1
|
Cecchet F. Light on the interactions between nanoparticles and lipid membranes by interface-sensitive vibrational spectroscopy. Colloids Surf B Biointerfaces 2024; 241:114013. [PMID: 38865867 DOI: 10.1016/j.colsurfb.2024.114013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 05/10/2024] [Accepted: 06/03/2024] [Indexed: 06/14/2024]
Abstract
Nanoparticles are produced in natural phenomena or synthesized artificially for technological applications. Their frequent contact with humans has been judged potentially harmful for health, and numerous studies are ongoing to understand the mechanisms of the toxicity of nanoparticles. At the macroscopic level, the toxicity can be established in vitro or in vivo by measuring the survival of cells. At the sub-microscopic level, scientists want to unveil the molecular mechanisms of the first interactions of nanoparticles with cells via the cell membrane, before the toxicity cascades within the whole cell. Unveiling a molecular understanding of the nanoparticle-membrane interface is a tricky challenge, because of the chemical complexity of this system and its nanosized dimensions buried within bulk macroscopic environments. In this review, we highlight how, in the last 10 years, second-order nonlinear optical (NLO) spectroscopy, and specifically vibrational sum frequency generation (SFG), has provided a new understanding of the structural, physicochemical, and dynamic properties of these biological interfaces, with molecular sensitivity. We will show how the intrinsic interfacial sensitivity of second-order NLO and the chemical information of vibrational SFG spectroscopy have revealed new knowledge of the molecular mechanisms that drive nanoparticles to interact with cell membranes, from both sides, the nanoparticles and the membrane properties.
Collapse
Affiliation(s)
- Francesca Cecchet
- Laboratory of Lasers and Spectroscopies (LLS), Namur Institute of Structured Matter (NISM) and NAmur Institute for Life Sciences (NARILIS), University of Namur (UNamur), Belgium.
| |
Collapse
|
2
|
Dong Z, Zhang X, Zhang Q, Tangthianchaichana J, Guo M, Du S, Lu Y. Anticancer Mechanisms and Potential Anticancer Applications of Antimicrobial Peptides and Their Nano Agents. Int J Nanomedicine 2024; 19:1017-1039. [PMID: 38317847 PMCID: PMC10840538 DOI: 10.2147/ijn.s445333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Accepted: 01/16/2024] [Indexed: 02/07/2024] Open
Abstract
Traditional chemotherapy is one of the main methods of cancer treatment, which is largely limited by severe side effects and frequent development of multi-drug resistance by cancer cells. Antimicrobial peptides (AMPs) with high efficiency and low toxicity, as one of the most promising new drugs to replace chemoradiotherapy, have become a current research hotspot, attracting the attention of worldwide researchers. AMPs are natural-source small peptides from the innate immune system, and certain AMPs can selectively kill a broad spectrum of cancer cells while exhibiting less damage to normal cells. Although it involves intracellular mechanisms, AMPs exert their anti-cancer effects mainly through membrane destruction effect; thus, AMPs also hold unique advantages in fighting drug-resistant cancer cells. However, the poor stability and hemolytic toxicity of peptides limit their clinical application. Fortunately, functionalized nanoparticles have many possibilities in overcoming the shortcomings of AMPs, which provides a huge prospect for better application of AMPs. In this paper, we briefly introduce the characteristics and different sources of AMPs, review and summarize the mechanisms of action and the research status of AMPs used as an anticancer therapy, and finally focus on the further use of AMPs nano agents in the anti-cancer direction.
Collapse
Affiliation(s)
- Ziyi Dong
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Research and Development Centre in Beijing, CSPC Pharmaceutical Group Limited, Beijing, People’s Republic of China
| | - Xinyu Zhang
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Qing Zhang
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Jakkree Tangthianchaichana
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
- Chulabhorn International College of Medicine, Thammasat University, Pathum Thani, Thailand
| | - Mingxue Guo
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Shouying Du
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| | - Yang Lu
- Laboratory of Traditional Chinese Medicine, School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, People’s Republic of China
| |
Collapse
|
3
|
Yang P, Guo W, Ramamoorthy A, Chen Z. Conformation and Orientation of Antimicrobial Peptides MSI-594 and MSI-594A in a Lipid Membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5352-5363. [PMID: 37017985 DOI: 10.1021/acs.langmuir.2c03430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
There is significant interest in the development of antimicrobial compounds to overcome the increasing bacterial resistance to conventional antibiotics. Studies have shown that naturally occurring and de novo-designed antimicrobial peptides could be promising candidates. MSI-594 is a synthetic linear, cationic peptide that has been reported to exhibit a broad spectrum of antimicrobial activities. Investigation into how MSI-594 disrupts the cell membrane is important for better understanding the details of this antimicrobial peptide (AMP)'s action against bacterial cells. In this study, we used two different synthetic lipid bilayers: zwitterionic 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and anionic 7:3 POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho(1'-rac-glycerol) (POPG). Sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were used to determine the orientations of MSI-594 and its analogue MSI-594A associated with zwitterionic POPC and anionic 7:3 POPC/POPG lipid bilayers. The simulated ATR-FTIR and SFG spectra using nuclear magnetic resonance (NMR)-determined structures were compared with experimental spectra to optimize the bent angle between the N- (1-11) and C- (12-24) termini helices and the membrane orientations of the helices; since the NMR structure of the peptide was determined from lipopolysaccharide (LPS) micelles, the optimization was needed to find the most suitable conformation and orientation in lipid bilayers. The reported experimental results indicate that the optimized MSI-594 helical hairpin structure adopts a complete lipid bilayer surface-bound orientation (denoted "face-on") in both POPC and 7:3 POPC/POPG lipid bilayers. The analogue peptide, MSI-584A, on the other hand, exhibited a larger bent angle between the N- (1-11) and C- (12-24) termini helices with the hydrophobic C-terminal helix inserted into the hydrophobic region of the bilayer (denoted "membrane-inserted") when interacting with both POPC and 7:3 POPC/POPG lipid bilayers. These experimental findings on the membrane orientations suggest that both peptides are likely to disrupt the cell membrane through the carpet mechanism.
Collapse
Affiliation(s)
- Pei Yang
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Wen Guo
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| | - Zhan Chen
- Department of Chemistry, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
- Department of Biophysics, The University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
4
|
Won T, Mohid SA, Choi J, Kim M, Krishnamoorthy J, Biswas I, Bhunia A, Lee D. The role of hydrophobic patches of de novo designed MSI-78 and VG16KRKP antimicrobial peptides on fragmenting model bilayer membranes. Biophys Chem 2023; 296:106981. [PMID: 36871366 DOI: 10.1016/j.bpc.2023.106981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/06/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Antimicrobial peptides (AMPs) with cell membrane lysing capability are considered potential candidates for the development of the next generation of antibiotics. Designing novel AMPs requires an in-depth understanding of the mechanism of action of the peptides. In this work, we used various biophysical techniques including 31P solid-state NMR to examine the interaction of model membranes with amphipathic de novo-designed peptides. Two such peptides, MSI-78 and VG16KRKP, were designed with different hydrophobicity and positive charges. The model lipid membranes were constituted by mixing lipids of varying degrees of 'area per lipid' (APL), which directly affected the packing properties of the membrane. The observed emergence of the isotropic peak in 31P NMR spectra as a function of time is a consequence of the fragmentation of the membrane mediated by the peptide interaction. The factors such as the charges, overall hydrophilicity of the AMPs, as well as lipid membrane packing, contributed to the kinetics of membrane fragmentation. Furthermore, we anticipate the designed AMPs follow the carpet and toroidal pore mechanisms when lysing the cell membrane. This study highlights the significance of the effect of the overall charges and the hydrophobicity of the novel AMPs designed for antimicrobial activity.
Collapse
Affiliation(s)
- TaeJun Won
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - Sk Abdul Mohid
- Department of Biophysics, Bose Institute, Unified Academic Campus, Bidhan Nagar EN 80, Kolkata 700 091, India
| | - JiHye Choi
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | - MinSoo Kim
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea
| | | | - Indranil Biswas
- Department of Microbiology, Molecular Genetics, and Immunology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, Unified Academic Campus, Bidhan Nagar EN 80, Kolkata 700 091, India.
| | - DongKuk Lee
- Department of Fine Chemistry, Seoul National University of Science and Technology, Seoul 01811, Republic of Korea.
| |
Collapse
|
5
|
Early sum frequency generation vibrational spectroscopic studies on peptides and proteins at interfaces. Biointerphases 2022; 17:031202. [PMID: 35525602 DOI: 10.1116/6.0001859] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
This paper summarizes the early research results on studying proteins and peptides at interfaces using sum frequency generation (SFG) vibrational spectroscopy. SFG studies in the C-H stretching frequency region to examine the protein side-chain behavior and in the amide I frequency region to investigate the orientation and conformation of interfacial peptides/proteins are presented. The early chiral SFG research and SFG isotope labeling studies on interfacial peptides/proteins are also discussed. These early SFG studies demonstrate the feasibility of using SFG to elucidate interfacial molecular structures of peptides and proteins in situ, which built a foundation for later SFG investigations on peptides and proteins at interfaces.
Collapse
|
6
|
Sofińska K, Lupa D, Chachaj-Brekiesz A, Czaja M, Kobierski J, Seweryn S, Skirlińska-Nosek K, Szymonski M, Wilkosz N, Wnętrzak A, Lipiec E. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 2022; 301:102614. [PMID: 35190313 DOI: 10.1016/j.cis.2022.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.
Collapse
|
7
|
Guo W, Lu T, Gandhi Z, Chen Z. Probing Orientations and Conformations of Peptides and Proteins at Buried Interfaces. J Phys Chem Lett 2021; 12:10144-10155. [PMID: 34637311 DOI: 10.1021/acs.jpclett.1c02956] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Molecular structures of peptides/proteins at interfaces determine their interfacial properties, which play important roles in many applications. It is difficult to probe interfacial peptide/protein structures because of the lack of appropriate tools. Sum frequency generation (SFG) vibrational spectroscopy has been developed into a powerful technique to elucidate molecular structures of peptides/proteins at buried solid/liquid and liquid/liquid interfaces. SFG has been successfully applied to study molecular interactions between model cell membranes and antimicrobial peptides/membrane proteins, surface-immobilized peptides/enzymes, and physically adsorbed peptides/proteins on polymers and 2D materials. A variety of other analytical techniques and computational simulations provide supporting information to SFG studies, leading to more complete understanding of structure-function relationships of interfacial peptides/proteins. With the advance of SFG techniques and data analysis methods, along with newly developed supplemental tools and simulation methodology, SFG research on interfacial peptides/proteins will further impact research in fields like chemistry, biology, biophysics, engineering, and beyond.
Collapse
Affiliation(s)
- Wen Guo
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tieyi Lu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zahra Gandhi
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
8
|
Guo W, Xu S, Reichart TM, Xiao M, Lu T, Mello C, Chen Z. Probing Molecular Interactions between Surface-Immobilized Antimicrobial Peptides and Lipopolysaccharides In Situ. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:12383-12393. [PMID: 33034460 DOI: 10.1021/acs.langmuir.0c02492] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lipopolysaccharide (LPS) is a component of the outer membrane of Gram-negative bacteria. Recently, a label-free immobilized antimicrobial peptide (AMP) surface plasmon resonance platform was developed to successfully distinguish LPS from multiple bacterial strains. Among the tested AMPs, SMAP29 exhibited excellent affinity with LPS and has two independent LPS-binding sites located at two termini of the peptide. In this study, sum frequency generation vibrational spectroscopy was applied to investigate molecular interactions between three LPS samples and surface-immobilized SMAP29 via the N-terminus, the C-terminus, and a middle site at the solid/liquid interface in situ in real-time, supplemented by circular dichroism spectroscopy. It was found that the conformations and orientations of surface-immobilized SMAP29 via different sites are different when interacting with the same LPS, with different interaction kinetics. The same SMAP29 sample also has different structures and interaction kinetics while interacting with different LPS samples with different charge densities and hydrophobicities. The observed results on molecular interactions between surface-immobilized peptides and LPS can well interpret the different adsorption amounts of various LPSs on different surface-immobilized peptides.
Collapse
Affiliation(s)
- Wen Guo
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Shan Xu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Timothy M Reichart
- Office of the Chief Scientist, Combat Capabilities Development Command Soldier Center, 15 Kansas Street, Natick, Massachusetts 01760, United States
- Department of Chemistry, Hampden-Sydney College, Hampden-Sydney, VA 23943, United States
| | - Minyu Xiao
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Tieyi Lu
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Charlene Mello
- Office of the Chief Scientist, Combat Capabilities Development Command Soldier Center, 15 Kansas Street, Natick, Massachusetts 01760, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
9
|
Lin T, Guo W, Guo R, Chen Z. Probing Biological Molecule Orientation and Polymer Surface Structure at the Polymer/Solution Interface In Situ. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:7681-7690. [PMID: 32525691 DOI: 10.1021/acs.langmuir.0c01319] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Polymers are widely used for many applications ranging from biomedical materials, marine antifouling coatings, membranes for biomolecule separation, to substrates for enzyme molecules for biosensing. For such applications, it is important to understand molecular interactions between biological molecules and polymer materials in situ in real time. Such understanding provides vital knowledge to manipulate biological molecule-polymer interactions and to optimize polymer surface structures to improve polymer performance. In this research, sum frequency generation (SFG) vibrational spectroscopy was applied to study interactions between peptides (serving as models for biological molecules) and deuterated polystyrene (d8-PS, serving as a model for polymer materials). The peptide conformations/orientations and polymer surface phenyl orientation during the peptide-d8-PS interactions were determined using SFG. It was found that the π-π interaction between the aromatic amino acids on peptides and phenyl groups on d8-PS surface does not play a significant role. Instead, the peptide-d8-PS interactions are mediated by general hydrophobic interactions between the peptides and the polymer surface.
Collapse
|
10
|
Pandidan S, Mechler A. Membrane morphology effects in quartz crystal microbalance characterization of antimicrobial peptide activity. Biophys Chem 2020; 262:106381. [PMID: 32361097 DOI: 10.1016/j.bpc.2020.106381] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 04/15/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
Abstract
The mechanism of action of membrane disrupting antimicrobial peptides (AMPs) and the basis of their specificity and selectivity to pathogens are often studied by using biomimetic model membranes. It is often assumed that all model membrane morphologies, e.g. liposomes, supported bilayers, tethered bilayers etc. are equivalent. In this work the validity of this assumption was assessed. Melittin was used as the reference AMP as it can disrupt both bacterial and mammalian-mimetic membranes. Quartz crystal microbalance (QCM) viscoelastic fingerprints show characteristic differences between the three model morphologies: single bilayer membranes, multilamellar membrane stacks and unilamellar liposomes. In the second and third case, initial trends show material removal instead of material addition as in the single bilayer case, consistent with dissolution of some bilayers, and bursting liposomes, respectively. The latter is accompanied by a characteristic drop in the dissipation signal as the liposomes collapse. The results also highlight an important limitation of the QCM method, the need for a well established reference system for qualitative analysis of the viscoelastic fingerprints, and thus the importance of using the right model system, i.e. single bilayer membrane, for studies of the mechanism of action of AMPs.
Collapse
Affiliation(s)
- Sara Pandidan
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia
| | - Adam Mechler
- La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Australia.
| |
Collapse
|
11
|
Golbek TW, Schmüser L, Rasmussen MH, Poulsen TB, Weidner T. Lasalocid Acid Antibiotic at a Membrane Surface Probed by Sum Frequency Generation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:3184-3192. [PMID: 32069059 DOI: 10.1021/acs.langmuir.9b03752] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Carboxyl polyether ionophores (CPIs) are widely used as veterinary antibiotics and to increase food utilization in ruminating animals. Furthermore, CPIs can target drug-resistant bacteria, but detailed knowledge about their mode-of-action is needed to develop agents with a reasonable therapeutic index. It has been suggested that ionophores bind to membranes and incur large structural changes to shield a bound ion from the hydrophobic environment of the lipid bilayer for transport. One crucial piece of information is missing, however: Is it necessary for the free ionophore to adsorb on the membrane surface before interacting with a cation to facilitate cross-membrane ion transport? To answer this question, we applied sum-frequency generation (SFG) vibrational spectroscopy and surface tensiometry to identify the interaction between the prototypical CPI lasalocid acid (LA) and a model membrane. Observed changes in the surface pressure demonstrate that the free LA undergoes a self-assembly process with the lipid monolayer. Spectra taken from the lipid monolayer show that the free acid inserts partially into the lipid monolayer and then after complexation with sodium chloride disrupts the lipid monolayer. Overall, this study strongly suggests that this must be the crucial step of LA and metal ion complexation that allows the ionophore to traverse a lipid membrane.
Collapse
Affiliation(s)
| | - Lars Schmüser
- Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| | | | - Thomas B Poulsen
- Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus, Denmark
| |
Collapse
|
12
|
Hosseinpour S, Roeters SJ, Bonn M, Peukert W, Woutersen S, Weidner T. Structure and Dynamics of Interfacial Peptides and Proteins from Vibrational Sum-Frequency Generation Spectroscopy. Chem Rev 2020; 120:3420-3465. [DOI: 10.1021/acs.chemrev.9b00410] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Saman Hosseinpour
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | | | - Mischa Bonn
- Molecular Spectroscopy Department, Max Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Wolfgang Peukert
- Institute of Particle Technology (LFG), Friedrich-Alexander-University Erlangen-Nürnberg (FAU), 91058 Erlangen, Germany
| | - Sander Woutersen
- Van’t Hoff Institute for Molecular Sciences, University of Amsterdam, 1098 EP Amsterdam, The Netherlands
| | - Tobias Weidner
- Department of Chemistry, Aarhus University, 8000 Aarhus C, Denmark
| |
Collapse
|
13
|
Li X, Rupprechter G. A modeling analysis of molecular orientation at interfaces by polarization-dependent sum frequency generation vibrational spectroscopy. CHINESE JOURNAL OF CATALYSIS 2019. [DOI: 10.1016/s1872-2067(19)63357-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Golbek TW, Padmanarayana M, Roeters SJ, Weidner T, Johnson CP, Baio JE. Otoferlin C2F Domain-Induced Changes in Membrane Structure Observed by Sum Frequency Generation. Biophys J 2019; 117:1820-1830. [PMID: 31587832 DOI: 10.1016/j.bpj.2019.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/16/2019] [Accepted: 09/10/2019] [Indexed: 12/30/2022] Open
Abstract
Proteins that contain C2 domains are involved in a variety of biological processes, including encoding of sound, cell signaling, and cell membrane repair. Of particular importance is the interface activity of the C-terminal C2F domain of otoferlin due to the pathological mutations known to significantly disrupt the protein's lipid membrane interface binding activity, resulting in hearing loss. Therefore, there is a critical need to define the geometry and positions of functionally important sites and structures at the otoferlin-lipid membrane interface. Here, we describe the first in situ probe of the protein orientation of otoferlin's C2F domain interacting with a cell membrane surface. To identify this protein's orientation at the lipid interface, we applied sum frequency generation (SFG) vibrational spectroscopy and coupled it with simulated SFG spectra to observe and quantify the otoferlin C2F domain interacting with model lipid membranes. A model cell membrane was built with equal amounts of phosphatidylserine and phosphatidylcholine. SFG measurements of the lipids that make up the model membrane indicate a 62% increase in amplitude from the SFG signal near 2075 cm-1 upon protein interaction, suggesting domain-induced changes in the orientation of the lipids and possible membrane curvature. This increase is related to lipid ordering caused by the docking interaction of the otoferlin C2F domain. SFG spectra taken from the amide-I region contain features near 1630 and 1670 cm-1 related to the C2F domains beta-sandwich secondary structure, thus indicating that the domain binds in a specific orientation. By mapping the simulated SFG spectra to the experimentally collected SFG spectra, we found the C2F domain of otoferlin orients 22° normal to the lipid surface. This information allows us to map what portion of the domain directly interacts with the lipid membrane.
Collapse
Affiliation(s)
- Thaddeus W Golbek
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon; Department of Chemistry, Aarhus University, Aarhus, Denmark
| | | | | | - Tobias Weidner
- Department of Chemistry, Aarhus University, Aarhus, Denmark
| | - Colin P Johnson
- Department of Biochemistry and Biophysics, Oregon State University, Corvallis, Oregon.
| | - Joe E Baio
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, Oregon.
| |
Collapse
|
15
|
Jasensky J, Ferguson K, Baria M, Zou X, McGinnis R, Kaneshiro A, Badieyan S, Wei S, Marsh ENG, Chen Z. Simultaneous Observation of the Orientation and Activity of Surface-Immobilized Enzymes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:9133-9140. [PMID: 29993252 DOI: 10.1021/acs.langmuir.8b01657] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Surface immobilized enzymes have been widely used in many applications such as biosensors, biochips, biofuel production, and biofuel cell construction. Many factors dictate how enzymes' structure, activity, and stability may change when immobilized, including surface functionalization, immobilization chemistry, nature of the solid support, and enzyme surface density. To better understand how immobilization affects enzyme structure and activity, we have developed a method to measure both surface-sensitive protein vibrational spectra and enzymatic activity simultaneously. To accomplish this, an optical/fluorescence microscope was incorporated into a sum frequency generation (SFG) spectrometer. Using β-glucosidase (β-Glu) as a model system, enzymes were covalently tethered to a self-assembled monolayer surface using cysteine-maleimide chemistry. Their orientations were determined by SFG spectroscopy, with a single native cysteine residue oriented toward the functionalized surface, and activity measured simultaneously using a fluorogenic substrate resorufin β-d-glucopyranoside, with a loss of activity of 53% as compared to comparable solution measurements. Measuring β-Glu activity and orientation simultaneously provides more accurate information for designing and further improving enzymatic activity of surface-bound enzymes.
Collapse
|
16
|
Almaaytah A, Qaoud MT, Abualhaijaa A, Al-Balas Q, Alzoubi KH. Hybridization and antibiotic synergism as a tool for reducing the cytotoxicity of antimicrobial peptides. Infect Drug Resist 2018; 11:835-847. [PMID: 29910626 PMCID: PMC5987794 DOI: 10.2147/idr.s166236] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Introduction As the development of new antimicrobial agents faces a historical decline, the issue of bacterial drug resistance has become a serious dilemma that threatens the human population worldwide. Antimicrobial peptides (AMPs) represent an attractive and a promising class of antimicrobial agents. Aim The hybridization of AMPs aimed at merging two individual active fragments of native peptides to generate a new AMP with altered physicochemical properties that translate into an enhanced safety profile. Materials and methods In this study, we have rationally designed a new hybrid peptide via combining two individual α-helical fragments of both BMAP-27 and OP-145. The resultant peptide, was evaluated for its antimicrobial and antibiofilm activity against a range of microbial strains. The resultant peptide was also evaluated for its toxicity against mammalian cells using hemolytic and anti proliferative assays. Results The antimicrobial activity of H4 revealed that the peptide is displaying a broad spectrum of activity against both Gram-positive and Gram-negative bacteria including standard and multidrug-resistant bacterial strains in the range of 2.5-25 μM. The new hybrid peptide displayed potent activity in eradicating biofilm-forming cells, and the reported minimum biofilm eradication concentrations were equal to the minimum inhibitory concentration values reported for planktonic cells. Additionally, H4 exhibited reduced toxicity profiles against eukaryotic cells. Combining H4 peptide with conventional antibiotics has led to a dramatic enhancement of the antimicrobial activity of both agents with synergistic or additive outcomes. Conclusion Overall, this study indicates the success of both the hybridization and synergism strategy in developing AMPs as potential antimicrobial therapeutics with reduced toxicity profiles that could be efficiently employed to eradicate resistant bacterial strains and enhance the selectivity and toxicity profiles of native AMPs.
Collapse
Affiliation(s)
- Ammar Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Mohammed T Qaoud
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Ahmad Abualhaijaa
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid, Jordan
| | - Qosay Al-Balas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| | - Karem H Alzoubi
- Department Clinical Pharmacy, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid, Jordan
| |
Collapse
|
17
|
|
18
|
Mukherjee S, Kar RK, Nanga RPR, Mroue KH, Ramamoorthy A, Bhunia A. Accelerated molecular dynamics simulation analysis of MSI-594 in a lipid bilayer. Phys Chem Chem Phys 2018; 19:19289-19299. [PMID: 28702543 DOI: 10.1039/c7cp01941f] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Multidrug resistance against the existing antibiotics is one of the most challenging threats across the globe. Antimicrobial peptides (AMPs), in this regard, are considered to be one of the effective alternatives that can overcome bacterial resistance. MSI-594, a 24-residue linear alpha-helical cationic AMP, has been shown to function via the carpet mechanism to disrupt bacterial membrane systems. To better understand the role of lipid composition in the function of MSI-594, in the present study, eight different model membrane systems have been studied using accelerated molecular dynamics (aMD) simulations. The simulated results are helpful in discriminating the particular effects of cationic MSI-594 against zwitterionic POPC, anionic POPG and POPS, and neutral POPE lipid moieties. Additionally, the effects of various heterogeneous POPC/POPG (7 : 3), POPC/POPS (7 : 3), and POPG/POPE (1 : 3 and 3 : 1) bilayer systems on the dynamic interaction of MSI-594 have also been investigated. The effect on the lipid bilayer due to the interaction with the peptide is characterized by lipid acyl-chain order, membrane thickness, and acyl-chain dynamics. Our simulation results show that the lipid composition affects the membrane interaction of MSI-594, suggesting that membrane selectivity is crucial to its mechanism of action. The results reported in this study are helpful to obtain accurate atomistic-level information governing MSI-594 and its membrane disruptive antimicrobial mechanism of action, and to design next generation potent antimicrobial peptides.
Collapse
Affiliation(s)
- Shruti Mukherjee
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.
| | - Rajiv K Kar
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.
| | - Ravi Prakash Reddy Nanga
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA. and Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kamal H Mroue
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Ayyalusamy Ramamoorthy
- Biophysics Program and Department of Chemistry, University of Michigan, Ann Arbor, MI 48109-1055, USA.
| | - Anirban Bhunia
- Department of Biophysics, Bose Institute, P-1/12 CIT Scheme VII (M), Kolkata 700 054, India.
| |
Collapse
|
19
|
Almaaytah A, Qaoud MT, Khalil Mohammed G, Abualhaijaa A, Knappe D, Hoffmann R, Al-Balas Q. Antimicrobial and Antibiofilm Activity of UP-5, an Ultrashort Antimicrobial Peptide Designed Using Only Arginine and Biphenylalanine. Pharmaceuticals (Basel) 2018; 11:ph11010003. [PMID: 29301331 PMCID: PMC5874699 DOI: 10.3390/ph11010003] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/17/2017] [Accepted: 12/27/2017] [Indexed: 12/23/2022] Open
Abstract
The recent upsurge of multidrug resistant bacteria (MDRB) among global communities has become one of the most serious challenges facing health professionals and the human population worldwide. Cationic ultrashort antimicrobial peptides (USAMPs) are a promising group of molecules that meet the required criteria of novel antimicrobial drug development. UP-5, a novel penta-peptide, displayed significant antimicrobial activities against various standard and clinical isolates of MDRB. UP-5 displayed MICs values within the range of (10–15 μM) and (55–65 μM) against Gram-positive and Gram-negative bacteria, respectively. Furthermore, UP-5 displayed antibiofilm activity with minimum biofilm eradication concentration (MBEC) value as equal to twofold higher than MIC value. At the same inhibitory concentrations, UP-5 exhibited very low or negligible toxicity toward human erythrocytes and mammalian cells. Combining UP-5 with conventional antibiotics led to a synergistic or additive mode of action that resulted in the reduction of the MIC values for some of the antibiotics by 99.7% along a significant drop in MIC values of the peptide. The stability profile of UP-5 was evaluated in full mouse plasma and serum with results indicating a more stable pattern in plasma. The present study indicates that USAMPs are promising antimicrobial agents that can avoid the negative characteristics of conventional antimicrobial peptides. Additionally, USAMPs exhibit good to moderate activity against MDRB, negligible toxicity, and synergistic outcomes in combination with conventional antimicrobial agents.
Collapse
Affiliation(s)
- Ammar Almaaytah
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Mohammed T Qaoud
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Gubran Khalil Mohammed
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| | - Ahmad Abualhaijaa
- Department of Applied Biological Sciences, Faculty of Science and Arts, Jordan University of Science and Technology, Irbid 22110 Jordan.
| | - Daniel Knappe
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany.
| | - Ralf Hoffmann
- Institute of Bioanalytical Chemistry, Faculty of Chemistry and Mineralogy and Center for Biotechnology and Biomedicine, Universität Leipzig, Deutscher Platz 5, 04103 Leipzig, Germany.
| | - Qosay Al-Balas
- Department of Medicinal Chemistry, Faculty of Pharmacy, Jordan University of Science and Technology, Irbid 22110, Jordan.
| |
Collapse
|
20
|
Li Y, Ogorzalek TL, Wei S, Zhang X, Yang P, Jasensky J, Brooks CL, Marsh ENG, Chen Z. Effect of immobilization site on the orientation and activity of surface-tethered enzymes. Phys Chem Chem Phys 2018; 20:1021-1029. [DOI: 10.1039/c7cp06063g] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Tethering peptides and proteins to abiotic surfaces has the potential to create biomolecule-functionalized surfaces with useful properties.
Collapse
Affiliation(s)
- Yaoxin Li
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | | | - Shuai Wei
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Xiaoxian Zhang
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | - Pei Yang
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
| | | | - Charles L. Brooks
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
- Department of Biophysics
| | - E. Neil G. Marsh
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
- Department of Biological Chemistry
| | - Zhan Chen
- Department of Chemistry
- University of Michigan
- Ann Arbor
- USA
- Department of Biological Chemistry
| |
Collapse
|
21
|
Kobbi S, Nedjar N, Chihib N, Balti R, Chevalier M, Silvain A, Chaabouni S, Dhulster P, Bougatef A. Synthesis and antibacterial activity of new peptides from Alfalfa RuBisCO protein hydrolysates and mode of action via a membrane damage mechanism against Listeria innocua. Microb Pathog 2017; 115:41-49. [PMID: 29221796 DOI: 10.1016/j.micpath.2017.12.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/02/2017] [Accepted: 12/04/2017] [Indexed: 11/28/2022]
Abstract
In this work we evaluated the mode of action of six new synthesized peptides (Met-Asp-Asn; Glu-leu-Ala-Ala-Ala-Cys; Leu-Arg-Asp-Asp-Phe; Gly-Asn-Ala-Pro-Gly-Ala-Val-Ala; Ala-Leu-Arg-Met-Ser-Gly and Arg-Asp-Arg-Phe-Leu), previously identified, from the most active peptide fractions of RuBisCO peptic hydrolysate against Listeria innocua via a membrane damage mechanism. Antibacterial effect and the minimum inhibitory concentrations (MIC) of these peptides were evaluated against six strains and their hemolytic activities towards bovine erythrocytes were determined. Prediction of the secondary structure of peptides indicated that these new antibacterial peptides are characterized by a short peptide chains (3-8 amino acid) and a random coli structure. Moreover, it was observed that one key characteristic of antibacterial peptides is the presence of specific amino acids such as cysteine, glycine, arginine and aspartic acid. In addition the determination of the extracellular potassium concentration revealed that treatment with pure RuBisCO peptides could cause morphological changes of L. innocua and destruction of the cell integrity via irreversible membrane damage. The results could provide information for investigating the antibacterial model of antibacterial peptides derived from RuBisCO protein hydrolysates.
Collapse
Affiliation(s)
- Sabrine Kobbi
- Institut Charles Viollette, équipe ProBioGEM, Polytech'Lille, Boulevard Paul Langevin, 59655 Villeneuve D'Ascq, France; Laboratoire d'Amélioration des Plantes et Valorisation des Agroressources, Sfax, 3038, Université de Sfax, Tunisia
| | - Naima Nedjar
- Institut Charles Viollette, équipe ProBioGEM, Polytech'Lille, Boulevard Paul Langevin, 59655 Villeneuve D'Ascq, France
| | - Nourdine Chihib
- Institut Charles Viollette, équipe ProBioGEM, Polytech'Lille, Boulevard Paul Langevin, 59655 Villeneuve D'Ascq, France
| | - Rafik Balti
- Laboratoire d'Amélioration des Plantes et Valorisation des Agroressources, Sfax, 3038, Université de Sfax, Tunisia
| | - Mickael Chevalier
- Institut Charles Viollette, équipe ProBioGEM, Polytech'Lille, Boulevard Paul Langevin, 59655 Villeneuve D'Ascq, France
| | - Amandine Silvain
- Biological and Food Engineering Platform, Polytech'Lille, Université Lille 1 Sciences and Technology, Boulevard Paul Langevin, 59655, Villeneuve D'Ascq, France
| | - Semia Chaabouni
- Laboratoire d'Amélioration des Plantes et Valorisation des Agroressources, Sfax, 3038, Université de Sfax, Tunisia
| | - Pascal Dhulster
- Institut Charles Viollette, équipe ProBioGEM, Polytech'Lille, Boulevard Paul Langevin, 59655 Villeneuve D'Ascq, France
| | - Ali Bougatef
- Laboratoire d'Amélioration des Plantes et Valorisation des Agroressources, Sfax, 3038, Université de Sfax, Tunisia.
| |
Collapse
|
22
|
Booth V, Warschawski DE, Santisteban NP, Laadhari M, Marcotte I. Recent progress on the application of 2H solid-state NMR to probe the interaction of antimicrobial peptides with intact bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2017; 1865:1500-1511. [PMID: 28844739 DOI: 10.1016/j.bbapap.2017.07.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2017] [Revised: 07/13/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
Discoveries relating to innate immunity and antimicrobial peptides (AMPs) granted Bruce Beutler and Jules Hoffmann a Nobel prize in medicine in 2011, and opened up new avenues for the development of therapies against infections, and even cancers. The mechanisms by which AMPs interact with, and ultimately disrupt, bacterial cell membranes is still, to a large extent, incompletely understood. Up until recently, this mechanism was studied using model lipid membranes that failed to reproduce the complexity of molecular interactions present in real cells comprising lipids but also membrane proteins, a cell wall containing peptidoglycan or lipopolysaccharides, and other molecules. In this review, we focus on recent attempts to study, at the molecular level, the interaction between cationic AMPs and intact bacteria, by 2H solid-state NMR. Specifically-labeled lipids allow us to focus on the interaction of AMPs with the heart of the bacterial membrane, and measure the lipid order and its variation upon interaction with various peptides. We will review the important parameters to consider in such a study, and summarize the results obtained in the past 5years on various peptides, in particular aurein 1.2, caerin 1.1, MSI-78 and CA(1-8)M(1-10). This article is part of a Special Issue entitled: Biophysics in Canada, edited by Lewis Kay, John Baenziger, Albert Berghuis and Peter Tieleman.
Collapse
Affiliation(s)
- Valerie Booth
- Department of Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada; Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Dror E Warschawski
- UMR 7099, CNRS - Université Paris Diderot, IBPC, 13 rue Pierre et Marie Curie, F-75005 Paris, France; Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal H3C 3P8, Canada
| | - Nury P Santisteban
- Department of Physics and Physical Oceanography, Memorial University of Newfoundland, St. John's, NL A1B 3X7, Canada
| | - Marwa Laadhari
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal H3C 3P8, Canada
| | - Isabelle Marcotte
- Department of Chemistry, Université du Québec à Montréal, P.O. Box 8888, Downtown Station, Montréal H3C 3P8, Canada.
| |
Collapse
|
23
|
Identifying the selectivity of antimicrobial peptides to cell membranes by sum frequency generation spectroscopy. Biointerphases 2017; 12:02D406. [PMID: 28476090 DOI: 10.1116/1.4982710] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Cationic amphiphilic peptides have been engineered to target both Gram-positive and Gram-negative bacteria while avoiding damage to other cell types. However, the exact mechanism of how these peptides target, bind, and disrupt bacterial cell membranes is not understood. One specific peptide that has been engineered to selectively capture bacteria is WLBU2 (sequence: RRWVRRVRRWVRRVVRVVRRWVRR). It has been suggested that WLBU2 activity stems from the fact that when interacting with bacterial cell membranes the peptide assumes an α-helical structure and inserts itself into the membrane. Alternatively, in the presence of mammalian cell membranes, the peptide assumes an inert β-sheet structure. To test this hypothesis, the authors applied sum frequency generation (SFG) spectroscopy and surface tensiometry to identify the structure of WLBU2 as it interacts with model lipid monolayers that mimic mammalian and bacterial cell membranes. Model mammalian cell membranes were built upon zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphocholine lipids while bacterial cell membranes were constructed with negatively charged 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) lipids. Observed changes in surface pressure at the peptide-lipid-air interface demonstrate that the peptide has a clear binding preference toward negatively charged bacteria-like lipids. The structure of both the lipids and peptides were characterized by SFG spectra collected at the monolayer interface. Changes in monolayer structure as the peptide binds were observed by tracking the intensities of SFG vibrational modes related to the acyl chains within the lipids. Peptide structures when bound to both types of lipids were determined by SFG spectra collected within the amide I vibrational band. The SFG spectra of WLBU2 interacting with the model mammalian lipid monolayer contain two peaks near 1642 and 1678 cm-1 indicative of an inactive β-sheet structure. SFG spectra collected from the peptide bound to a bacteria-like lipid monolayer contains just a single peak near 1651 cm-1 which corresponds to an active α-helix structure. Combined, the tensiometry and SFG results demonstrate that WLBU2 both possesses a higher binding affinity toward and is in an active α-helix structure when bound to bacterial cell membranes.
Collapse
|
24
|
Ding B, Jasensky J, Li Y, Chen Z. Engineering and Characterization of Peptides and Proteins at Surfaces and Interfaces: A Case Study in Surface-Sensitive Vibrational Spectroscopy. Acc Chem Res 2016; 49:1149-57. [PMID: 27188920 DOI: 10.1021/acs.accounts.6b00091] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Understanding molecular structures of interfacial peptides and proteins impacts many research fields by guiding the advancement of biocompatible materials, new and improved marine antifouling coatings, ultrasensitive and highly specific biosensors and biochips, therapies for diseases related to protein amyloid formation, and knowledge on mechanisms for various membrane proteins and their interactions with ligands. Developing methods for measuring such unique systems, as well as elucidating the structure and function relationship of such biomolecules, has been the goal of our lab at the University of Michigan. We have made substantial progress to develop sum frequency generation (SFG) vibrational spectroscopy into a powerful technique to study interfacial peptides and proteins, which lays a foundation to obtain unique and valuable insights when using SFG to probe various biologically relevant systems at the solid/liquid interface in situ in real time. One highlighting feature of this Account is the demonstration of the power of combining SFG with other techniques and methods such as ATR-FTIR, surface engineering, MD simulation, liquid crystal sensing, and isotope labeling in order to study peptides and proteins at interfaces. It is necessary to emphasize that SFG plays a major role in these studies, while other techniques and methods are supplemental. The central role of SFG is to provide critical information on interfacial peptide and protein structure (e.g., conformation and orientation) in order to elucidate how surface engineering (e.g., to vary the structure) can ultimately affect surface function (e.g., to optimize the activity). This Account focuses on the most significant recent progress in research on interfacial peptides and proteins carried out by our group including (1) the development of SFG analysis methods to determine orientations of regular as well as disrupted secondary structures, and the successful demonstration and application of an isotope labeling method with SFG to probe the detailed local structure and microenvironment of peptides at buried interfaces, (2) systematic research on cell membrane associated peptides and proteins including antimicrobial peptides, cell penetrating peptides, G proteins, and other membrane proteins, discussing the factors that influence interfacial peptide and protein structures such as lipid charge, membrane fluidity, and biomolecule solution concentration, and (3) in-depth discussion on solid surface immobilized antimicrobial peptides and enzymes. The effects of immobilization method, substrate surface, immobilization site on the peptide or protein, and surrounding environment are presented. Several examples leading to high impact new research are also briefly introduced: The orientation change of alamethicin detected while varying the model cell membrane potential demonstrates the feasibility to apply SFG to study ion channel protein gating mechanisms. The elucidation of peptide secondary structures at liquid crystal interfaces shows promising results that liquid crystal can detect and recognize different peptides and proteins. The method of retaining the native structure of surface immobilized peptides or proteins in air demonstrates the feasibility to protect and preserve such structures via the use of hydromimetic functionalities when there is no bulk water. We hope that readers in many different disciplines will benefit from the research progress reported in this Account on SFG studies of interfacial structure-function relationships of peptides and proteins and apply this powerful technique to study interfacial biomolecules in the future.
Collapse
Affiliation(s)
- Bei Ding
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Joshua Jasensky
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Yaoxin Li
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department
of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
25
|
Yang P, Homan KT, Li Y, Cruz-Rodríguez O, Tesmer JJG, Chen Z. Effect of Lipid Composition on the Membrane Orientation of the G Protein-Coupled Receptor Kinase 2-Gβ1γ2 Complex. Biochemistry 2016; 55:2841-8. [PMID: 27088923 DOI: 10.1021/acs.biochem.6b00354] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Interactions between proteins and cell membranes are critical for biological processes such as transmembrane signaling, and specific components of the membrane may play roles in helping to organize or mandate particular conformations of both integral and peripheral membrane proteins. One example of a signaling enzyme whose function is dependent on membrane binding and whose activity is affected by specific lipid components is G protein-coupled receptor (GPCR) kinase 2 (GRK2). Efficient GRK2-mediated phosphorylation of activated GPCRs is dependent not only on its recruitment to the membrane by heterotrimeric Gβγ subunits but also on the presence of highly negatively charged lipids, in particular phosphatidylinositol 4',5'-bisphosphate (PIP2). We hypothesized that PIP2 may favor a distinct orientation of the GRK2-Gβγ complex on the membrane that is more optimal for function. In this study, we compared the possible orientations of the GRK2-Gβγ complex and Gβγ alone on model cell membranes prepared with various anionic phospholipids as deduced from sum frequency generation vibrational and attenuated total reflectance Fourier transform infrared spectroscopic methods. Our results indicate that PIP2 affects the membrane orientation of the GRK2-Gβ1γ2 complex but not that of complexes formed with anionic phospholipid binding deficient mutations in the GRK2 pleckstrin homology (PH) domain. Gβ1γ2 exhibits a similar orientation on the lipid bilayer regardless of its lipid composition. The PIP2-induced orientation of the GRK2-Gβ1γ2 complex is therefore most likely caused by specific interactions between PIP2 and the GRK2 PH domain. Thus, PIP2 not only helps recruit GRK2 to the membrane but also "fine tunes" the orientation of the GRK2-Gβγ complex so that it is better positioned to phosphorylate activated GPCRs.
Collapse
Affiliation(s)
- Pei Yang
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Kristoff T Homan
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Yaoxin Li
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Osvaldo Cruz-Rodríguez
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan , Ann Arbor, Michigan 48109, United States.,Ph.D. Program in Chemical Biology, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - John J G Tesmer
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan , 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
26
|
Ding B, Panahi A, Ho JJ, Laaser JE, Brooks CL, Zanni MT, Chen Z. Probing Site-Specific Structural Information of Peptides at Model Membrane Interface In Situ. J Am Chem Soc 2015; 137:10190-8. [PMID: 26241117 DOI: 10.1021/jacs.5b04024] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Isotope labeling is a powerful technique to probe detailed structures of biological molecules with a variety of analytical methods such as NMR and vibrational spectroscopies. It is important to obtain molecular structural information on biological molecules at interfaces such as cell membranes, but it is challenging to use the isotope labeling method to study interfacial biomolecules. Here, by individually (13)C═(16)O labeling ten residues of a peptide, Ovispirin-1, we have demonstrated for the first time that a site-specific environment of membrane associated peptide can be probed by the submonolayer surface sensitive sum frequency generation (SFG) vibrational spectroscopy in situ. With the peptide associated with a single lipid bilayer, the sinusoidal trend of the SFG line width and peak-center frequency suggests that the peptide is located at the interface beneath the lipid headgroup region. The constructive interferences between the isotope labeled peaks and the main peptide amide I peak contributed by the unlabeled components were used to determine the membrane orientation of the peptide. From the SFG spectral peak-center frequency, line width, and polarization dependence of the isotope labeled units, we deduced structural information on individual units of the peptide associated with a model cell membrane. We also performed molecular dynamics (MD) simulations to understand peptide-membrane interactions. The physical pictures described by simulation agree well with the SFG experimental result. This research demonstrates the feasibility and power of using isotope labeling SFG to probe molecular structures of interfacial biological molecules in situ in real time.
Collapse
Affiliation(s)
- Bei Ding
- †Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Afra Panahi
- †Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Jia-Jung Ho
- ‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | - Jennifer E Laaser
- ‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | - Charles L Brooks
- †Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Martin T Zanni
- ‡Department of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53703, United States
| | - Zhan Chen
- †Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
27
|
Monteiro C, Pinheiro M, Fernandes M, Maia S, Seabra CL, Ferreira-da-Silva F, Reis S, Gomes P, Martins MCL. A 17-mer Membrane-Active MSI-78 Derivative with Improved Selectivity toward Bacterial Cells. Mol Pharm 2015; 12:2904-11. [PMID: 26066462 DOI: 10.1021/acs.molpharmaceut.5b00113] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Claudia Monteiro
- I3S, Instituto de Investigação
e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Marina Pinheiro
- UCIBIO-REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Mariana Fernandes
- I3S, Instituto de Investigação
e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Sílvia Maia
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica,
Faculdade de Ciências, Universidade do Porto, Rua do Campo
Alegre 687, 4169-007 Porto, Portugal
| | - Catarina L. Seabra
- I3S, Instituto de Investigação
e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- ICBAS, Instituto de Ciências
Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge
Viterbo Ferreira 228, 4050-313 Porto, Portugal
- IPATIMUP - Institute of Molecular Pathology and Immunology of the University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Frederico Ferreira-da-Silva
- I3S, Instituto de Investigação
e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- IBMC-Instituto de Biologia Celular e Molecular, Unidade
de Produção e Purificação de Proteínas, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
| | - Salette Reis
- UCIBIO-REQUIMTE, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Paula Gomes
- UCIBIO-REQUIMTE, Departamento de Química e Bioquímica,
Faculdade de Ciências, Universidade do Porto, Rua do Campo
Alegre 687, 4169-007 Porto, Portugal
| | - M. Cristina L. Martins
- I3S, Instituto de Investigação
e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- INEB, Instituto de Engenharia Biomédica, Universidade do Porto, Rua do Campo Alegre 823, 4150-180 Porto, Portugal
- ICBAS, Instituto de Ciências
Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge
Viterbo Ferreira 228, 4050-313 Porto, Portugal
| |
Collapse
|
28
|
Monteiro C, Fernandes M, Pinheiro M, Maia S, Seabra CL, Ferreira-da-Silva F, Costa F, Reis S, Gomes P, Martins MCL. Antimicrobial properties of membrane-active dodecapeptides derived from MSI-78. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1139-46. [PMID: 25680229 DOI: 10.1016/j.bbamem.2015.02.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 12/14/2014] [Accepted: 02/03/2015] [Indexed: 11/29/2022]
|
29
|
Soblosky L, Ramamoorthy A, Chen Z. Membrane interaction of antimicrobial peptides using E. coli lipid extract as model bacterial cell membranes and SFG spectroscopy. Chem Phys Lipids 2015; 187:20-33. [PMID: 25707312 DOI: 10.1016/j.chemphyslip.2015.02.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2014] [Revised: 02/17/2015] [Accepted: 02/18/2015] [Indexed: 12/17/2022]
Abstract
Supported lipid bilayers are used as a convenient model cell membrane system to study biologically important molecule-lipid interactions in situ. However, the lipid bilayer models are often simple and the acquired results with these models may not provide all pertinent information related to a real cell membrane. In this work, we use sum frequency generation (SFG) vibrational spectroscopy to study molecular-level interactions between the antimicrobial peptides (AMPs) MSI-594, ovispirin-1 G18, magainin 2 and a simple 1,2-dipalmitoyl-d62-sn-glycero-3-phosphoglycerol (dDPPG)/1-palmitoyl-2-oleoyl-sn-glycero-3-phosphoglycerol (POPG) bilayer. We compared such interactions to those between the AMPs and a more complex dDPPG/Escherichia coli (E. coli) polar lipid extract bilayer. We show that to fully understand more complex aspects of peptide-bilayer interaction, such as interaction kinetics, a heterogeneous lipid composition is required, such as the E. coli polar lipid extract. The discrepancy in peptide-bilayer interaction is likely due in part to the difference in bilayer charge between the two systems since highly negative charged lipids can promote more favorable electrostatic interactions between the peptide and lipid bilayer. Results presented in this paper indicate that more complex model bilayers are needed to accurately analyze peptide-cell membrane interactions and demonstrates the importance of using an appropriate lipid composition to study AMP interaction properties.
Collapse
Affiliation(s)
- Lauren Soblosky
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ayyalusamy Ramamoorthy
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA; Biophysics, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
30
|
Nguyen KT. Orientation determination of interfacial bent α-helical structures using Sum Frequency Generation vibrational spectroscopy. Chem Phys 2015. [DOI: 10.1016/j.chemphys.2014.11.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
31
|
Allgeyer ES, Sterling SM, Gunewardene MS, Hess ST, Neivandt DJ, Mason MD. Combining total internal reflection sum frequency spectroscopy spectral imaging and confocal fluorescence microscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:987-994. [PMID: 25506739 DOI: 10.1021/la5036932] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Understanding surface and interfacial lateral organization in material and biological systems is critical in nearly every field of science. The continued development of tools and techniques viable for elucidation of interfacial and surface information is therefore necessary to address new questions and further current investigations. Sum frequency spectroscopy (SFS) is a label-free, nonlinear optical technique with inherent surface specificity that can yield critical organizational information on interfacial species. Unfortunately, SFS provides no spatial information on a surface; small scale heterogeneities that may exist are averaged over the large areas typically probed. Over the past decade, this has begun to be addressed with the advent of SFS microscopy. Here we detail the construction and function of a total internal reflection (TIR) SFS spectral and confocal fluorescence imaging microscope directly amenable to surface investigations. This instrument combines, for the first time, sample scanning TIR-SFS imaging with confocal fluorescence microscopy.
Collapse
Affiliation(s)
- Edward S Allgeyer
- Department of Physics and Astronomy, ‡Department of Chemical and Biological Engineering, and §Graduate School of Biomedical Sciences and Engineering, University of Maine , Orono, Maine 04469, United States
| | | | | | | | | | | |
Collapse
|
32
|
A novel fragment based strategy for membrane active antimicrobials against MRSA. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1848:1023-31. [PMID: 25582665 DOI: 10.1016/j.bbamem.2015.01.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 12/29/2014] [Accepted: 01/05/2015] [Indexed: 01/04/2023]
Abstract
Membrane active antimicrobials are a promising new generation of antibiotics that hold the potential to avert antibiotic resistance. However, poor understanding of the action mechanism and the lack of general design principles have impeded their development. Here we extend the concept of fragment based drug design and propose a pharmacophore model based on first principles for the design of membrane active antimicrobials against Gram positive pathogens. Elaborating on a natural xanthone-based hydrophobic scaffold, two derivatives of the pharmacophore model are proposed, and these demonstrate excellent antimicrobial activity. Rigorous molecular dynamics simulations combined with biophysical experiments suggest a three-step mechanism of action (absorption-translocation-disruption) which allows us to identify key factors for the practical optimization of each fragment of the pharmacophore. Moreover, the model matches the structures of several membrane active antimicrobials which are currently in clinical trials. Our model provides a novel and rational approach for the design of bactericidal molecules that target the bacterial membrane.
Collapse
|
33
|
Hu P, Zhang X, Zhang C, Chen Z. Molecular interactions between gold nanoparticles and model cell membranes. Phys Chem Chem Phys 2015; 17:9873-84. [DOI: 10.1039/c5cp00477b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Direct observations of the lipid flip-flop induced by Au NP – model mammalian cell membrane interactions.
Collapse
Affiliation(s)
- Peipei Hu
- Department of Chemistry
- University of Michigan
- Michigan 48109
- USA
| | - Xiaoxian Zhang
- Department of Chemistry
- University of Michigan
- Michigan 48109
- USA
| | - Chi Zhang
- Department of Chemistry
- University of Michigan
- Michigan 48109
- USA
| | - Zhan Chen
- Department of Chemistry
- University of Michigan
- Michigan 48109
- USA
| |
Collapse
|
34
|
Determination of conformation and orientation of immobilized peptides and proteins at buried interfaces. Chem Phys Lett 2015. [DOI: 10.1016/j.cplett.2014.10.035] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
35
|
Praporski S, Mechler A, Separovic F, Martin LL. Subtle Differences in Initial Membrane Interactions Underpin the Selectivity of Small Antimicrobial Peptides. Chempluschem 2014. [DOI: 10.1002/cplu.201402318] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Slavica Praporski
- School of Chemistry, Monash University, Clayton, VIC 3800 (Australia)
- Current address: Heart Research, Murdoch Childrens Research Institute, Parkville, VIC 3052 (Australia)
| | - Adam Mechler
- School of Chemistry, Monash University, Clayton, VIC 3800 (Australia)
- Current address: School of Molecular Sciences, La Trobe University, Bundoora, VIC 3086 (Australia)
| | - Frances Separovic
- School of Chemistry, Bio21 Institute, University of Melbourne, Melbourne, VIC 3010 (Australia)
| | | |
Collapse
|
36
|
Wang Z, Han X, He N, Chen Z, Brooks CL. Environmental Effect on Surface Immobilized Biological Molecules. J Phys Chem B 2014; 118:12176-85. [DOI: 10.1021/jp508550d] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Zunliang Wang
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaofeng Han
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China
| | - Nongyue He
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China
| | - Zhan Chen
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
37
|
Zhang M, Zhao J, Zheng J. Molecular understanding of a potential functional link between antimicrobial and amyloid peptides. SOFT MATTER 2014; 10:7425-7451. [PMID: 25105988 DOI: 10.1039/c4sm00907j] [Citation(s) in RCA: 83] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Antimicrobial and amyloid peptides do not share common sequences, typical secondary structures, or normal biological activity but both the classes of peptides exhibit membrane-disruption ability to induce cell toxicity. Different membrane-disruption mechanisms have been proposed for antimicrobial and amyloid peptides, individually, some of which are not exclusive to either peptide type, implying that certain common principles may govern the folding and functions of different cytolytic peptides and associated membrane disruption mechanisms. Particularly, some antimicrobial and amyloid peptides have been identified to have dual complementary amyloid and antimicrobial properties, suggesting a potential functional link between amyloid and antimicrobial peptides. Given that some similar structural and membrane-disruption characteristics exist between the two classes of peptides, this review summarizes major findings, recent advances, and future challenges related to antimicrobial and amyloid peptides and strives to illustrate the similarities, differences, and relationships in the sequences, structures, and membrane interaction modes between amyloid and antimicrobial peptides, with a special focus on direct interactions of the peptides with the membranes. We hope that this review will stimulate further research at the interface of antimicrobial and amyloid peptides - which has been studied less intensively than either type of peptides - to decipher a possible link between both amyloid pathology and antimicrobial activity, which can guide drug design and peptide engineering to influence peptide-membrane interactions important in human health and diseases.
Collapse
Affiliation(s)
- Mingzhen Zhang
- Department of Chemical and Biomolecular Engineering, The University of Akron, Akron, Ohio 44325, USA.
| | | | | |
Collapse
|
38
|
Wu FG, Yang P, Zhang C, Li B, Han X, Song M, Chen Z. Molecular interactions between amantadine and model cell membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:8491-8499. [PMID: 25010349 DOI: 10.1021/la501718n] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Sum frequency generation (SFG) vibrational spectroscopy was applied to study molecular interactions between amantadine and substrate supported lipid bilayers serving as model cell membranes. Both isotopically asymmetric and symmetric lipid bilayers were used in the research. SFG results elucidated how the water-soluble drug, amantadine, influenced the packing state of each leaflet of a lipid bilayer and how the drugs affected the lipid flip-flop process. It is difficult to achieve such detailed molecular-level information using other analytical techniques. Especially, from the flip-flop rate change of isotopically asymmetric lipid bilayer induced by amantadine, important information on the drug-membrane interaction mechanism can be derived. The results show that amantadine can be associated with zwitterionic PC bilayers but has a negligible influence on the flip-flop behavior of PC molecules unless at high concentrations. Different effects of amantadine on the lipid bilayer were observed for the negatively charged DPPG bilayer; low concentration amantadine (e.g., 0.20 mM) in the subphase could immediately disturb the outer lipid leaflet and then the lipid associated amantadine molecules gradually reorganize to cause the outer leaflet to return to the original orderly packed state. Higher concentration amantadine (e.g., 5.0 mM) immediately disordered the packing state of the outer lipid leaflet. For both the high and low concentration cases, amantadine molecules only bind to the outer PG leaflet and cannot translocate to the inner layer. The presence of amantadine within the negatively charged lipid layers has certain implications for using liposomes as drug delivery carriers for amantadine. Besides, by using PC or PG bilayers with both leaflets deuterated, we were able to examine how amantadine is distributed and/or oriented within the lipid bilayer. The present work demonstrates that SFG results can provide an in-depth understanding of the molecular mechanisms of interactions between water-soluble drugs and model cell membranes.
Collapse
Affiliation(s)
- Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | | | | | | | | | | | | |
Collapse
|
39
|
Real-time measurement of membrane conformational states induced by antimicrobial peptides: balance between recovery and lysis. Sci Rep 2014; 4:5479. [PMID: 24969959 PMCID: PMC4073255 DOI: 10.1038/srep05479] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2014] [Accepted: 06/09/2014] [Indexed: 11/30/2022] Open
Abstract
The disruption of membranes by antimicrobial peptides is a multi-state process involving significant structural changes in the phospholipid bilayer. However, direct measurement of these membrane structural changes is lacking. We used a combination of dual polarisation interferometry (DPI), surface plasmon resonance spectroscopy (SPR) and atomic force microscopy (AFM) to measure the real-time changes in membrane structure through the measurement of birefringence during the binding of magainin 2 (Mag2) and a highly potent analogue in which Ser8, Gly13 and Gly18 has been replaced with alanine (Mag-A). We show that the membrane bilayer undergoes a series of structural changes upon peptide binding before a critical threshold concentration is reached which triggers a significant membrane disturbance. We also propose a detailed model for antimicrobial peptide action as a function of the degree of bilayer disruption to provide an unprecedented in-depth understanding of the membrane lysis in terms of the interconversion of different membrane conformational states in which there is a balance between recovery and lysis.
Collapse
|
40
|
Wang Z, Han X, He N, Chen Z, Brooks CL. Molecular Structures of C- and N-Terminus Cysteine Modified Cecropin P1 Chemically Immobilized onto Maleimide-Terminated Self-Assembled Monolayers Investigated by Molecular Dynamics Simulation. J Phys Chem B 2014; 118:5670-80. [DOI: 10.1021/jp5023482] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Zunliang Wang
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Xiaofeng Han
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China
| | - Nongyue He
- State
Key Laboratory of Bioelectronics, School of Biological Science and
Medical Engineering, Southeast University, Si Pai Lou 2, Nanjing 210096, China
| | - Zhan Chen
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Charles L. Brooks
- Department
of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|
41
|
Wadhwani P, Strandberg E, van den Berg J, Mink C, Bürck J, Ciriello RA, Ulrich AS. Dynamical structure of the short multifunctional peptide BP100 in membranes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:940-9. [DOI: 10.1016/j.bbamem.2013.11.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 10/25/2013] [Accepted: 11/01/2013] [Indexed: 11/26/2022]
|
42
|
Roy S, Covert PA, FitzGerald WR, Hore DK. Biomolecular Structure at Solid–Liquid Interfaces As Revealed by Nonlinear Optical Spectroscopy. Chem Rev 2014; 114:8388-415. [DOI: 10.1021/cr400418b] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Sandra Roy
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| | - Paul A. Covert
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| | - William R. FitzGerald
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| | - Dennis K. Hore
- Department
of Chemistry, University of Victoria, Victoria, British Columbia, V8W 3V6 Canada
| |
Collapse
|
43
|
Chen J, Wang F, Liu Q, Du J. Antibacterial polymeric nanostructures for biomedical applications. Chem Commun (Camb) 2014; 50:14482-93. [DOI: 10.1039/c4cc03001j] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A topical review on recent advances in the research and applications of antimicrobial polymeric nanostructures, such as silver-decorated polymeric nanostructures, and polymeric micelles and vesicles based on antimicrobial polymers and antimicrobial peptides.
Collapse
Affiliation(s)
- Jing Chen
- School of Materials Science and Engineering
- Tongji University
- Shanghai, China
| | - Fangyingkai Wang
- School of Materials Science and Engineering
- Tongji University
- Shanghai, China
| | - Qiuming Liu
- School of Materials Science and Engineering
- Tongji University
- Shanghai, China
| | - Jianzhong Du
- School of Materials Science and Engineering
- Tongji University
- Shanghai, China
| |
Collapse
|
44
|
Matar G, Benichou E, Nasir MN, El Harfouch Y, Brevet PF, Besson F. Reorientation of the helix of the tryptophan-rich gp41W peptide from HIV-1 at interfaces. J Chem Phys 2013; 139:225105. [PMID: 24329097 DOI: 10.1063/1.4841795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The glycoprotein gp41 from the Human Immunodeficiency Virus type 1 (HIV-1) has an amino acid sequence enriched in tryptophan residues, the so-called gp41W peptide (i.e., KWASLWNWFNITNWLWYIK) and plays a crucial role in HIV-1 host cell infection. Using the coupling of Second Harmonic Generation targeting the tryptophan residues with lateral surface tension measurements, we investigate the interaction of gp41W with a neat air∕water and a lipid∕water interfaces. At the air∕water interface, gp41W presents a well-defined orientation and this orientation is strongly modified at the lipid∕water interface, depending on the surface pressure. These results show that this strategy is well suited to monitor tryptophan containing α-helices orientation at lipid∕water interfaces.
Collapse
Affiliation(s)
- Gladys Matar
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, CPE Lyon, INSA Lyon, Université Claude Bernard Lyon1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| | - Emmanuel Benichou
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Mehmet Nail Nasir
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, CPE Lyon, INSA Lyon, Université Claude Bernard Lyon1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| | - Yara El Harfouch
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Pierre-François Brevet
- Institut Lumière Matière, UMR5306 Université Lyon 1-CNRS, Université de Lyon 69622 Villeurbanne cedex, France
| | - Françoise Besson
- Institut de Chimie et Biochimie Moléculaires et Supramoléculaires, UMR CNRS 5246, CPE Lyon, INSA Lyon, Université Claude Bernard Lyon1, 43 Boulevard du 11 Novembre 1918, 69622 Villeurbanne cedex, France
| |
Collapse
|
45
|
Yang P, Glukhova A, Tesmer JJG, Chen Z. Membrane orientation and binding determinants of G protein-coupled receptor kinase 5 as assessed by combined vibrational spectroscopic studies. PLoS One 2013; 8:e82072. [PMID: 24278472 PMCID: PMC3838385 DOI: 10.1371/journal.pone.0082072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 10/20/2013] [Indexed: 11/18/2022] Open
Abstract
G-protein coupled receptors (GPCRs) are integral membrane proteins involved in a wide variety of biological processes in eukaryotic cells, and are targeted by a large fraction of marketed drugs. GPCR kinases (GRKs) play important roles in feedback regulation of GPCRs, such as of β-adrenergic receptors in the heart, where GRK2 and GRK5 are the major isoforms expressed. Membrane targeting is essential for GRK function in cells. Whereas GRK2 is recruited to the membrane by heterotrimeric Gβγ subunits, the mechanism of membrane binding by GRK5 is not fully understood. It has been proposed that GRK5 is constitutively associated with membranes through elements located at its N-terminus, its C-terminus, or both. The membrane orientation of GRK5 is also a matter of speculation. In this work, we combined sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) to help determine the membrane orientation of GRK5 and a C-terminally truncated mutant (GRK51-531) on membrane lipid bilayers. It was found that GRK5 and GRK51-531 adopt a similar orientation on model cell membranes in the presence of PIP2 that is similar to that predicted for GRK2 in prior studies. Mutation of the N-terminal membrane binding site of GRK5 did not eliminate membrane binding, but prevented observation of this discrete orientation. The C-terminus of GRK5 does not have substantial impact on either membrane binding or orientation in this model system. Thus, the C-terminus of GRK5 may drive membrane binding in cells via interactions with other proteins at the plasma membrane or bind in an unstructured manner to negatively charged membranes.
Collapse
Affiliation(s)
- Pei Yang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Alisa Glukhova
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan, United States of America
| | - John J. G. Tesmer
- Departments of Pharmacology and Biological Chemistry, Life Sciences Institute, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (ZC); (JJGT)
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail: (ZC); (JJGT)
| |
Collapse
|
46
|
Lin CK, Yang L, Hayashi M, Zhu CY, Fujimura Y, Shen YR, Lin SH. Theory and Applications of Sum-Frequency Generations. J CHIN CHEM SOC-TAIP 2013. [DOI: 10.1002/jccs.201300416] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
47
|
Han X, Uzarski JR, Mello CM, Chen Z. Different interfacial behaviors of N- and C-terminus cysteine-modified cecropin P1 chemically immobilized onto polymer surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:11705-11712. [PMID: 23919837 DOI: 10.1021/la401818k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Sum frequency generation (SFG) vibrational spectroscopy and attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR) were used to investigate the orientation of N-terminus cysteine-modified cecropin P1 (cCP1) at the polystyrene maleimide (PS-MA)/peptide phosphate buffer solution interface. The cCP1 cysteine group reacts with the maleimide group on the PS-MA surface to chemically immobilize cCP1. Previously, we found that the C-terminus cysteine-modified cecropin P1 (CP1c) molecules exhibit a multiple-orientation distribution at the PS-MA/peptide phosphate buffer solution interface, due to simultaneous physical adsorption and chemical immobilization of CP1c on the PS-MA surface. Differently, in this research, it was found that the interfacial orientation of cCP1 molecules varied from a horizontal orientation to the "tilting" orientation to the "standing up" orientation and then to the "multiple-orientation" distribution as the peptide concentration increased from 0.19 to 3.74 μM. This research shows the different interaction mechanisms between CP1c and PS-MA and between cCP1 and PS-MA.
Collapse
Affiliation(s)
- Xiaofeng Han
- Department of Chemistry, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | | | | | |
Collapse
|
48
|
Volkov V, Bonn M. Structural Properties of gp41 Fusion Peptide at a Model Membrane Interface. J Phys Chem B 2013; 117:15527-35. [DOI: 10.1021/jp405852r] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- V. Volkov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - M. Bonn
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
49
|
Yang P, Wu FG, Chen Z. Lipid Fluid-Gel Phase Transition Induced Alamethicin Orientational Change Probed by Sum Frequency Generation Vibrational Spectroscopy. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2013; 117:17039-17049. [PMID: 24124624 PMCID: PMC3792402 DOI: 10.1021/jp4047215] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alamethicin has been extensively studied as an antimicrobial peptide (AMP) and is widely used as a simple model for ion channel proteins. It has been shown that the antimicrobial activity of AMPs is related to their cell membrane orientation, which may be influenced by the phase of the lipid molecules in the cell membrane. The "healthy" cell membranes contain fluid phase lipids, while gel phase lipids can be found in injured or aged cells or in some phase separated membrane regions. Thus, investigations on how the phase of the lipids influences the membrane orientation of AMPs are important to understand more details regarding the AMP's action on cell membranes. In this study, we determined the orientational changes of alamethicin molecules associated with planar substrate supported single lipid bilayers (serving as model cell membranes) with different phases (fluid or gel) as a function of peptide concentration using sum frequency generation (SFG) vibrational spectroscopy. The phase changes of the lipid bilayers were realized by varying the sample temperature. Our SFG results indicated that alamethicin lies down on the surface of fluid and gel phase 1,2-dimyristoyl(d54)-sn-glycero-3-phosphocholine (d-DMPC) lipid bilayers when the lipid bilayers are in contact with a peptide solution with a low concentration of 0.84 μM. However, at a medium peptide concentration of 10.80 μM, alamethicin inserts into the fluid phase lipid bilayer. Its orientation switches from a transmembrane to an in-plane (or lying down) orientation when the phase of the lipid bilayer changes from a fluid state to a gel state. At a high peptide concentration of 21.60 μM, alamethicin adopts a transmembrane orientation while associated with both fluid and gel phase lipid bilayers. We also studied the structural changes of the fluid and gel phase lipid bilayers upon their interactions with alamethicin molecules at different peptide concentrations.
Collapse
Affiliation(s)
| | | | - Zhan Chen
- To whom correspondence should be addressed. Fax: 734-647-4865;
| |
Collapse
|
50
|
Liu Y, Ogorzalek TL, Yang P, Schroeder MM, Marsh ENG, Chen Z. Molecular Orientation of Enzymes Attached to Surfaces through Defined Chemical Linkages at the Solid–Liquid Interface. J Am Chem Soc 2013; 135:12660-9. [DOI: 10.1021/ja403672s] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Yuwei Liu
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Tadeusz L. Ogorzalek
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Pei Yang
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - McKenna M. Schroeder
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - E. Neil G. Marsh
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Zhan Chen
- Department of Chemistry, University of Michigan, Ann Arbor, Michigan 48109, United States
| |
Collapse
|