1
|
Zhou Z, Wang J, Xu X, Wang Z, Mao L, Zhang S, Zhang H, Li Y, Yu Q, Jiang N, Zhang G, Gan Z, Ning Z. Lignin-Based Nanoparticles for Combination of Tumor Oxidative Stress Amplification and Reactive Oxygen Species Responsive Drug Release. Bioconjug Chem 2024; 35:1207-1217. [PMID: 38989881 DOI: 10.1021/acs.bioconjchem.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
In this study, maleic anhydride-modified lignin (LG-M), a ROS-cleavable thioketal (TK) bond, and polyethylene glycol (PEG) were used to synthesize a lignin-based copolymer (LG-M(TK)-PEG). Doxorubicin (DOX) was attached to the ROS-cleavable bond in the LG-M(TK)-PEG for the preparation of the ROS-activatable DOX prodrug (LG-M(TK-DOX)-PEG). Nanoparticles (NPs) with a size of 125.7 ± 3.1 nm were prepared by using LG-M(TK-DOX)-PEG, and they exhibited enhanced uptake by cancer cells compared to free DOX. Notably, the presence of lignin in the nanoparticles could boost ROS production in breast cancer 4T1 cells while showing little effect on L929 normal cells. This selective effect facilitated the specific activation of the DOX prodrug in the tumor microenvironment, resulting in the superior tumor inhibitory effects and enhanced biosafety relative to free DOX. This work demonstrates the potential of the LG-M(TK-DOX)-PEG NPs as an efficient drug delivery system for cancer treatment.
Collapse
Affiliation(s)
- Ziwei Zhou
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Jin Wang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Xin Xu
- Department of Urology, China Japan Friendship Hospital, Beijing 100029, China
| | - Zhuang Wang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Lingchen Mao
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Shanhu Zhang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Huanhuan Zhang
- Department of General Medicine, the Fourth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yuqiang Li
- School of Chemistry and Chemical Engineering, North University of China, Taiyuan 030051, China
| | - Qingsong Yu
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Ni Jiang
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Guan Zhang
- Department of Urology, China Japan Friendship Hospital, Beijing 100029, China
| | - Zhihua Gan
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| | - Zhenbo Ning
- Beijing Laboratory of Biomedical Materials, State Key Laboratory of Organic-Inorganic Composites, College of Life Science and Technology, Beijing University of Chemical Technology, No. 15 Bei San Huan Dong Lu, Chaoyang District, Beijing 100029, China
| |
Collapse
|
2
|
Bassan R, Mondal B, Varshney M, Roy S. 1-Naphthylacetic acid appended amino acids-based hydrogels: probing of the supramolecular catalysis of ester hydrolysis reaction. NANOSCALE ADVANCES 2024; 6:3399-3409. [PMID: 38933855 PMCID: PMC11197428 DOI: 10.1039/d4na00268g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 05/07/2024] [Indexed: 06/28/2024]
Abstract
A 1-naphthaleneacetic acid-appended phenylalanine-derivative (Nap-F) forms a stable hydrogel with a minimum gelation concentration (MGC) of 0.7% w/v (21 mM) in phosphate buffer of pH 7.4. Interestingly, Nap-F produces two-component [Nap-F + H = Nap-FH, Nap-F + K = Nap-FK and Nap-F + R = Nap-FR], three-component [Nap-F + H + K = Nap-FH-K, Nap-F + H + R = Nap-FH-R and Nap-F + K + R = Nap-FK-R] and four-component [Nap-F + H + K + R = Nap-FH-K-R] hydrogels in water with all three natural basic amino acids (H = histidine, K = lysine and R = arginine) at various combinations below its MGC. Nap-F-hydrogel forms a nice entangled nanofibrillar network structure as evidenced by field emission scanning electron microscopy (FE-SEM). Interestingly, lysine-based co-assembled two- (Nap-FK), three- (Nap-FH-K and Nap-FK-R) and four-component (Nap-FH-K-R) xerogels exhibit helical nanofibrillar morphology, which was confirmed by circular dichroism spectroscopy, FE-SEM and TEM imaging. However, histidine and arginine-based two-component (Nap-FH and Nap-FR) and three-component (Nap-FH-R) co-assembled xerogels exhibiting straight nanofibrillar morphology. In their co-assembled states, these two-, three- and four-component supramolecular hydrogels show promising esterase-like activity below their MGCs. The enhanced catalytic activity of helical fibers compared to obtained straight fibers (other than lysine-based assembled systems) suggests that the helical fibrillar nanostructure is involved in ordering the esterase-like although all supramolecular assemblies are chemically different from one another.
Collapse
Affiliation(s)
- Ruchika Bassan
- Department of Chemistry, Birla Institute of Technology and Science-Pilani K K Birla Goa Campus, NH 17B, Zuarinagar Sancoale Goa 403726 India
| | - Biplab Mondal
- School of Biological Sciences, Indian Association for the Cultivation of Science 2A & 2B, Raja S. C. Mullick Road, Jadavpur Kolkata-700034 West Bengal India
| | - Mayank Varshney
- Senior Application Scientist, Characterization Division, Anton Paar India Pvt. Ltd. 582, Phase V, Udyog Vihar Industrial Area Gurgaon 122016 Haryana India
| | - Subhasish Roy
- Department of Chemistry, Birla Institute of Technology and Science-Pilani K K Birla Goa Campus, NH 17B, Zuarinagar Sancoale Goa 403726 India
| |
Collapse
|
3
|
Dey S, Mondal A, Aash A, Mukherjee R, Kolay S, Murmu N, Murmu N, Giri B, Molla MR. Poly-β-thioester-Based Cross-Linked Nanocarrier for Cancer Cell Selectivity over Normal Cells and Cellular Apoptosis by Triggered Release of Parthenolide, an Anticancer Drug. ACS APPLIED BIO MATERIALS 2024; 7:1214-1228. [PMID: 38326023 DOI: 10.1021/acsabm.3c01121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Breast cancer is the most prevalent and aggressive type of cancer, causing high mortality rates in women globally. Many drawbacks and side effects of the current chemotherapy force us to develop a robust chemotherapeutic system that can deal with off-target hazards and selectively combat cancer growth, invasiveness, and cancer-initiating cells. Here, a pH-responsive cross-linked nanocarrier (140-160 nm) endowed with poly-β-thioester functionality (CBAPTL) has been sketched and fabricated for noncovalent firm encapsulation of anticancer drug, parthenolide (PTL) at physiological pH (7.4), which enables sustain release of PTL at relevant endosomal pH (∼5.0-5.3). For this, a bolaamphiphilic molecule integrated with β-thioester and acrylate functionality was synthesized to fabricate the pH-responsive poly-β-thioester-based cross-linked nanocarrier via Michael addition click reactions in water. The poly-β-thioester functionality of CBAPTL hydrolyzes at endosomal acidic conditions, thus leading to the selective release of PTL inside the cancer cell. Cross-linked nanocarriers exhibit high serum stability, dilution insensitivity, and targeted cellular uptake at tumor microenvironment (TME), contrasting normal cells. In vitro study using human MCF-7 breast cancer cells demonstrated that CBAPTL exhibited selective cytotoxicity, reduced clonogenic potential, increased reactive oxygen species (ROS) generation, and arrested the progression of the cell cycle at the G0/G1 phase efficiently. CBAPTL induced apoptosis via downregulating pro-proliferative protein Bcl-2 and upregulating proapoptotic proteins p53, BAD, p21, and cleaved PARP-1. CBAPTL inhibited proliferating signaling by suppressing AKT phosphorylation and p38 expression. CBAPTL also blocked the invasion and migration of MCF-7 cells. CBAPTL effectively inhibits primary and secondary mammosphere formation, thereby preventing cancer-initiating cells' growth. Conversely, CBAPTL has negligible effect on human red blood cells (RBCs) and peripheral blood mononuclear cells (PBMCs). These findings highlight the superior efficacy of CBAPTL compared to PTL alone in suppressing cancer cell growth, inducing apoptosis, and preventing invasiveness of MCF-7 cells. Thus, CBAPTL could be considered a possible selective chemotherapeutic cargo against breast cancer without affecting normal cells.
Collapse
Affiliation(s)
- Sananda Dey
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Arun Mondal
- Department of Chemistry, University of Calcutta, Kolkata 700009, West Bengal, India
| | - Asmita Aash
- Department of Chemistry, University of Calcutta, Kolkata 700009, West Bengal, India
| | - Rimi Mukherjee
- Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata 700026, West Bengal, India
| | - Soumya Kolay
- Department of Chemistry, University of Calcutta, Kolkata 700009, West Bengal, India
| | - Nensina Murmu
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | - Nabendu Murmu
- Signal Transduction and Biogenic Amines, Chittaranjan National Cancer Institute, Kolkata 700026, West Bengal, India
| | - Biplab Giri
- Department of Physiology, University of Gour Banga, Malda 732103, West Bengal, India
| | | |
Collapse
|
4
|
Chu S, Shi X, Tian Y, Gao F. pH-Responsive Polymer Nanomaterials for Tumor Therapy. Front Oncol 2022; 12:855019. [PMID: 35392227 PMCID: PMC8980858 DOI: 10.3389/fonc.2022.855019] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
The complexity of the tumor microenvironment presents significant challenges to cancer therapy, while providing opportunities for targeted drug delivery. Using characteristic signals of the tumor microenvironment, various stimuli-responsive drug delivery systems can be constructed for targeted drug delivery to tumor sites. Among these, the pH is frequently utilized, owing to the pH of the tumor microenvironment being lower than that of blood and healthy tissues. pH-responsive polymer carriers can improve the efficiency of drug delivery in vivo, allow targeted drug delivery, and reduce adverse drug reactions, enabling multifunctional and personalized treatment. pH-responsive polymers have gained increasing interest due to their advantageous properties and potential for applicability in tumor therapy. In this review, recent advances in, and common applications of, pH-responsive polymer nanomaterials for drug delivery in cancer therapy are summarized, with a focus on the different types of pH-responsive polymers. Moreover, the challenges and future applications in this field are prospected.
Collapse
Affiliation(s)
- Shunli Chu
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Xiaolu Shi
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Ye Tian
- Department of Implantology, Hospital of Stomatology, Jilin University, Changchun, China
| | - Fengxiang Gao
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| |
Collapse
|
5
|
Shin Y, Husni P, Kang K, Lee D, Lee S, Lee E, Youn Y, Oh K. Recent Advances in pH- or/and Photo-Responsive Nanovehicles. Pharmaceutics 2021; 13:725. [PMID: 34069233 PMCID: PMC8157172 DOI: 10.3390/pharmaceutics13050725] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/11/2021] [Accepted: 05/11/2021] [Indexed: 01/10/2023] Open
Abstract
The combination of nanotechnology and chemotherapy has resulted in more effective drug design via the development of nanomaterial-based drug delivery systems (DDSs) for tumor targeting. Stimulus-responsive DDSs in response to internal or external signals can offer precisely controlled delivery of preloaded therapeutics. Among the various DDSs, the photo-triggered system improves the efficacy and safety of treatment through spatiotemporal manipulation of light. Additionally, pH-induced delivery is one of the most widely studied strategies for targeting the acidic micro-environment of solid tumors. Accordingly, in this review, we discuss representative strategies for designing DDSs using light as an exogenous signal or pH as an endogenous trigger.
Collapse
Affiliation(s)
- Yuseon Shin
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Patihul Husni
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Kioh Kang
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Dayoon Lee
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Sehwa Lee
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| | - Eunseong Lee
- Division of Biotechnology, The Catholic University of Korea, Bucheon 14662, Korea;
| | - Yuseok Youn
- School of Pharmacy, Sungkyunkwan University, Suwon 16419, Korea;
| | - Kyungtaek Oh
- Department of Global Innovative Drugs, The Graduate School of Chung-Ang University and College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Seoul 06974, Korea; (Y.S.); (P.H.); (K.K.); (D.L.); (S.L.)
| |
Collapse
|
6
|
pH-sensitive polymeric nanocarriers for antitumor biotherapeutic molecules targeting delivery. Biodes Manuf 2021. [DOI: 10.1007/s42242-020-00105-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
7
|
Synthesis of a new triple-responsive biocompatible block copolymer: Self-assembled nanoparticles as potent anticancer drug delivery vehicle. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
8
|
Gao G, Han X, Sowan N, Zhang X, Shah PK, Chen M, Bowman CN, Stansbury JW. Stress Relaxation via Covalent Dynamic Bonds in Nanogel-Containing Thiol-Ene Resins. ACS Macro Lett 2020; 9:713-719. [PMID: 35648559 DOI: 10.1021/acsmacrolett.0c00275] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Functional nanogels are attractive additives for use in polymer composites. In this study, nanogels with internal allyl sulfide moieties throughout their network structure were prepared via a thiol-Michael addition reaction. The excess thiol-functionalized nanogels were less than 60 nm as discrete particles but act as room-temperature liquids in the bulk state. The reactive nanogels can be dispersed in and swollen by a thiol-ene matrix resin, which upon photopolymerization yields dramatically decreased levels of polymerization shrinkage stress. Furthermore, the postcured nanogel-modified polymers effectively relaxed applied stresses as well as enhanced toughness during exposure to a UV light source that activated the addition-fragmentation as a means for dynamic bond exchange. These nanogels provide a generic approach to introduce adaptable network performance that significantly improves a number of key properties of glassy cross-linked polymer.
Collapse
Affiliation(s)
- Guangzhe Gao
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Xun Han
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Nancy Sowan
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Xinpeng Zhang
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Parag K. Shah
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Mingtao Chen
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Christopher N. Bowman
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
| | - Jeffrey W. Stansbury
- Materials Science and Engineering Program, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Chemical and Biological Engineering, University of Colorado Boulder, Boulder, Colorado 80309, United States
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado 80045, United States
| |
Collapse
|
9
|
Stability and acidic pH-mediated leakage of guest molecules from self-assembly of poly(amidoamine)-graft-alkyl copolymers. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.121894] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
10
|
Samanta P, Kapat K, Maiti S, Biswas G, Dhara S, Dhara D. pH-labile and photochemically cross-linkable polymer vesicles from coumarin based random copolymer for cancer therapy. J Colloid Interface Sci 2019; 555:132-144. [DOI: 10.1016/j.jcis.2019.07.069] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/23/2019] [Accepted: 07/24/2019] [Indexed: 12/22/2022]
|
11
|
Wu W. Lipase‐catalyzed synthesis of aliphatic poly(
β
‐thioether ester) with various methylene group contents: thermal properties, crystallization and degradation. POLYM INT 2019. [DOI: 10.1002/pi.5894] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Wan‐Xia Wu
- College of Pharmacy and Biological EngineeringChengdu University Chengdu China
| |
Collapse
|
12
|
Mondal S, Saha M, Ghosh M, Santra S, Khan MA, Das Saha K, Molla MR. Programmed supramolecular nanoassemblies: enhanced serum stability and cell specific triggered release of anti-cancer drugs. NANOSCALE ADVANCES 2019; 1:1571-1580. [PMID: 36132617 PMCID: PMC9418062 DOI: 10.1039/c9na00052f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 01/29/2019] [Indexed: 05/30/2023]
Abstract
A bolaamphiphilic cross-linked nanoassembly endowed with pH responsive degradation features has been designed and fabricated for stable noncovalent guest encapsulation and controlled release. The self-assembled bolaamphiphile is utilized to prepare cross-linked nanoassemblies to further stabilize the noncovalent guest encapsulation at a concentration below its critical aggregation concentration (CAC) in a large volume of water or serum for drug delivery applications. Thus, this system can simultaneously address premature drug release and safety issues. The nanoassemblies integrated with a β-thioester linker, which can be hydrolyzed selectively under mildly acidic conditions (pH ∼ 5.3) at a slow rate, thus enable controlled release of guest molecules. Biological evaluation revealed that doxorubicin loaded cross-linked nanoassemblies (CNs-DOX) are nontoxic to normal cells such as HEK-293 or PBMC, but in contrast, showed a robust apoptotic effect on colon cancer cells, HCT-116, indicating excellent specificity. Thus, the fabrication reproducibility, robust stability, triggered drug release and cell selective toxicity behavior make this small molecular system very promising in the field of chemotherapeutic applications.
Collapse
Affiliation(s)
- Sanchaita Mondal
- University of Calcutta, Department of Chemistry 92 APC Road Kolkata-700009 India
| | - Moumita Saha
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology 4, Raja S C Mullick Road Kolkata-700032 India
| | - Mousumi Ghosh
- University of Calcutta, Department of Chemistry 92 APC Road Kolkata-700009 India
| | - Subrata Santra
- University of Calcutta, Department of Chemistry 92 APC Road Kolkata-700009 India
| | - Mijan A Khan
- University of Calcutta, Department of Chemistry 92 APC Road Kolkata-700009 India
| | - Krishna Das Saha
- Cancer Biology and Inflammatory Disorder Division, Indian Institute of Chemical Biology 4, Raja S C Mullick Road Kolkata-700032 India
| | - Mijanur R Molla
- University of Calcutta, Department of Chemistry 92 APC Road Kolkata-700009 India
| |
Collapse
|
13
|
Zhang H, Zhou T, Yu Q, Yang Z, Sun Y, Cai Z, Cang H. pH-Sensitive betulinic acid polymer prodrug nanoparticles for efficient and targeted cancer cells treatment. INT J POLYM MATER PO 2019. [DOI: 10.1080/00914037.2019.1596916] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Huaihong Zhang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Tao Zhou
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Qing Yu
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Zhenqing Yang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Yu Sun
- College of Chemistry and Chemical Engineering, Southeast University, Nanjing, China
| | - Zhaosheng Cai
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| | - Hui Cang
- School of Chemistry and Biology, Yancheng Institute of Technology, Yancheng, China
| |
Collapse
|
14
|
|
15
|
Xu CR, Qiu L, Pan CY, Hong CY, Hao ZY. Efficient Synthesis of Polymer Prodrug by Thiol–Acrylate Michael Addition Reaction and Fabrication of pH-Responsive Prodrug Nanoparticles. Bioconjug Chem 2018; 29:3203-3212. [DOI: 10.1021/acs.bioconjchem.8b00531] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Chao-Ran Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Liang Qiu
- Institute of Biophysics, Hebei University of Technology, Tianjin, 300401, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Zong-Yao Hao
- Department of Urology, the First Affiliated Hospital of Anhui Medical University and Institute of Urology, Anhui Medical University, Hefei, Anhui 230026, China
| |
Collapse
|
16
|
Li L, Wang Q, Lyu R, Yu L, Su S, Du FS, Li ZC. Synthesis of a ROS-responsive analogue of poly(ε-caprolactone) by the living ring-opening polymerization of 1,4-oxathiepan-7-one. Polym Chem 2018. [DOI: 10.1039/c8py00798e] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A well-defined ROS-responsive block amphiphilic diblock copolymer PEO-b-POTO was synthesized to elucidate the oxidative degradation mechanism in assemblies.
Collapse
Affiliation(s)
- Linggao Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Center for Soft Matter Science & Engineering
| | - Qiyuan Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Center for Soft Matter Science & Engineering
| | - Ruiliang Lyu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Center for Soft Matter Science & Engineering
| | - Li Yu
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Center for Soft Matter Science & Engineering
| | - Shan Su
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Center for Soft Matter Science & Engineering
| | - Fu-Sheng Du
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Center for Soft Matter Science & Engineering
| | - Zi-Chen Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)
- Key Laboratory of Polymer Chemistry & Physics of Ministry of Education
- Department of Polymer Science & Engineering
- College of Chemistry and Molecular Engineering
- Center for Soft Matter Science & Engineering
| |
Collapse
|
17
|
Banerjee SL, Singha NK. A new class of dual responsive self-healable hydrogels based on a core crosslinked ionic block copolymer micelle prepared via RAFT polymerization and Diels-Alder "click" chemistry. SOFT MATTER 2017; 13:9024-9035. [PMID: 29177283 DOI: 10.1039/c7sm01906h] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Amphiphilic diblock copolymers of poly(furfuryl methacrylate) (PFMA) with cationic poly(2-(methacryloyloxy)ethyltrimethyl ammonium chloride) (PFMA-b-PMTAC) and anionic poly(sodium 4-vinylbenzenesulfonate) (PFMA-b-PSS) were prepared via reversible addition fragmentation chain-transfer (RAFT) polymerization by using PFMA as a macro-RAFT agent. The formation of the block copolymer was confirmed by FTIR and 1H NMR analyses. In water, the amphiphilic diblock copolymers, (PFMA-b-PMTAC) and (PFMA-b-PSS), formed micelles with PFMA in the core and the rest of the hydrophilic polymers like PMTAC and PSS in the corona. The PFMA core was crosslinked by using Diels-Alder (DA) "Click" chemistry in water at 60 °C where bismaleimide acted as a crosslinker. Afterwards, both the core crosslinked micelles were mixed at an almost equal charge ratio which was determined by zeta potential analysis to prepare the self-assembled hydrogel. The de-crosslinking of the hydrophobic PFMA core in the self-assembled hydrogel via rDA reaction took place at 165 °C as determined from DSC analysis. This hydrogel showed self-healing behavior using ionic interaction (in the presence of water) and DA chemistry (in the presence of heat).
Collapse
Affiliation(s)
- Sovan Lal Banerjee
- Rubber Technology Centre, Indian Institute of Technology, Kharagpur, India.
| | | |
Collapse
|
18
|
Shen Z, Chen T, Ma X, Ren W, Zhou Z, Zhu G, Zhang A, Liu Y, Song J, Li Z, Ruan H, Fan W, Lin L, Munasinghe J, Chen X, Wu A. Multifunctional Theranostic Nanoparticles Based on Exceedingly Small Magnetic Iron Oxide Nanoparticles for T 1-Weighted Magnetic Resonance Imaging and Chemotherapy. ACS NANO 2017; 11:10992-11004. [PMID: 29039917 DOI: 10.1021/acsnano.7b04924] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The recently emerged exceedingly small magnetic iron oxide nanoparticles (ES-MIONs) (<5 nm) are promising T1-weighted contrast agents for magnetic resonance imaging (MRI) due to their good biocompatibility compared with Gd-chelates. However, the best particle size of ES-MIONs for T1 imaging is still unknown because the synthesis of ES-MIONs with precise size control to clarify the relationship between the r1 (or r2/r1) and the particle size remains a challenge. In this study, we synthesized ES-MIONs with seven different sizes below 5 nm and found that 3.6 nm is the best particle size for ES-MIONs to be utilized as T1-weighted MR contrast agent. To enhance tumor targetability of theranostic nanoparticles and reduce the nonspecific uptake of nanoparticles by normal healthy cells, we constructed a drug delivery system based on the 3.6 nm ES-MIONs for T1-weighted tumor imaging and chemotherapy. The laser scanning confocal microscopy (LSCM) and flow cytometry analysis results demonstrate that our strategy of precise targeting via exposure or hiding of the targeting ligand RGD2 on demand is feasible. The MR imaging and chemotherapy results on the cancer cells and tumor-bearing mice reinforce that our DOX@ES-MION3@RGD2@mPEG3 nanoparticles are promising for high-resolution T1-weighted MR imaging and precise chemotherapy of tumors.
Collapse
Affiliation(s)
- Zheyu Shen
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Tianxiang Chen
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
| | - Xuehua Ma
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
| | - Wenzhi Ren
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
| | - Zijian Zhou
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Guizhi Zhu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Ariel Zhang
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Yijing Liu
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Jibin Song
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Zihou Li
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
| | - Huimin Ruan
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
| | - Wenpei Fan
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Lisen Lin
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Jeeva Munasinghe
- Mouse Imaging Facility, National Institute of Neurological Disorder and Stroke, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health , Bethesda, Maryland 20892, United States
| | - Aiguo Wu
- CAS Key Laboratory of Magnetic Materials and Devices, Key Laboratory of Additive Manufacturing Materials of Zhejiang Province, and Division of Functional Materials and Nanodevices, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences , 1219 Zhongguan West Road, Ningbo, Zhejiang 315201, China
| |
Collapse
|
19
|
Qiu L, Li JW, Hong CY, Pan CY. Silver Nanoparticles Covered with pH-Sensitive Camptothecin-Loaded Polymer Prodrugs: Switchable Fluorescence "Off" or "On" and Drug Delivery Dynamics in Living Cells. ACS APPLIED MATERIALS & INTERFACES 2017; 9:40887-40897. [PMID: 29088537 DOI: 10.1021/acsami.7b14070] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
A unique drug delivery system, in which silver nanoparticles (AgNPs) are covered with camptothecin (CPT)-based polymer prodrug, has been developed, and the polymer prodrug, in which the CPT is linked to the polymer side chains via an acid-labile β-thiopropionate bond, is prepared by RAFT polymerization. For poly(2-(2-hydroxyethoxy)ethyl methacrylate-co-methacryloyloxy-3-thiahexanoyl-camptothecin)@AgNPs [P(HEO2MA-co-MACPT)@AgNPs], the polymer thickness on the AgNP surface is around 5.9 nm (TGA method). In vitro tests in buffer solutions at pH = 7.4 reveal that fluorescence of the CPT in the hybrid nanoparticles is quenched due to the nanoparticle surface energy transfer (NSET) effect, but under acidic conditions, the CPT fluorescence is gradually recovered with gradual release of the CPT molecules from the hybrid nanoparticles through cleavage of the acid-labile bond. The NSET "on" and "off" is induced by the CPT-AgNP distance change. This unique property makes it possible to track the CPT delivery and release process from the hybrid nanoparticles in the living cells in a real-time manner. The internalization and intracellular releasing tests of the hybrid nanoparticles in the HeLa cells demonstrate that the lysosome containing the hybrid nanoparticles displays CPT blue fluorescence due to release of the CPT under acidic conditions, and the drug-releasing kinetics shows fluorescence increase of the released CPT with incubation time. The cytotoxicity of hybrid nanoparticles is dependent on activity of the acid-labile bond. Therefore, this is a potential efficient drug delivery system in cancer therapy and a useful approach to study the mechanism of release process in the cells.
Collapse
Affiliation(s)
- Liang Qiu
- Institute of Biophysics, Hebei University of Technology , Tianjin 300401, P. R. China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Jia-Wei Li
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Chun-Yan Hong
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| | - Cai-Yuan Pan
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China , Hefei, Anhui 230026, China
| |
Collapse
|
20
|
Qi R, Liu Z, Zhou C, Han Y, Wang Y. pH-Responsive self-assembly of cationic surfactants with a star-shaped tetra-carboxylate acid and the solubilization of hydrophobic drugs. SOFT MATTER 2017; 13:7804-7812. [PMID: 29067393 DOI: 10.1039/c7sm01940h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This work involved the construction of pH-responsive self-assembly systems from a pH-sensitive four-arm carboxylate acid (4EOCOOH) and either the cationic single chain surfactant dodecyl trimethyl ammonium bromide (DTAB) or the cationic gemini surfactant hexamethylene-1,6-bis(dodecyldimethylammonium bromide) (12-6-12). It was found that the constructed oligomeric-like structures from the mixtures of 4EOCOOH with DTAB or 12-6-12 greatly enhance the aggregation ability of the mixtures, thus improving the pH-responsivity. In particular, surfactant concentrations significantly affect the pH-responsivity at a fixed 4EOCOOH concentration. At higher surfactant concentrations, the pH-responsivity is suppressed, while at lower surfactant concentrations, the mixed aggregates gradually change from micelles to unstable large spherical aggregates or vesicles, and then to stable spherical aggregates, with decreasing pH. Moreover, the surfactant/4EOCOOH systems have different solubilization abilities for three hydrophobic drugs. For quercetin and baicalein, the systems support much better solubilization at lower pH values, while for indomethacin, the systems show better solubilization at higher pH values. In particular, compared with DTAB, 12-6-12 is more efficient in constructing pH-responsive systems, and the 12-6-12/4EOCOOH mixture shows better ability for solubilizing hydrophobic drugs. This work will be helpful in the design of high-efficiency, pH-responsive surfactant systems for solubilizing hydrophobic drugs by simply mixing pH-sensitive molecules with surfactants.
Collapse
Affiliation(s)
- Ruilian Qi
- Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Beijing National Laboratory for Molecular Sciences (BNLMS), CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China.
| | | | | | | | | |
Collapse
|
21
|
Maiti B, Haldar U, Rajasekhar T, De P. Functional-Polymer Library through Post-Polymerization Modification of Copolymers Having Oleate and Pentafluorophenyl Pendants. Chemistry 2017; 23:15156-15165. [PMID: 28850744 DOI: 10.1002/chem.201703151] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Binoy Maiti
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur Nadia, West Bengal 741246 India
| | - Ujjal Haldar
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur Nadia, West Bengal 741246 India
| | - Tota Rajasekhar
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur Nadia, West Bengal 741246 India
| | - Priyadarsi De
- Department of Chemical Sciences; Indian Institute of Science Education and Research Kolkata; Mohanpur Nadia, West Bengal 741246 India
| |
Collapse
|
22
|
Meghani NM, Amin HH, Lee BJ. Mechanistic applications of click chemistry for pharmaceutical drug discovery and drug delivery. Drug Discov Today 2017; 22:1604-1619. [PMID: 28754291 DOI: 10.1016/j.drudis.2017.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 06/18/2017] [Accepted: 07/17/2017] [Indexed: 01/30/2023]
Abstract
The concept of click chemistry (CC), first introduced by K.B. Sharpless, has been widely adopted for use in drug discovery, novel drug delivery systems (DDS), polymer chemistry, and material sciences. In this review, we outline novel aspects of CC related to drug discovery and drug delivery, with a brief overview of molecular mechanisms underlying each click reaction commonly used by researchers, and the main patents that paved the way for further diverse medicinal applications. We also describe recent progress in drug discovery and polymeric and carbon material-based drug delivery for potential pharmaceutical applications and advancements based on the CC approach, and discuss some intrinsic limitations of this popular conjugation reaction. The use of CC is likely to significantly advance drug discovery and bioconjugation development.
Collapse
Affiliation(s)
- Nilesh M Meghani
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Hardik H Amin
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea
| | - Beom-Jin Lee
- College of Pharmacy, Ajou University, Suwon 16499, Republic of Korea; Institute of Pharmaceutical Science and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
23
|
Hu Y, Deng M, Yang H, Chen L, Xiao C, Zhuang X, Chen X. Multi-responsive core-crosslinked poly (thiolether ester) micelles for smart drug delivery. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
24
|
He J, Xia Y, Niu Y, Hu D, Xia X, Lu Y, Xu W. pH-responsive core crosslinked polycarbonate micelles via thiol-acrylate Michael addition reaction. J Appl Polym Sci 2016. [DOI: 10.1002/app.44421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Jingwen He
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Yingchun Xia
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Yile Niu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Ding Hu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Xinnian Xia
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Yanbing Lu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| | - Weijian Xu
- Institute of Polymer Science, College of Chemistry & Chemical Engineering; Hunan University; Changsha 410082 China
| |
Collapse
|
25
|
Karimi M, Eslami M, Sahandi-Zangabad P, Mirab F, Farajisafiloo N, Shafaei Z, Ghosh D, Bozorgomid M, Dashkhaneh F, Hamblin MR. pH-Sensitive stimulus-responsive nanocarriers for targeted delivery of therapeutic agents. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2016; 8:696-716. [PMID: 26762467 PMCID: PMC4945487 DOI: 10.1002/wnan.1389] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 10/27/2015] [Accepted: 12/09/2015] [Indexed: 12/21/2022]
Abstract
In recent years miscellaneous smart micro/nanosystems that respond to various exogenous/endogenous stimuli including temperature, magnetic/electric field, mechanical force, ultrasound/light irradiation, redox potentials, and biomolecule concentration have been developed for targeted delivery and release of encapsulated therapeutic agents such as drugs, genes, proteins, and metal ions specifically at their required site of action. Owing to physiological differences between malignant and normal cells, or between tumors and normal tissues, pH-sensitive nanosystems represent promising smart delivery vehicles for transport and delivery of anticancer agents. Furthermore, pH-sensitive systems possess applications in delivery of metal ions and biomolecules such as proteins, insulin, etc., as well as co-delivery of cargos, dual pH-sensitive nanocarriers, dual/multi stimuli-responsive nanosystems, and even in the search for new solutions for therapy of diseases such as Alzheimer's. In order to design an optimized system, it is necessary to understand the various pH-responsive micro/nanoparticles and the different mechanisms of pH-sensitive drug release. This should be accompanied by an assessment of the theoretical and practical challenges in the design and use of these carriers. WIREs Nanomed Nanobiotechnol 2016, 8:696-716. doi: 10.1002/wnan.1389 For further resources related to this article, please visit the WIREs website.
Collapse
Affiliation(s)
- Mahdi Karimi
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Masoud Eslami
- Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Parham Sahandi-Zangabad
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Fereshteh Mirab
- Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Negar Farajisafiloo
- Polymeric Materials Research Group, Department of Materials Science and Engineering, Sharif University of Technology, Tehran, Iran
| | - Zahra Shafaei
- Department of Cell & Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran, Iran
| | - Deepanjan Ghosh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran university of Medical science, Tehran, Iran
| | - Mahnaz Bozorgomid
- Department of Applied Chemistry, Central Branch of Islamic Azad University of Tehran, Tehran, Iran
| | - Fariba Dashkhaneh
- Department of Medical Nanotechnology, School of Advanced Technologies in Medicine, Tehran university of Medical Science, Tehran, Iran
| | - Michael R. Hamblin
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
- Department of Dermatology, Harvard Medical School, Boston, MA, USA
- Harvard-MIT Division of Health Sciences and Technology, Cambridge, MA, USA
| |
Collapse
|
26
|
Liu T, Huang Q. Biodegradable brush-type copolymer modified with targeting peptide as a nanoscopic platform for targeting drug delivery to treat castration-resistant prostate cancer. Int J Pharm 2016; 511:1002-11. [PMID: 27521701 DOI: 10.1016/j.ijpharm.2016.08.017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 07/29/2016] [Accepted: 08/08/2016] [Indexed: 12/22/2022]
Abstract
Well-defined amphiphilic tumor-targeting brush-type copolymers, poly(oligo(ethylene glycol) monomethyl ether methacrylate-co-G3-C12)-g-poly(ε-caprolactone) (P(OEGMA-co-G3-C12)-g- PCL), were synthesized by the combination of ring-opening polymerization (ROP), reversible addition-fragmentation transfer (RAFT) polymerization and polymer post-functionalization, in which G3-C12 was castration-resistant prostate cancer (CRPC) targeting peptide. The obtained polymers were then employed for the targeted treatment of CRPC by delivering a hydrophobic anticancer drug (bufalin, BUF). Polymerizable monomer, 3-((2-(methacryloyloxy)ethyl)thio)propanoic acid (BSMA) and PCL-based macromolecular monomer (PCLMA) were synthesized at first. RAFT polymerization of OEGMA, BSMA, and PCLMA afforded amphiphilic brush-type copolymers, P(OEGMA-co-BSMA)-g-PCL. Post-functionalization of the obtained polymers with G3-C12 led to the formation of the final amphiphilic targeting brush-type copolymers, P(OEGMA-co-G3-C12)-g- PCL. In aqueous media, P(OEGMA-co-G3-C12)-g-PCL self-assembles into micelles with a hydrodynamic diameter (Dh) of ∼66.1±0.44nm. It was demonstrated that the obtained micellar nanoparticles exhibited good biocompatibility and biodegradability. Besides, BUF-loaded micellar nanoparticles assembled from P(OEGMA-co-G3-C12)-g-PCL, BUF-NP-(G3-C12), showed a controlled drug release in vitro and improved anticancer efficacy both in vitro and in vivo.
Collapse
Affiliation(s)
- Tao Liu
- Shanghai High-Tech United Bio-Technological R&D Co., Ltd., Shanghai 201206, China
| | - Qianxia Huang
- Department of Emergency, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200062, China.
| |
Collapse
|
27
|
pH-Triggered Sustained Drug Delivery from a Polymer Micelle having the β-Thiopropionate Linkage. Macromol Rapid Commun 2016; 37:1499-506. [DOI: 10.1002/marc.201600260] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Indexed: 12/30/2022]
|
28
|
Mondal T, Sarkar J, Ghosh S. Fluorescent PEGulated Oligourethane Nanoparticles for Long-Term Cellular Tracing. Chemistry 2016; 22:10930-6. [DOI: 10.1002/chem.201601718] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Indexed: 01/14/2023]
Affiliation(s)
- Tathagata Mondal
- Indian Association for the Cultivation of Science; Polymer Science Unit; 2A & 2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Jayita Sarkar
- Indian Association for the Cultivation of Science; Polymer Science Unit; 2A & 2B Raja S. C. Mullick Road Kolkata 700032 India
| | - Suhrit Ghosh
- Indian Association for the Cultivation of Science; Polymer Science Unit; 2A & 2B Raja S. C. Mullick Road Kolkata 700032 India
| |
Collapse
|
29
|
Synthesis and characterization of a PAMAM-OH derivative containing an acid-labile β-thiopropionate bond for gene delivery. Int J Pharm 2016; 509:314-327. [PMID: 27260132 DOI: 10.1016/j.ijpharm.2016.05.060] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/24/2016] [Accepted: 05/27/2016] [Indexed: 12/23/2022]
Abstract
The present report describes the synthesis of a hydroxyl terminal PAMAM dendrimer (PAMAM-OH) derivative (PAMSPF). The hydroxyls of PAMAM-OH were attached to S-Methyl-l-cysteine (SMLC) via an acid-labile ester bond, named as β-thiopropionate bond, followed by modification with folic acid (FA) through a polyethylene glycol (PEG) linker. The degrees of attachment of SMLC and FA to the PAMAM-OH backbone were 83.9% and 12.8%, respectively. PAMSPF could condense DNA to form spherical nanoparticles with particle sizes of ∼200nm and remain stable in the presence of heparin and nuclease. The β-thiopropionate bond in PAMSPF was hydrolyzed completely and the DNA release rate was 95.8±3.3% after incubation under mildly acidic conditions at 37°C for 3h. PAMSPF/DNA was less cytotoxic to KB and HepG2 cells and exhibited a higher gene transfection efficiency than native PAMAM/DNA. The uptake assays showed that PAMSPF/DNA entered KB cells within 0.5h through folate receptor-mediated endocytosis and escaped from endosomes within 2h. In addition, PAMSPF/DNA displayed long circulation time along with excellent targeting of tumor sites in vivo. These findings demonstrate that PAMSPF is an excellent carrier for safe and effective gene delivery.
Collapse
|
30
|
Hwang L, Guardado-Alvarez TM, Ayaz-Gunner S, Ge Y, Jin S. A Family of Photolabile Nitroveratryl-Based Surfactants That Self-Assemble into Photodegradable Supramolecular Structures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:3963-9. [PMID: 27046005 PMCID: PMC4955541 DOI: 10.1021/acs.langmuir.6b00658] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Here we report the synthesis and characterization of a family of photolabile nitroveratryl-based surfactants that form different types of supramolecular structures depending on the alkyl chain lengths ranging from 8 to 12 carbon atoms. By incorporating a photocleavable α-methyl-o-nitroveratryl moiety, the surfactants can be degraded, along with their corresponding supramolecular structures, by light irradiation in a controlled manner. The self-assembly of the amphiphilic surfactants was characterized by conductometry to determine the critical concentration for the formation of the supramolecular structures, transmission electron microscopy to determine the size and shape of the supramolecular structures, and dynamic light scattering (DLS) to determine the hydrodynamic diameter of the structures in aqueous solutions. The photodegradation of the surfactants and the supramolecular structures was confirmed using UV-vis spectroscopy, mass spectrometry, and DLS. This surfactant family could be potentially useful in drug delivery, organic synthesis, and other applications.
Collapse
Affiliation(s)
- Leekyoung Hwang
- Department of Chemistry, University of Wisconsin–Madison, Wisconsin 53719, USA
| | | | - Serife Ayaz-Gunner
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Wisconsin 53719, USA
| | - Ying Ge
- Department of Chemistry, University of Wisconsin–Madison, Wisconsin 53719, USA
- Department of Cell and Regenerative Biology, University of Wisconsin–Madison, Wisconsin 53719, USA
| | - Song Jin
- Department of Chemistry, University of Wisconsin–Madison, Wisconsin 53719, USA
| |
Collapse
|
31
|
Kharkar PM, Rehmann MS, Skeens KM, Maverakis E, Kloxin AM. Thiol-ene click hydrogels for therapeutic delivery. ACS Biomater Sci Eng 2016; 2:165-179. [PMID: 28361125 PMCID: PMC5369354 DOI: 10.1021/acsbiomaterials.5b00420] [Citation(s) in RCA: 135] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Hydrogels are of growing interest for the delivery of therapeutics to specific sites in the body. For use as a delivery vehicle, hydrophilic precursors are usually laden with bioactive moieties and then directly injected to the site of interest for in situ gel formation and controlled release dictated by precursor design. Hydrogels formed by thiol-ene click reactions are attractive for local controlled release of therapeutics owing to their rapid reaction rate and efficiency under mild aqueous conditions, enabling in situ formation of gels with tunable properties often responsive to environmental cues. Herein, we will review the wide range of applications for thiol-ene hydrogels, from the prolonged release of anti-inflammatory drugs in the spine to the release of protein-based therapeutics in response to cell-secreted enzymes, with a focus on their clinical relevance. We will also provide a brief overview of thiol-ene click chemistry and discuss the available alkene chemistries pertinent to macromolecule functionalization and hydrogel formation. These chemistries include functional groups susceptible to Michael type reactions relevant for injection and radically-mediated reactions for greater temporal control of formation at sites of interest using light. Additionally, mechanisms for the encapsulation and controlled release of therapeutic cargoes are reviewed, including i) tuning the mesh size of the hydrogel initially and temporally for cargo entrapment and release and ii) covalent tethering of the cargo with degradable linkers or affinity binding sequences to mediate release. Finally, myriad thiol-ene hydrogels and their specific applications also are discussed to give a sampling of the current and future utilization of this chemistry for delivery of therapeutics, such as small molecule drugs, peptides, and biologics.
Collapse
Affiliation(s)
- Prathamesh M. Kharkar
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| | - Matthew S. Rehmann
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Kelsi M. Skeens
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| | - Emanual Maverakis
- Department of Dermatology, School of Medicine, University of California, Davis, 3301 C St, Suite 1400, Sacramento, CA 95816, USA
| | - April M. Kloxin
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, DE 19716, USA
| |
Collapse
|
32
|
Polymeric nanostructures with pH-labile core for controlled drug release. J Colloid Interface Sci 2016; 462:176-82. [DOI: 10.1016/j.jcis.2015.09.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/29/2015] [Accepted: 09/29/2015] [Indexed: 11/18/2022]
|
33
|
Qiu L, Liu Q, Hong CY, Pan CY. Unimolecular micelles of camptothecin-bonded hyperbranched star copolymers via β-thiopropionate linkage: synthesis and drug delivery. J Mater Chem B 2016; 4:141-151. [DOI: 10.1039/c5tb01905b] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The pH- and redox-sensitive camptothecin-loaded unimolecular micelles display low cytotoxicity and controlled drug release in a sustained manner.
Collapse
Affiliation(s)
- Liang Qiu
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Sciences
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Qing Liu
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Sciences
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Chun-Yan Hong
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Sciences
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| | - Cai-Yuan Pan
- Key Laboratory of Soft Matter Chemistry
- Chinese Academy of Sciences
- Department of Polymer Science and Engineering
- University of Science and Technology of China
- Hefei
| |
Collapse
|
34
|
Lipase-catalyzed synthesis of acid-degradable poly(β-thioether ester) and poly(β-thioether ester-co-lactone) copolymers. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
35
|
Basak D, Bej R, Ghosh S. Amphiphilic poly(disulfide) micelles and a remarkable impact of the core hydrophobicity on redox responsive disassembly. Polym Chem 2015. [DOI: 10.1039/c5py00969c] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Redox-responsive amphiphilic triblock copolymers based on poly(triethylene glycol monomethyl ether)methacrylate-b-poly(disulfide)-b-poly(triethylene glycol monomethyl ether)methacrylate (PTEGMA-b-PDS-b-PTEGMA) with different hydrophobicities of the PDS block were synthesized by step-growth followed by chain-growth polymerization.
Collapse
Affiliation(s)
- Dipankar Basak
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Raju Bej
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata
- India
| | - Suhrit Ghosh
- Polymer Science Unit
- Indian Association for the Cultivation of Science
- Kolkata
- India
| |
Collapse
|
36
|
Molla M, Marcinko T, Prasad P, Deming D, Garman SC, Thayumanavan S. Unlocking a caged lysosomal protein from a polymeric nanogel with a pH trigger. Biomacromolecules 2014; 15:4046-53. [PMID: 25291086 PMCID: PMC4229022 DOI: 10.1021/bm501091p] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 09/19/2014] [Indexed: 12/13/2022]
Abstract
A polymeric nanogel has been used to sequester and turn off a lysosomal protein, acid α-glucosidase (GAA). The nanogel contains a β-thiopropionate cross-linker, which endows the nanogel with pH-sensitivity. While encapsulation of the enzyme fully turns off its activity, approximately 75% of the activity is recovered upon reducing the pH to 5.0. The recovered activity is ascribed to pH-induced degradation of the β-thiopropionate cross-linker causing the swelling of the nanogel and ultimately causing the release of the enzyme. We envision that strategies for sequestering protein molecules and releasing them at lysosomal pH might open up new directions for therapeutic treatment of lysosomal storage diseases.
Collapse
Affiliation(s)
- Mijanur
Rahaman Molla
- Department of Chemistry and Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Tyler Marcinko
- Department of Chemistry and Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Priyaa Prasad
- Department of Chemistry and Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Derrick Deming
- Department of Chemistry and Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - Scott C. Garman
- Department of Chemistry and Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| | - S. Thayumanavan
- Department of Chemistry and Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, 710 N. Pleasant Street, Amherst, Massachusetts 01003, United States
| |
Collapse
|
37
|
Jin Q, Cai T, Han H, Wang H, Wang Y, Ji J. Light and pH Dual-Degradable Triblock Copolymer Micelles for Controlled Intracellular Drug Release. Macromol Rapid Commun 2014; 35:1372-8. [DOI: 10.1002/marc.201400171] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 04/15/2014] [Indexed: 12/23/2022]
Affiliation(s)
- Qiao Jin
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Tongjiang Cai
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Haijie Han
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Haibo Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Yin Wang
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| | - Jian Ji
- MOE Key Laboratory of Macromolecule Synthesis and Functionalization of Ministry of Education; Department of Polymer Science and Engineering; Zhejiang University; Hangzhou 310027 China
| |
Collapse
|
38
|
Zou J, Zhang F, Zhang S, Pollack SF, Elsabahy M, Fan J, Wooley KL. Poly(ethylene oxide)-block-polyphosphoester-graft-paclitaxel conjugates with acid-labile linkages as a pH-sensitive and functional nanoscopic platform for paclitaxel delivery. Adv Healthc Mater 2014; 3:441-8. [PMID: 23997013 PMCID: PMC3938983 DOI: 10.1002/adhm.201300235] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Revised: 07/31/2013] [Indexed: 11/10/2022]
Abstract
There has been an increasing interest to develop new types of stimuli-responsive drug delivery vehicles with high drug loading and controlled release properties for chemotherapeutics. An acid-labile poly(ethylene oxide)-block-polyphosphoester-graft-PTX drug conjugate (PEO-b-PPE-g-PTX G2) degradable, polymeric paclitaxel (PTX) conjugate containing ultra-high levels of PTX loading is improved significantly, in this second-generation development, which involves connection of each PTX molecule to the polymer backbone via a pH-sensitive β-thiopropionate linkage. The PEO-b-PPE-g-PTX G2 forms well-defined nanoparticles in an aqueous solution, by direct dissolution into water, with a number-averaged hydrodynamic diameter of 114 ± 31 nm, and exhibits a PTX loading capacity as high as 53 wt%, with a maximum PTX concentration of 0.68 mg mL(-1) in water (vs 1.7 μg mL(-1) for free PTX). The PEO-b-PPE-g-PTX G2 shows accelerated drug release under acidic conditions (≈50 wt% PTX released in 8 d) compared with neutral conditions (≈20 wt% PTX released in 8 d). Compared to previously reported polyphosphoester-based PTX drug conjugates, PEO-b-PPE-g-PTX G1 without the β-thiopropionate linker, the PEO-b-PPE-g-PTX G2 shows pH-triggered drug release property and 5- to 8-fold enhanced in vitro cytotoxicity against two cancer cell lines.
Collapse
Affiliation(s)
- Jiong Zou
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, TX 77842, USA
| | - Fuwu Zhang
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, TX 77842, USA
| | - Shiyi Zhang
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, TX 77842, USA
| | - Stephanie F. Pollack
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, TX 77842, USA
| | - Mahmoud Elsabahy
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, TX 77842, USA
- Department of Pharmaceutics, Faculty of Pharmacy, Assiut University, Assiut, Egypt
| | - Jingwei Fan
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, TX 77842, USA
| | - Karen L. Wooley
- Departments of Chemistry and Chemical Engineering, Laboratory for Synthetic-Biologic Interactions, Texas A&M University, P.O. Box 30012, 3255 TAMU, College Station, TX 77842, USA
| |
Collapse
|
39
|
Zhang X, Zeng Y, Yu T, Chen J, Yang G, Li Y. Tetrathiafulvalene terminal-decorated PAMAM Dendrimers for triggered release synergistically stimulated by redox and CB[7]. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:718-726. [PMID: 24417726 DOI: 10.1021/la404349w] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A series of polyamidoamine (PAMAM) dendrimers with tetrathiafulvalene (TTF) at the periphery (Gn-PAMAM-TTF), generation 0-2, were synthesized. These functionalized dendrimers exist as nanospheres with diameters around 80-100 nm in aqueous phase, which can encapsulate hydrophobic molecules. The terminal TTF groups can go through a reversible redox process upon addition of the oxidizing and reducing agents. Each terminal TTF(+•) group of the oxidized Gn-PAMAM-TTF assembled with cucurbit[7]uril (CB[7]) forming a 1:1 inclusion complex with association constants of (3.14 ± 0.36) × 10(5), (1.29 ± 0.12) × 10(6), and (1.79 ± 0.24) × 10(6) M(-1) for generation 0-2, respectively, even at the aggregate state. The formation of the inclusion complex loosened the structure of the nanospheres and initiated the release of cargo, and the release mechanism was validated by dynamic light scattering (DLS), cryo-transmission electron microscopy (TEM), and electron paramagnetic resonance (EPR) experiments. This study provides a potential strategy for the development of drug delivery systems synergistically triggered by redox and supramolecular assembly.
Collapse
Affiliation(s)
- Xiaohui Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, People's Republic of China
| | | | | | | | | | | |
Collapse
|
40
|
Oltra NS, Nair P, Discher DE. From stealthy polymersomes and filomicelles to "self" Peptide-nanoparticles for cancer therapy. Annu Rev Chem Biomol Eng 2014; 5:281-99. [PMID: 24910917 PMCID: PMC4387849 DOI: 10.1146/annurev-chembioeng-060713-040447] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Polymersome vesicles and wormlike filomicelles self-assembled with amphiphilic, degradable block copolymers have recently shown promise in application to cancer therapy. In the case of filomicelles, dense, hydrophilic brushes of poly(ethylene glycol) on these nanoparticles combine with flexibility to nonspecifically delay clearance by phagocytes in vivo, which has motivated the development of "self" peptides that inhibit nanoparticle clearance through specific interactions. Delayed clearance, as well as robustness of polymer assemblies, opens the dosage window for delivery of increased drug loads in the polymer assemblies and increased tumor accumulation of drug(s). Antibody-targeting and combination therapies, such as with radiotherapy, are emerging in preclinical animal models of cancer. Such efforts are expected to combine with further advances in polymer composition, structure, and protein/peptide functionalization to further enhance transport through the circulation and permeation into disease sites.
Collapse
Affiliation(s)
- Núria Sancho Oltra
- Biophysical Engineering Laboratory, Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Praful Nair
- Biophysical Engineering Laboratory, Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Dennis E. Discher
- Biophysical Engineering Laboratory, Department of Chemical & Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
41
|
Interaction between oxidized polyaniline and oppositely charged amphiphilic assemblies in an aqueous/organic biphasic system. J Colloid Interface Sci 2013; 407:516-23. [DOI: 10.1016/j.jcis.2013.06.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Revised: 06/13/2013] [Accepted: 06/14/2013] [Indexed: 11/20/2022]
|
42
|
Dan K, Rajdev P, Deb J, Jana SS, Ghosh S. Remarkably stable amphiphilic random copolymer assemblies: A structure-property relationship study. ACTA ACUST UNITED AC 2013. [DOI: 10.1002/pola.26922] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Krishna Dan
- Polymer Science Unit; Indian Association for the Cultivation of Science; Jadavpur 700032 Kolkata India
| | - Priya Rajdev
- Polymer Science Unit; Indian Association for the Cultivation of Science; Jadavpur 700032 Kolkata India
| | - Jolly Deb
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur 700032 Kolkata India
| | - Siddhartha S. Jana
- Department of Biological Chemistry; Indian Association for the Cultivation of Science; Jadavpur 700032 Kolkata India
| | - Suhrit Ghosh
- Polymer Science Unit; Indian Association for the Cultivation of Science; Jadavpur 700032 Kolkata India
| |
Collapse
|
43
|
Dutta K, Kundu PP. Reversible assembly and disassembly of amphiphilic assemblies by electropolymerized polyaniline films: effects rendered by varying the electropolymerization potential. J Phys Chem B 2013; 117:7797-805. [PMID: 23772868 DOI: 10.1021/jp402748w] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Polymer films that respond to a variety of stimuli are attractive candidates for location-specific guest molecule delivery. These systems release the guest molecules by polymer erosion; thus, these are mono-use systems. If a polymer film is used to disassemble amphiphilic assemblies containing sequestered guest molecules, the polymer erosion issue can be circumvented. However, charge-bearing vinyl polymers, upon interaction with amphiphilic assemblies, are known to adapt to a conformation that results in encapsulating guest molecules instead of releasing them. On the contrary, it has earlier been reported that a rigid, charge-bearing, and water-insoluble conjugated polyaniline film can effectively disassemble amphiphilic assemblies without causing much harm to the film. Herein, we demonstrate the effect rendered by varying the electropolymerization potential on the interaction efficiency between the positive charge-bearing polyaniline film and oppositely charged amphiphilic assemblies. In addition, it is also demonstrated that a film of oxidized polyaniline can be regenerated for repetitive disassembly of the amphiphilic assemblies, and concomitant guest molecule delivery.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, University of Calcutta, 92, A.P.C. Road, Kolkata-700 009, India.
| | | |
Collapse
|
44
|
Dan K, Ghosh S. One-Pot Synthesis of an Acid-Labile Amphiphilic Triblock Copolymer and its pH-Responsive Vesicular Assembly. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201302722] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
45
|
Dan K, Ghosh S. One-Pot Synthesis of an Acid-Labile Amphiphilic Triblock Copolymer and its pH-Responsive Vesicular Assembly. Angew Chem Int Ed Engl 2013; 52:7300-5. [DOI: 10.1002/anie.201302722] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Indexed: 12/27/2022]
|
46
|
Synthesis and characterization of pH-Responsive block copolymers with primary amine groups. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-2193-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Tamura A, Yui N. A supramolecular endosomal escape approach for enhancing gene silencing of siRNA using acid-degradable cationic polyrotaxanes. J Mater Chem B 2013; 1:3535-3544. [DOI: 10.1039/c3tb20514b] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
48
|
Molla MR, Ghosh S. Exploring Versatile Sulfhydryl Chemistry in the Chain End of a Synthetic Polylactide. Macromolecules 2012. [DOI: 10.1021/ma302130f] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Mijanur Rahaman Molla
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| | - Suhrit Ghosh
- Polymer Science Unit, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India
| |
Collapse
|
49
|
Wang X, Liu L, Luo Y, Shi H, Li J, Zhao H. Comb-Shaped Glycopolymer/Peptide Bioconjugates by Combination of RAFT Polymerization and Thiol-Ene “Click” Chemistry. Macromol Biosci 2012; 12:1575-82. [DOI: 10.1002/mabi.201200274] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2012] [Indexed: 01/13/2023]
|
50
|
Dutta K, Mahale RY, Arulkashmir A, Krishnamoorthy K. Reversible assembly and disassembly of micelles by a polymer that switches between hydrophilic and hydrophobic wettings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:10097-10104. [PMID: 22690803 DOI: 10.1021/la301760a] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Supramolecular complexes involving nanoscopic amphiphilic assemblies (AAs) and polyelectrolytes have been used to prepare a variety of materials, wherein the dynamic AAs retain the structural features, but the polyelectrolytes undergo conformational changes. Here we show that a charge bearing rigid conjugated polymer can alter the structural features and disassemble AAs. We also demonstrate reversible assembly and disassembly of AAs by controlling the number of charges on the rigid polymer. During the disassembly, the guest molecules sequestered in the AAs are released. The rate of release has been modulated by changing the morphology of the charge bearing polymer. Concomitant to the AAs disassembly, the polymer surface becomes hydrophobic due to the binding of the amphiphiles on the charges of the polymer backbone. By controlling the charges on the polymer, the surface wettability was varied gradually from hydrophilic to hydrophobic.
Collapse
Affiliation(s)
- Kingshuk Dutta
- Polymers and Advanced Materials Laboratory, CSIR-National Chemical Laboratory-Pune, Pune, Maharashtra, India
| | | | | | | |
Collapse
|