oxide cycle, iron metabolism, etc. It is also an endogenous antioxidant in most of the biological reactions. Given the importance of GSH, a simple strategy is proposed in this work to develop a biosensor for quantitative detection of GSH. This particular biosensor comprises of gold nanoparticles (Au NPs)-immobilized, hierarchically ordered titanium dioxide (TiO2) porous nanotubes. Hexagonally arranged, honeycomb-like nanoporous tubular TiO2 electrodes are prepared by using a simple electrochemical anodization process by applying a constant potential of 30 V for 24 hours using ethylene glycol consisting of ammonium fluoride as an electrolytic medium. Structural morphology and crystalline nature of such TiO2 nanotubes are analyzed using field emission scanning electron microscope (FESEM) and X-ray diffraction (XRD). Interestingly, nanocomposites of TiO2 with Au NPs is prepared in an effort to alter the intrinsic properties of TiO2, especially tuning of its band gap. Au NPs are prepared by a well-known Brust and Schiffrin method and are immobilized onto TiO2 electrodes which act as a perfect electrochemical sensing platform for GSH detection. Structural characterization and analysis of these modified electrodes are performed using FESEM, XRD, and UV-visible spectroscopic studies. GSH binding events on Au NPs-immobilized porous TiO2 electrodes are monitored by electrochemical techniques, namely, cyclic voltammetry (CV) and chronoamperometry (CA). Several parameters such as sensitivity, selectivity, stability, limit of detection, etc are investigated. In addition, Au NPs dispersed in aqueous medium are also explored for naked-eye detection of GSH using UV-visible spectroscopy in order to compare the performance of the proposed sensor. Our studies clearly indicate that these materials could potentially be used for GSH sensing applications.
Collapse
Affiliation(s)
- Sv Sheen Mers
- Electrodics and Electrocatalysis (EEC) Division, Council of Scientific and Industrial Research-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu, India ; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Elumalai Thambuswamy Deva Kumar
- Electrodics and Electrocatalysis (EEC) Division, Council of Scientific and Industrial Research-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu, India
| | - V Ganesh
- Electrodics and Electrocatalysis (EEC) Division, Council of Scientific and Industrial Research-Central Electrochemical Research Institute (CSIR-CECRI), Karaikudi, Tamil Nadu, India ; Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| |
Collapse
|
25
|
Ni P, Sun Y, Dai H, Hu J, Jiang S, Wang Y, Li Z. Highly sensitive and selective colorimetric detection of glutathione based on Ag [I] ion–3,3′,5,5′-tetramethylbenzidine (TMB). Biosens Bioelectron 2015; 63:47-52. [DOI: 10.1016/j.bios.2014.07.021] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 06/25/2014] [Accepted: 07/08/2014] [Indexed: 10/25/2022]
|
26
|
UEHARA N, NUMANAMI Y, OBA T, ONISHI N, XIE X. Thermal-induced Immuno-nephelometry Using Gold Nanoparticles Conjugated with a Thermoresponsive Polymer for the Detection of Avidin. ANAL SCI 2015; 31:495-501. [DOI: 10.2116/analsci.31.495] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Nobuo UEHARA
- Department of Applied Chemistry, Graduate School of Engineering, Utsunomiya University
| | - Yoshikuni NUMANAMI
- Department of Applied Chemistry, Graduate School of Engineering, Utsunomiya University
| | - Toru OBA
- Department of Applied Chemistry, Graduate School of Engineering, Utsunomiya University
| | | | - Xiaomao XIE
- JNC Petrochemical Corporation, Goi Research Center
| |
Collapse
|
27
|
Deng J, Yu P, Wang Y, Yang L, Mao L. Visualization and quantification of neurochemicals with gold nanoparticles: opportunities and challenges. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6933-6943. [PMID: 24639384 DOI: 10.1002/adma.201305619] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 01/24/2014] [Indexed: 06/03/2023]
Abstract
Gold nanoparticle (Au-NP)-based colorimetric assays offer new opportunitites for the visualization and quantification of neurochemicals involved in physiological and pathological processes due to their high sensitivity, designability, and low technical demands. In this Research News, we systematically review the advances on the development of Au-NP-based colorimetric methods for visualization and quantification of neurochemicals and their potential applications for effectively monitoring neurochemicals in the central nervous system. By integration of the favourable surface chemistry with the high extinction coefficient of Au-NPs, some new principles and methods could be developed for the quantification of neurochemicals involved in brain functions. New strategies to design the surface chemistry of Au-NPs, along with the key challenges yet to be addressed to achieve online visualization and quantification of neurochemicals in the central nervous system, are illustrated and discussed. The questions opened here should inspire future investigations and lead to discoveries that continue the development of the effective analytical protocols based on Au-NPs for neurochemical visualization and quantification.
Collapse
Affiliation(s)
- Jingjing Deng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, the Chinese Academy of Sciences, Beijing, 100190, China
| | | | | | | | | |
Collapse
|
28
|
Yu CC, Lin KT, Tseng YC, Chou SY, Shao CC, Chen HL, Su WF. Plasmonic nanoparticle-film calipers for rapid and ultrasensitive dimensional and refractometric detection. Analyst 2014; 139:5103-11. [PMID: 25121142 DOI: 10.1039/c4an00186a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, we develop an ultrasensitive nanoparticle (NP)-film caliper that functions with high resolution (angstrom scale) in response to both the dimensions and refractive index of the spacer sandwiched between the NPs and the film. The anisotropy of the plasmonic gap mode in the NP-film caliper can be characterized readily using spectroscopic ellipsometry (SE) without the need for further optical modeling. To the best of our knowledge, this paper is the first to report the use of SE to study the plasmonic gap modes in NP-film calipers and to demonstrate that SE is a robust and convenient method for analyzing NP-film calipers. The high sensitivity of this system originates from the plasmonic gap mode in the NP-film caliper, induced by electromagnetic coupling between the NPs and the film. The refractometric sensitivity of this NP-film caliper reaches up to 314 nm per RIU, which is superior to those of other NP-based sensors. The NP-film caliper also provides high dimensional resolution, down to the angstrom scale. In this study, the shift in wavelength in response to the change in gap spacing is approximately 9 nm Å(-1). Taking advantage of the ultrasensitivity of this NP-film caliper, we develop a platform for discriminating among thiol-containing amino acids.
Collapse
Affiliation(s)
- Chen-Chieh Yu
- Department of Materials Science and Engineering, National Taiwan University, No. 1, Sec. 4, Roosevelt Road, Taipei, 10617 Taiwan, Republic of China.
| | | | | | | | | | | | | |
Collapse
|
29
|
Hormozi-Nezhad MR, Azargun M, Fahimi-Kashani N. A colorimetric assay for d-Penicillamine in urine and plasma samples based on the aggregation of gold nanoparticles. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2014. [DOI: 10.1007/s13738-013-0393-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
30
|
Shi Y, Pan Y, Zhang H, Zhang Z, Li MJ, Yi C, Yang M. A dual-mode nanosensor based on carbon quantum dots and gold nanoparticles for discriminative detection of glutathione in human plasma. Biosens Bioelectron 2014; 56:39-45. [DOI: 10.1016/j.bios.2013.12.038] [Citation(s) in RCA: 225] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2013] [Revised: 12/15/2013] [Accepted: 12/16/2013] [Indexed: 10/25/2022]
|
31
|
Hormozi-Nezhad MR, Abbasi-Moayed S. A sensitive and selective colorimetric method for detection of copper ions based on anti-aggregation of unmodified gold nanoparticles. Talanta 2014; 129:227-32. [PMID: 25127588 DOI: 10.1016/j.talanta.2014.05.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 05/15/2014] [Accepted: 05/16/2014] [Indexed: 11/19/2022]
Abstract
A highly sensitive and selective colorimetric method for detection of copper ions, based on anti-aggregation of D-penicillamine (D-PC) induced aggregated gold nanoparticles (AuNPs) was developed. Copper ions can hinder the aggregation of AuNPs induced by D-PC, through formation of mixed-valence complex with D-PC that is a selective copper chelator. In the presence of a fixed amount of D-PC, the aggregation of AuNPs decreases with increasing concentrations of Cu(2+) along with a color change from blue to red in AuNPs solution and an increase in the absorption ratio (A520/A650). Under the optimum experimental conditions (pH 7, [AuNPs] =3.0 nmol L(-1) and [NaCl]=25 mmol L(-1)), a linear calibration curve for Cu(2+) was obtained within the range of 0.05-1.85 µmol L(-1) with a limit of detection (3Sb) of 30 nmol L(-1). Excellent selectivity toward Cu(2+) was observed among various metal ions due to a specific complex formation between Cu(2+) and D-PC. The proposed method has been successfully applied for the detection of Cu(2+) in various real samples.
Collapse
Affiliation(s)
- M Reza Hormozi-Nezhad
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran.
| | - Samira Abbasi-Moayed
- Department of Chemistry, Sharif University of Technology, Tehran 11155-9516, Iran; Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
32
|
CHEN WW, GUO YM, ZHENG WS, XIANYU YL, WANG Z, JIANG XY. Recent Progress of Colorimetric Assays Based on Gold Nanoparticles for Biomolecules. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2014. [DOI: 10.1016/s1872-2040(13)60714-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
He H, Du J, Hu Y, Ru J, Lu X. Detection of glutathione based on nickel hexacyanoferrate film modified Pt ultramicroelectrode by introducing cetyltrimethylammonium bromide and Au nanoparticles. Talanta 2013; 115:381-5. [DOI: 10.1016/j.talanta.2013.05.054] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/19/2013] [Accepted: 05/21/2013] [Indexed: 01/26/2023]
|
34
|
Colorimetric determination of copper ions based on the catalytic leaching of silver from the shell of silver-coated gold nanorods. Mikrochim Acta 2013. [DOI: 10.1007/s00604-013-1075-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
35
|
Uehara N, Yoshida O. Release of Nile red from thermoresponsive gold nanocomposites by heating a solution and the addition of glutathione. ANAL SCI 2013; 28:1125-32. [PMID: 23232230 DOI: 10.2116/analsci.28.1125] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Thermoresponsive gold nanocomposites encapsulating Nile red were fabricated by the conjugation of gold nanoparticles containing Nile red with a thermoresponsive polymer, poly(N-isopropylacrylamide(90 mol%)-co-N-acryloyldiethylenetriamine(10 mol%)). They were then examined as a model of drug delivery carriers and colloidal fluorescence sensors. Nile red, as a fluorophore to be released, was introduced to the surface of gold nanoparticles prior to conjugation with thermoresponsive polymers. Heating a solution at 90°C resulted in shrinkage of the thermoresponsive polymers, which facilitated disassembly of the gold nanocomposites in the presence of glutathione. This disassembly caused a replacement of Nile red with glutathione at the surface of the gold nanoparticles, followed by the release of Nile red from the gold nanocomposites. Nile red liberated from the gold surface recovered its inherent fluorescence properties that had been quenched by gold nanoparticles through fluorescence resonance energy transfer. The fluorescence intensity of the liberated Nile red increased linearly as the glutathione concentration increased up to 1.0 × 10(-5) mol/L, demonstrating that thermoresponsive gold nanocomposites can be used as colloidal sensors or drug delivery carriers that can be manipulated by the concentration of glutathione and the solution temperature. The applicability of the thermoresponsive gold nanocomposites to colloidal fluorescence probes was also checked by assay of glutathione in tablets.
Collapse
Affiliation(s)
- Nobuo Uehara
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Tochigi 321–8585, Japan.
| | | |
Collapse
|
36
|
Garg B, Ling YC. Tricyanovinyl substituted calix[4]pyrrole: an old yet new potential chemosensor for biothiols. RSC Adv 2013. [DOI: 10.1039/c3ra40206a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
37
|
Gangwar RK, Dhumale VA, Kumari D, Nakate UT, Gosavi S, Sharma RB, Kale S, Datar S. Conjugation of curcumin with PVP capped gold nanoparticles for improving bioavailability. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2012.07.022] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
38
|
Xiao Q, Gao H, Lu C, Yuan Q. Gold nanoparticle-based optical probes for sensing aminothiols. Trends Analyt Chem 2012. [DOI: 10.1016/j.trac.2012.07.017] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
39
|
Paez JI, Coronado EA, Strumia MC. Preparation of controlled gold nanoparticle aggregates using a dendronization strategy. J Colloid Interface Sci 2012; 384:10-21. [DOI: 10.1016/j.jcis.2012.06.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2012] [Revised: 06/17/2012] [Accepted: 06/18/2012] [Indexed: 11/25/2022]
|
40
|
Saha K, Agasti SS, Kim C, Li X, Rotello VM. Gold nanoparticles in chemical and biological sensing. Chem Rev 2012; 112:2739-79. [PMID: 22295941 PMCID: PMC4102386 DOI: 10.1021/cr2001178] [Citation(s) in RCA: 2803] [Impact Index Per Article: 215.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Krishnendu Saha
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Sarit S. Agasti
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Chaekyu Kim
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Xiaoning Li
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 North Pleasant Street, Amherst, MA 01003, USA
| |
Collapse
|
41
|
Xu H, Wang Y, Huang X, Li Y, Zhang H, Zhong X. Hg2+-mediated aggregation of gold nanoparticles for colorimetric screening of biothiols. Analyst 2012; 137:924-31. [DOI: 10.1039/c2an15926k] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
42
|
UEHARA N. Sensing of Sulfhydryl Compounds with Thermoresponsive Gold Nanocomposites. BUNSEKI KAGAKU 2012. [DOI: 10.2116/bunsekikagaku.61.535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Nobuo UEHARA
- Graduate School of Engineering, Utsunomiya University
| |
Collapse
|
43
|
Hepel M, Stobiecka M. Comparative kinetic model of fluorescence enhancement in selective binding of monochlorobimane to glutathione. J Photochem Photobiol A Chem 2011. [DOI: 10.1016/j.jphotochem.2011.09.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
44
|
Thermal-induced growth of gold nanoparticles conjugated with thermoresponsive polymer without chemical reduction. J Colloid Interface Sci 2011; 359:142-7. [DOI: 10.1016/j.jcis.2011.03.078] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2011] [Revised: 03/20/2011] [Accepted: 03/22/2011] [Indexed: 11/23/2022]
|
45
|
|
46
|
Abstract
In this brief review, gold nanoparticles conjugated with functional polymers are described from the viewpoint of application to sensing materials. The optical properties of gold nanoparticles, the synthesis of polymer-functionalized gold nanoparticles, and their analytical applications are discussed. Polymer-functionalized gold nanoparticles are categorized into two classes: biopolymer-conjugated gold nanoparticles and artificial-polymer conjugated gold nanoparticles. Fluorometric and colorimetric sensing using gold nanoparticles are focused; fluorometric detection enables us to exploit sensitive assays for practical use. Furthermore, chemical amplification using gold nanoparticles is also discussed for the sensitive probing.
Collapse
Affiliation(s)
- Nobuo Uehara
- Department of Applied Chemistry, Graduate School of Engineering, Utsunomiya University, Tochigi, Japan.
| |
Collapse
|
47
|
Stobiecka M, Hepel M. Effect of buried potential barrier in label-less electrochemical immunodetection of glutathione and glutathione-capped gold nanoparticles. Biosens Bioelectron 2011; 26:3524-30. [PMID: 21371877 DOI: 10.1016/j.bios.2011.01.038] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2010] [Revised: 01/17/2011] [Accepted: 01/31/2011] [Indexed: 10/18/2022]
Abstract
The influence of potential barriers, introduced to the immunoglobulin-based sensory films, on voltammetric signals of a redox ion probe has been investigated. Films with positive and negative barriers have been examined by depositing charged self-assembled thiol monolayers as the basal layers of a sensory film. The studies performed with monoclonal anti-glutathione antibody-based sensors using ferricyanide ion probe have shown stronger sensor response to the layer components, as well as to the glutathione-capped gold nanoparticles acting as the antigen, for films with positive potential barrier buried deep in the film than for negative barrier films. The larger changes in differential resistance, peak separation and peak heights observed for films with positive barrier have been attributed to different depth and width of the charge distributions in these films. A buried positive barrier with narrow charge distribution width provides the best conditions for film stability and prevents fouling (less ion-exchanges with the medium). This conclusion has been confirmed by calculations of the electric field distribution and potential profiles in immunosensing films performed by numerical integration of Poisson equation for Gaussian distributions of fixed charges of covalently bound components. The proposed fixed-charge model can aid in rapid evaluation of sensory films in sensor development work. The implications of potential barriers in sensory film design are discussed.
Collapse
Affiliation(s)
- Magdalena Stobiecka
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | | |
Collapse
|
48
|
Xu H, Hepel M. “Molecular Beacon”-Based Fluorescent Assay for Selective Detection of Glutathione and Cysteine. Anal Chem 2011; 83:813-9. [DOI: 10.1021/ac102850y] [Citation(s) in RCA: 146] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Hui Xu
- Department of Chemistry, State University of New York at Potsdam, Potsdam, New York 13676, United States
| | - Maria Hepel
- Department of Chemistry, State University of New York at Potsdam, Potsdam, New York 13676, United States
| |
Collapse
|
49
|
Sun SK, Wang HF, Yan XP. A sensitive and selective resonance light scattering bioassay for homocysteine in biological fluids based on target-involved assembly of polyethyleneimine-capped Ag-nanoclusters. Chem Commun (Camb) 2011; 47:3817-9. [DOI: 10.1039/c0cc04463f] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Li Y, Wu P, Xu H, Zhang H, Zhong X. Anti-aggregation of gold nanoparticle-based colorimetric sensor for glutathione with excellent selectivity and sensitivity. Analyst 2010; 136:196-200. [PMID: 20931106 DOI: 10.1039/c0an00452a] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
For the widely used Au nanoparticles (AuNPs)-based colorimetric probe, AuNPs generally change from the dispersion to the aggregation state and corresponding colors turn from red to blue concomitantly. In previous studies, there are few probes based on the anti-aggregation of AuNPs though anti-aggregation of AuNPs is preferable to aggregation to achieve higher selectivity. In this manuscript, a fast and simple but sensitive and selective sensor suitable for on-site and real-time detection of glutathione (GSH) has been developed based on the anti-aggregation of AuNPs. The sensor has a LOD of 8 nM and excellent selectivity toward GSH by a factor of 200-fold or more relative to natural amino acids as well as homocysteine (Hcys) and glutathione disulfide (GSSG). The dynamic range of the sensor can be tuned simply by adjusting the amount of aggregation agent used.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory for Advanced Materials, Department of Chemistry, East China University of Science and Technology, Shanghai 200237, PR China
| | | | | | | | | |
Collapse
|