1
|
García Daza FA, Puertas AM, Cuetos A, Patti A. Insight into the Viscoelasticity of Self-Assembling Smectic Liquid Crystals of Colloidal Rods from Active Microrheology Simulations. J Chem Theory Comput 2024; 20:1579-1589. [PMID: 37390389 PMCID: PMC10902840 DOI: 10.1021/acs.jctc.3c00356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2023]
Abstract
The rheology of colloidal suspensions is of utmost importance in a wide variety of interdisciplinary applications in formulation technology, determining equally interesting questions in fundamental science. This is especially intriguing when colloids exhibit a degree of long-range positional or orientational ordering, as in liquid crystals (LCs) of elongated particles. Along with standard methods, microrheology (MR) has emerged in recent years as a tool to assess the mechanical properties of materials at the microscopic level. In particular, by active MR one can infer the viscoelastic response of a soft material from the dynamics of a tracer particle being dragged through it by external forces. Although considerable efforts have been made to study the diffusion of guest particles in LCs, little is known about the combined effect of tracer size and directionality of the dragging force on the system's viscoelastic response. By dynamic Monte Carlo simulations, we apply active MR to investigate the viscoelasticity of self-assembling smectic (Sm) LCs consisting of rodlike particles. In particular, we track the motion of a spherical tracer whose size is varied within a range of values matching the system's characteristic length scales and being dragged by constant forces that are parallel, perpendicular, or at 45° to the nematic director. Our results reveal a uniform value of the effective friction coefficient as probed by the tracer at small and large forces, whereas a nonlinear, force-thinning regime is observed at intermediate forces. However, at relatively weak forces the effective friction is strongly determined by correlations between the tracer size and the structure of the host fluid. Moreover, we also show that external forces forming an angle with the nematic director provide additional details that cannot be simply inferred from the mere analysis of parallel and perpendicular forces. Our results highlight the fundamental interplay between tracer size and force direction in assessing the MR of Sm LC fluids.
Collapse
Affiliation(s)
- Fabián A García Daza
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, 41013 Sevilla, Spain
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Antonio M Puertas
- Department of Chemistry and Physics, University of Almeriá, 04120 Almería, Spain
| | - Alejandro Cuetos
- Department of Physical, Chemical and Natural Systems, Pablo de Olavide University, 41013 Sevilla, Spain
| | - Alessandro Patti
- Department of Chemical Engineering, The University of Manchester, Manchester M13 9PL, United Kingdom
- Department of Applied Physics, University of Granada, Avenida Fuente Nueva s/n, 18071 Granada, Spain
| |
Collapse
|
2
|
Diep TT, Yoo MJY, Do TTH, Luu HKD, Nguyen TT, Dao DN, Nguyen V. Formulation lyotropic liquid crystals from palm oil‐based monoacylglycerols. J AM OIL CHEM SOC 2022. [DOI: 10.1002/aocs.12663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Affiliation(s)
- Tung T. Diep
- Department of Chemical Engineering Nong Lam University – Ho Chi Minh City Ho Chi Minh City Vietnam
- School of Science, Faculty of Health and Environment Sciences Auckland University of Technology Auckland New Zealand
| | - Michelle J. Y. Yoo
- School of Science, Faculty of Health and Environment Sciences Auckland University of Technology Auckland New Zealand
| | - Thong T. H. Do
- Department of Chemical Engineering Nong Lam University – Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Hau K. D. Luu
- Department of Chemical Engineering Nong Lam University – Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Tuan T. Nguyen
- Department of Chemical Engineering Nong Lam University – Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Duy N. Dao
- Department of Chemical Engineering Nong Lam University – Ho Chi Minh City Ho Chi Minh City Vietnam
| | - Viet Nguyen
- Department of Chemical Engineering Nong Lam University – Ho Chi Minh City Ho Chi Minh City Vietnam
| |
Collapse
|
3
|
García Daza FA, Puertas AM, Cuetos A, Patti A. Microrheology of isotropic and liquid-crystalline phases of hard rods by dynamic Monte Carlo simulations. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Mistry S, Fuhrmann PL, de Vries A, Karshafian R, Rousseau D. Structure-rheology relationship in monoolein liquid crystals. J Colloid Interface Sci 2022; 630:878-887. [DOI: 10.1016/j.jcis.2022.10.115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 10/17/2022] [Accepted: 10/22/2022] [Indexed: 11/05/2022]
|
5
|
Cai PC, Krajina BA, Kratochvil MJ, Zou L, Zhu A, Burgener EB, Bollyky PL, Milla CE, Webber MJ, Spakowitz AJ, Heilshorn SC. Dynamic light scattering microrheology for soft and living materials. SOFT MATTER 2021; 17:1929-1939. [PMID: 33427280 PMCID: PMC7938343 DOI: 10.1039/d0sm01597k] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
We present a method for using dynamic light scattering in the single-scattering limit to measure the viscoelastic moduli of soft materials. This microrheology technique only requires a small sample volume of 12 μL to measure up to six decades in time of rheological behavior. We demonstrate the use of dynamic light scattering microrheology (DLSμR) on a variety of soft materials, including dilute polymer solutions, covalently-crosslinked polymer gels, and active, biological fluids. In this work, we detail the procedure for applying the technique to new materials and discuss the critical considerations for implementing the technique, including a custom analysis script for analyzing data output. We focus on the advantages of applying DLSμR to biologically relevant materials: breast cancer cells encapsulated in a collagen gel and cystic fibrosis sputum. DLSμR is an easy, efficient, and economical rheological technique that can guide the design of new polymeric materials and facilitate the understanding of the underlying physics governing behavior of naturally derived materials.
Collapse
Affiliation(s)
- Pamela C Cai
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Brad A Krajina
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Michael J Kratochvil
- Department of Materials Science, Stanford University, Stanford, CA 94305, USA. and Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Lei Zou
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Audrey Zhu
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - Elizabeth B Burgener
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Paul L Bollyky
- Stanford Immunology, Stanford University, Stanford, CA 94305, USA
| | - Carlos E Milla
- Center for Excellence in Pulmonary Biology, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Andrew J Spakowitz
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA. and Department of Materials Science, Stanford University, Stanford, CA 94305, USA. and Department of Applied Physics, Stanford University, Stanford, CA 94305, USA and Biophysics Program, Stanford University, Stanford, CA 94305, USA
| | - Sarah C Heilshorn
- Department of Materials Science, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
6
|
Bostoen CL, Berret JF. A mathematical finance approach to the stochastic and intermittent viscosity fluctuations in living cells. SOFT MATTER 2020; 16:5959-5969. [PMID: 32542279 DOI: 10.1039/c9sm02534k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Here we report on the viscosity of eukaryotic living cells, as a function of time, and on the application of stochastic models to analyze its temporal fluctuations. The viscoelastic properties of NIH/3T3 fibroblast cells are investigated using an active microrheological technique, where the magnetic wires, embedded into cells, are being actuated remotely. The data reveal anomalous transient responses characterized by intermittent phases of slow and fast rotation, revealing significant fluctuations. The time dependent viscosity is analyzed from a time series perspective by computing the autocorrelation functions and the variograms, two functions used to describe stochastic processes in mathematical finance. The resulting analysis gives evidence of a sub-diffusive mean-reverting process characterized by an autoregressive coefficient lower than 1. It also shows the existence of specific cellular times in the ranges 1-10 s and 100-200 s, not previously disclosed. The shorter time is found to be related to the internal relaxation time of the cytoplasm. To our knowledge, this is the first time that similarities are established between the properties of time series describing the intracellular metabolism and the statistical results from a mathematical finance approach. The current approach could be exploited to reveal hidden features from biological complex systems or to determine new biomarkers of cellular metabolism.
Collapse
|
7
|
de Souza JF, da Silva Pontes K, Alves TFR, Torqueti de Barros C, Amaral VA, de Moura Crescencio KM, Rios AC, Batain F, Souto EB, Severino P, Komatsu D, de Alencar Hausen M, Chaud MV. Structural comparison, physicochemical properties, and in vitro release profile of curcumin-loaded lyotropic liquid crystalline nanoparticle: Influence of hydrotrope as interface stabilizers. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112861] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
8
|
Structure and rheology of liquid crystal hydroglass formed in aqueous nanocrystalline cellulose suspensions. J Colloid Interface Sci 2019; 555:702-713. [PMID: 31416025 DOI: 10.1016/j.jcis.2019.08.022] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/12/2023]
Abstract
HYPOTHESIS Liquid crystal hydroglass (LCH) is a biphasic soft material with flow programmable anisotropy that forms via phase separation in suspensions of charged colloidal rods upon increases in ionic strength. The unique structure and rheology of the LCH gel formed using nanocrystalline cellulose (NCC) is hypothesised to be dependent on colloidal stability that is modulated using specific ion effects arising from Hofmeister phenomena. EXPERIMENTS LCHs are prepared in NCC suspensions in aqueous media containing varying levels of sodium chloride (NaCl) or sodium thiocyanate (NaSCN). The NCC suspensions are characterised using rheology and structural analysis techniques that includes polarised optical microscopy, zeta potential, dynamic light scattering and small-angle X-ray scattering. FINDINGS The two salts have a profound effect on the formation process and structure of the LCH. Differences in network density and size of the liquid crystal domains are observed within the LCH for each of the salts, which is associated with the strength of interaction between NCC particles during LCH formation. In comparison to Cl- at the same salinity, the chaotropic nature of the weakly hydrated SCN- enhances colloidal stability by rendering NCC particles more hydrated and repulsive, but this also leads to weaker gel strength of the LCH. The results suggest that salts are a means in which to control the formation, structure and rheology of these anisotropic soft materials.
Collapse
|
9
|
Pagès JM, Ignés-Mullol J, Sagués F. Anomalous Diffusion of Motile Colloids Dispersed in Liquid Crystals. PHYSICAL REVIEW LETTERS 2019; 122:198001. [PMID: 31144957 DOI: 10.1103/physrevlett.122.198001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Indexed: 06/09/2023]
Abstract
We study the superdiffusion of driven colloidal particles dispersed in a nematic liquid crystal. While motion is ballistic in the driving direction, our experiments show that transversal fluctuations become superdiffusive depending on the topological defect pattern around the inclusions. The phenomenon can be reproduced with different driving methods and propulsion speeds, while it is strongly dependent on particle size and temperature. We propose a mechanism based on the geometry of the liquid crystal backflow around the inclusions to justify the persistence of thermal fluctuations and to explain the observed temperature and particle size dependence of the superdiffusive behavior based on material and geometrical parameters.
Collapse
Affiliation(s)
- Josep M Pagès
- Departament de Ciència de Materials i Química Física, and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - Jordi Ignés-Mullol
- Departament de Ciència de Materials i Química Física, and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| | - Francesc Sagués
- Departament de Ciència de Materials i Química Física, and Institut de Nanociència i Nanotecnologia (IN2UB), Universitat de Barcelona, Martí i Franquès 1, 08028 Barcelona, Catalonia, Spain
| |
Collapse
|
10
|
Sadeghpour A, Rappolt M, Misra S, Kulkarni CV. Bile Salts Caught in the Act: From Emulsification to Nanostructural Reorganization of Lipid Self-Assemblies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13626-13637. [PMID: 30347980 DOI: 10.1021/acs.langmuir.8b02343] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Bile salts (BSs) are important for the digestion and absorption of fats and fat-soluble vitamins in the small intestine. In this work, we scrutinized, with small-angle X-ray scattering (SAXS), the crucial functions of bile salts beyond their capacity for the interfacial stabilization of submicrometer-sized lipid particles. By studying a wide compositional range of BS-lipid dispersions using two widely applied lipids for drug-delivery systems (one a monoglyceride being stabilizer-sensitive and the other an aliphatic alcohol being relatively stabilizer-insensitive), we identified the necessary BS to lipid ratios to guarantee full emulsification. A novel ad hoc developed global small-angle-X-ray scattering analysis method revealed that the addition of BS hardly changes the bilayer thicknesses in bicontinuous phases, while significant membrane thinning is observed in the coexisting fluid lamellar phase. Furthermore, we show that a BS strongly decreases the average critical packing parameter. At increasing BS concentration, the order of phases formed is (i) the bicontinuous diamond cubic ( Pn3 m), (ii) the bicontinuous primitive cubic ( Im3 m), and (iii) the fluid lamellar phase ( Lα). These distinctive findings on BS-driven "emulsification" and "membrane curvature reduction" provide new molecular-scale insights for the understanding of the interfacial action of bile salts on lipid assemblies.
Collapse
Affiliation(s)
- Amin Sadeghpour
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , United Kingdom
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Center for X-ray Analytics, Dübendorf 8600 , Switzerland
| | - Michael Rappolt
- School of Food Science and Nutrition , University of Leeds , Leeds LS2 9JT , United Kingdom
| | - Shravasti Misra
- School of Physical Sciences and Computing , University of Central Lancashire , Preston PR1 2HE , United Kingdom
- Department of Biosciences and Bioengineering , Indian Institute of Technology Bombay , Mumbai , 40076 , India
- Department of Biology and Biochemistry , University of Houston, Science Center , Houston , Texas 77204 , United States of America
| | - Chandrashekhar V Kulkarni
- School of Physical Sciences and Computing , University of Central Lancashire , Preston PR1 2HE , United Kingdom
| |
Collapse
|
11
|
Speziale C, Ghanbari R, Mezzenga R. Rheology of Ultraswollen Bicontinuous Lipidic Cubic Phases. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5052-5059. [PMID: 29648837 DOI: 10.1021/acs.langmuir.8b00737] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Rheological studies of liquid crystalline systems based on monopalmitolein and 5 or 8% of 1,2 distearoylphosphatidylglycerol are reported. Such cubic phases have been shown to possess unusually large water channels because of their ability of accommodating up to 80 wt % of water, a feature that renders these systems suitable for crystallizing membrane proteins with large extracellular domains. Their mechanical properties are supposed to be substantially different from those of traditional cubic phases. Rheological measurements were carried out on cubic phases of both Pn3 m and Ia3 d symmetries. It was verified that these ultraswollen cubic phases are less rigid than the normal cubic phases, with the Pn3 m being softer that the Ia3 d ones. Furthermore, for the Pn3 m case, the longest relaxation time is shown to decrease logarithmically with increasing surface area per unit volume, proving the critical role of the density of interfaces in establishing the macroscopic viscoelastic properties of the bicontinuous cubic phases.
Collapse
Affiliation(s)
- Chiara Speziale
- Department of Health Science & Technology , ETH Zürich , Schmelzbergstrasse 9, LFO, E23 , 8092 Zürich , Switzerland
| | - Reza Ghanbari
- Department of Health Science & Technology , ETH Zürich , Schmelzbergstrasse 9, LFO, E23 , 8092 Zürich , Switzerland
| | - Raffaele Mezzenga
- Department of Health Science & Technology , ETH Zürich , Schmelzbergstrasse 9, LFO, E23 , 8092 Zürich , Switzerland
- Department of Materials , ETH Zürich , Wolfgang-Pauli-Strasse 10 , CH-8093 Zurich , Switzerland
| |
Collapse
|
12
|
Krajina BA, Tropini C, Zhu A, DiGiacomo P, Sonnenburg JL, Heilshorn SC, Spakowitz AJ. Dynamic Light Scattering Microrheology Reveals Multiscale Viscoelasticity of Polymer Gels and Precious Biological Materials. ACS CENTRAL SCIENCE 2017; 3:1294-1303. [PMID: 29296670 PMCID: PMC5746858 DOI: 10.1021/acscentsci.7b00449] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Indexed: 05/22/2023]
Abstract
The development of experimental techniques capable of probing the viscoelasticity of soft materials over a broad range of time scales is essential to uncovering the physics that governs their behavior. In this work, we develop a microrheology technique that requires only 12 μL of sample and is capable of resolving dynamic behavior ranging in time scales from 10-6 to 10 s. Our approach, based on dynamic light scattering in the single-scattering limit, enables the study of polymer gels and other soft materials over a vastly larger hierarchy of time scales than macrorheology measurements. Our technique captures the viscoelastic modulus of polymer hydrogels with a broad range of stiffnesses from 10 to 104 Pa. We harness these capabilities to capture hierarchical molecular relaxations in DNA and to study the rheology of precious biological materials that are impractical for macrorheology measurements, including decellularized extracellular matrices and intestinal mucus. The use of a commercially available benchtop setup that is already available to a variety of soft matter researchers renders microrheology measurements accessible to a broader range of users than existing techniques, with the potential to reveal the physics that underlies complex polymer hydrogels and biological materials.
Collapse
Affiliation(s)
- Brad A. Krajina
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Carolina Tropini
- Department
of Microbiology and Immunology, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - Audrey Zhu
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
| | - Philip DiGiacomo
- Department
of Bioengineering, Stanford University, Stanford, California 94305, United States
| | - Justin L. Sonnenburg
- Department
of Microbiology and Immunology, Stanford
University School of Medicine, Stanford, California 94305, United States
| | - Sarah C. Heilshorn
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
| | - Andrew J. Spakowitz
- Department
of Chemical Engineering, Stanford University, Stanford, California 94305, United States
- Department
of Materials Science and Engineering, Stanford
University, Stanford, California 94305, United States
- Department
of Applied Physics, Stanford University, Stanford, California 94305, United States
- Biophysics
Program, Stanford University, Stanford, California 94305, United States
- E-mail:
| |
Collapse
|
13
|
|
14
|
Waigh TA. Advances in the microrheology of complex fluids. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2016; 79:074601. [PMID: 27245584 DOI: 10.1088/0034-4885/79/7/074601] [Citation(s) in RCA: 102] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
New developments in the microrheology of complex fluids are considered. Firstly the requirements for a simple modern particle tracking microrheology experiment are introduced, the error analysis methods associated with it and the mathematical techniques required to calculate the linear viscoelasticity. Progress in microrheology instrumentation is then described with respect to detectors, light sources, colloidal probes, magnetic tweezers, optical tweezers, diffusing wave spectroscopy, optical coherence tomography, fluorescence correlation spectroscopy, elastic- and quasi-elastic scattering techniques, 3D tracking, single molecule methods, modern microscopy methods and microfluidics. New theoretical techniques are also reviewed such as Bayesian analysis, oversampling, inversion techniques, alternative statistical tools for tracks (angular correlations, first passage probabilities, the kurtosis, motor protein step segmentation etc), issues in micro/macro rheological agreement and two particle methodologies. Applications where microrheology has begun to make some impact are also considered including semi-flexible polymers, gels, microorganism biofilms, intracellular methods, high frequency viscoelasticity, comb polymers, active motile fluids, blood clots, colloids, granular materials, polymers, liquid crystals and foods. Two large emergent areas of microrheology, non-linear microrheology and surface microrheology are also discussed.
Collapse
Affiliation(s)
- Thomas Andrew Waigh
- Biological Physics Group, School of Physics and Astronomy, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK. Photon Science Institute, University of Manchester, Oxford Rd., Manchester, M13 9PL, UK
| |
Collapse
|
15
|
Arosio P, Hu K, Aprile FA, Müller T, Knowles TPJ. Microfluidic Diffusion Viscometer for Rapid Analysis of Complex Solutions. Anal Chem 2016; 88:3488-93. [DOI: 10.1021/acs.analchem.5b02930] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Paolo Arosio
- Chemistry
Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Kevin Hu
- Chemistry
Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Francesco A. Aprile
- Chemistry
Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| | - Thomas Müller
- Chemistry
Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
- Fluidic Analytics
Ltd., Cambridge CB4 3NP, U.K
| | - Tuomas P. J. Knowles
- Chemistry
Department, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K
| |
Collapse
|
16
|
Angelova A, Angelov B, Mutafchieva R, Lesieur S. Biocompatible Mesoporous and Soft Nanoarchitectures. J Inorg Organomet Polym Mater 2014. [DOI: 10.1007/s10904-014-0143-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Martiel I, Sagalowicz L, Mezzenga R. Viscoelasticity and interface bending properties of lecithin reverse wormlike micelles studied by diffusive wave spectroscopy in hydrophobic environment. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10751-10759. [PMID: 25136893 DOI: 10.1021/la502748e] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Upon the addition of minute quantities of water into a phosphatidylcholine (PC) solution in certain organic solvents, PC micelles elongate into giant reverse wormlike micelles that entangle and form highly viscous microemulsions, called lecithin organogels. We investigated the microrheological properties of concentrated PC-cyclohexane reverse wormlike micellar systems by diffusive wave spectroscopy (DWS) in apolar medium, combined with bulk shear rheology. We applied DWS to our oil-continuous system by using hydrophobic poly(hydroxystearic acid)-grafted PMMA particles as monodisperse tracer particles. Relevant parameters such as the micellar scission energy and persistence length were extracted from the microrheology data and interpreted according to the sphere-to-rod-to-sphere structural transition. On the basis of these quantities, we calculated the bending and saddle-splay moduli of the PC-covered water-cyclohexane interface. This approach represents a new method for the quantitative estimation of these fundamental parameters, which are thought to underpin the self-assembly of surfactants.
Collapse
Affiliation(s)
- Isabelle Martiel
- Food and Soft Materials Science, Institute of Food, Nutrition & Health, ETH Zurich , Schmelzbergstrasse 9, CH-8092 Zurich, Switzerland
| | | | | |
Collapse
|
18
|
Fujii S, Komura S, Lu CYD. Structural Rheology of the Smectic Phase. MATERIALS (BASEL, SWITZERLAND) 2014; 7:5146-5168. [PMID: 28788123 PMCID: PMC5455810 DOI: 10.3390/ma7075146] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/13/2014] [Accepted: 06/24/2014] [Indexed: 11/18/2022]
Abstract
In this review article, we discuss the rheological properties of the thermotropic smectic liquid crystal 8CB with focal conic domains (FCDs) from the viewpoint of structural rheology. It is known that the unbinding of the dislocation loops in the smectic phase drives the smectic-nematic transition. Here we discuss how the unbinding of the dislocation loops affects the evolution of the FCD size, linear and nonlinear rheological behaviors of the smectic phase. By studying the FCD formation from the perpendicularly oriented smectic layers, we also argue that dislocations play a key role in the structural development in layered systems. Furthermore, similarities in the rheological behavior between the FCDs in the smectic phase and the onion structures in the lyotropic lamellar phase suggest that these systems share a common physical origin for the elasticity.
Collapse
Affiliation(s)
- Shuji Fujii
- Department of Chemistry, Nagaoka University of Technology, Nagaoka 940-2188, Japan.
- Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel.
| | - Shigeyuki Komura
- Department of Chemistry, Tokyo Metropolitan University, Tokyo 192-0397, Japan.
| | - Chun-Yi David Lu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
19
|
Alam MM, Iemoto S, Aramaki K, Oshimura E. Self assembly and rheology of emulsions-mimicking food emulsion rheology. FOOD STRUCTURE-NETHERLANDS 2014. [DOI: 10.1016/j.foostr.2013.09.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
20
|
Abstract
Colloidal particles in a liquid crystal (LC) behave very differently from their counterparts in isotropic fluids. Elastic nature of the orientational order and surface anchoring of the director cause long-range anisotropic interactions and lead to the phenomenon of levitation. The LC environment enables new mechanisms of particle transport that are reviewed in this work. Among them the motion of particles caused by gradients of the director, and effects in the electric field: backflow powered by director reorientations, dielectrophoresis in LC with varying dielectric permittivity and LC-enabled nonlinear electrophoresis with velocity that depends on the square of the applied electric field and can be directed differently from the field direction.
Collapse
|
21
|
Abstract
Recent progress in lyotropic liquid crystal (LC)-based emulsions over the last few years has been reviewed. The tuning parameters for the formation, stability, rheology and transparency of LC-based emulsions are addressed. Recent applications of LC-based emulsions to the fabrication of dual meso/macroporous materials are also included.
Collapse
Affiliation(s)
- Mohammad Mydul Alam
- Department of Chemistry, Faculty of Science and Engineering, Saga University
| | | |
Collapse
|
22
|
Turiv T, Lazo I, Brodin A, Lev BI, Reiffenrath V, Nazarenko VG, Lavrentovich OD. Effect of Collective Molecular Reorientations on Brownian Motion of Colloids in Nematic Liquid Crystal. Science 2013; 342:1351-4. [DOI: 10.1126/science.1240591] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
23
|
Paukner C, Koziol KKK, Kulkarni CV. Lipid nanoscaffolds in carbon nanotube arrays. NANOSCALE 2013; 5:8992-9000. [PMID: 23832119 DOI: 10.1039/c3nr02068a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
We present the fabrication of lipid nanoscaffolds inside carbon nanotube arrays by employing the nanostructural self-assembly of lipid molecules. The nanoscaffolds are finely tunable into model biomembrane-like architectures (planar), soft nanochannels (cylindrical) or 3-dimensionally ordered continuous bilayer structures (cubic). Carbon nanotube arrays hosting the above nanoscaffolds are formed by packing of highly oriented multiwalled carbon nanotubes which facilitate the alignment of lipid nanostructures without requiring an external force. Furthermore, the lipid nanoscaffolds can be created under both dry and hydrated conditions. We show their direct application in reconstitution of egg proteins. Such nanoscaffolds find enormous potential in bio- and nano-technological fields.
Collapse
Affiliation(s)
- Catharina Paukner
- Department of Materials Science and Metallurgy, University of Cambridge, Pembroke Street, Cambridge - CB2 3QZ, UK.
| | | | | |
Collapse
|
24
|
Sadeghpour A, Pirolt F, Glatter O. Submicrometer-sized Pickering emulsions stabilized by silica nanoparticles with adsorbed oleic acid. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:6004-6012. [PMID: 23650929 DOI: 10.1021/la4008685] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Oil-water Pickering emulsions of about 200 nm were stabilized by nanosized hydrophilic silica after a simple surface treatment method. We have modified the aqueous silica nanoparticle dispersions by simple adsorption of oleic acid to their surfaces, improving the hydrophobicity of the particles while maintaining their charge and stability. The adsorption was monitored by small-angle X-ray scattering and electrophoretic measurements to estimate the interparticle interactions and surface charges. The effect of various parameters, such as nanoparticle concentration, amount of oleic acid, ionic strength, and pH, on the droplets' size and stability was investigated by dynamic light scattering. Furthermore, the ability of these modified silica nanoparticles to stabilize long-chain alkanes, liquid paraffin, and liquid-crystalline phases was examined.
Collapse
Affiliation(s)
- Amin Sadeghpour
- Department of Chemistry, Karl-Franzens-University Graz, Graz, Austria
| | | | | |
Collapse
|
25
|
Decoupling directed and passive motion in dynamic systems: particle tracking microrheology of sputum. Ann Biomed Eng 2012; 41:837-46. [PMID: 23271563 DOI: 10.1007/s10439-012-0721-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Accepted: 12/05/2012] [Indexed: 10/27/2022]
Abstract
Probing the physical properties of heterogeneous materials is essential to understand the structure, function and dynamics of complex fluids including cells, mucus, and polymer solutions. Particle tracking microrheology is a useful method to passively probe viscoelastic properties on micron length scales by tracking the thermal motion of beads embedded in the sample. However, errors associated with active motion have limited the implementation to dynamic systems. We present a simple method to decouple active and Brownian motion, enabling particle tracking to be applied to fluctuating heterogeneous systems. We use the movement perpendicular to the major axis of motion in time to calculate rheological properties. Through simulated data we demonstrate that this method removes directed motion and performs equally well when there is no directed motion, with an average percent error of <1%. We use this method to measure glycerol-water mixtures to show the capability to measure a range of materials. Finally, we use this technique to characterize the compliance of human sputum. We also investigate the effect of a liquefaction agent used to prepare sputum for diagnostic purposes. Our results suggest that the addition of high concentration sodium hydroxide increases sample heterogeneity by increasing the maximum observed creep compliance.
Collapse
|
26
|
Qazvini NT, Bolisetty S, Adamcik J, Mezzenga R. Self-Healing Fish Gelatin/Sodium Montmorillonite Biohybrid Coacervates: Structural and Rheological Characterization. Biomacromolecules 2012; 13:2136-47. [DOI: 10.1021/bm3005319] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nader Taheri Qazvini
- Polymer Division,
School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran
| | - Sreenath Bolisetty
- Food and Soft Materials Laboratory, Department of Health Science and Technology, ETH Zurich, Schmelzbergstr. 9, LFO E22, 8092 Zurich,
Switzerland
| | - Jozef Adamcik
- Food and Soft Materials Laboratory, Department of Health Science and Technology, ETH Zurich, Schmelzbergstr. 9, LFO E22, 8092 Zurich,
Switzerland
| | - Raffaele Mezzenga
- Food and Soft Materials Laboratory, Department of Health Science and Technology, ETH Zurich, Schmelzbergstr. 9, LFO E22, 8092 Zurich,
Switzerland
| |
Collapse
|
27
|
Abstract
High-throughput ballistic injection nanorheology is a method for the quantitative study of cell mechanics. Cell mechanics are measured by ballistic injection of submicron particles into the cytoplasm of living cells and tracking the spontaneous displacement of the particles at high spatial resolution. The trajectories of the cytoplasm-embedded particles are transformed into mean-squared displacements, which are subsequently transformed into frequency-dependent viscoelastic moduli and time-dependent creep compliance of the cytoplasm. This method allows for the study of a wide range of cellular conditions, including cells inside a 3D matrix, cell subjected to shear flows and biochemical stimuli, and cells in a live animal. Ballistic injection lasts <1 min and is followed by overnight incubation. Multiple particle tracking for one cell lasts <1 min. Forty cells can be examined in <1 h.
Collapse
|