1
|
Chen H, Fan Y, Shi Z, Liu C, Ran M, Zhai J, Wu J, Wong TM, Ning C, Yu P. NIR-responsive micropatterned nanocomposite functionalized implant for sequential antibacterial and osteogenesis. Colloids Surf B Biointerfaces 2024; 235:113748. [PMID: 38306804 DOI: 10.1016/j.colsurfb.2024.113748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 12/19/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024]
Abstract
The long-term durability of the implant is influenced by two significant clinical challenges, namely bacterial infection and fixation loosening. Conventional implant materials have failed to meet the demands of the dynamic process of infectious bone repair, which necessitates early-stage bacterial sterilization and a conducive environment for late-stage osteogenesis. Consequently, there is an urgent requirement for an implant material that can sequentially regulate antibacterial properties and promote osteogenesis. The study aimed to develop a micropatterned graphene oxide nanocomposite on titanium implant (M-NTO/GO) for the sequential management of bacterial infection and osteogenic promotion. M-NTO/GO exhibited a micropattern nanostructure surface and demonstrated responsiveness to near-infrared (NIR) light. Upon NIR light irradiation, M-NTO/GO exhibited effective antibacterial properties, achieving antibacterial rates of 96.9% and 98.6% against E. coli and S. aureus, respectively. Under no-light condition, the micropatterned topography of M-NTO/GO exhibited the ability to induce directed cell growth, enhance cell adhesion and spreading, and facilitate osteogenic differentiation. These findings suggest the successful development of a functionalized micropatterned nanocomposite implant capable of sequentially regulating antibacterial and osteogenesis activity. Consequently, this highly effective strategy holds promise for expanding the potential applications of orthopedic implants.
Collapse
Affiliation(s)
- Haoyan Chen
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou 510641, China
| | - Youzhun Fan
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou 510641, China
| | - Zhifeng Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, Key Laboratory of Biomedical Engineering of Guangdong Province, Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, China
| | - Chengli Liu
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou 510641, China
| | - Maofei Ran
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou 510641, China
| | - Jinxia Zhai
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou 510641, China
| | - Jun Wu
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, China
| | - Tak Man Wong
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam 999077, China
| | - Chengyun Ning
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou 510641, China
| | - Peng Yu
- School of Material Science and Engineering, National Engineering Research Center for Tissue Restoration and Reconstruction, GuangDong Engineering Technology Research Center of Metallic Materials Surface Functionalization, South China University of Technology, Guangzhou 510641, China.
| |
Collapse
|
2
|
Hussain FS, Abro NQ, Ahmed N, Memon SQ, Memon N. Nano-antivirals: A comprehensive review. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.1064615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Nanoparticles can be used as inhibitory agents against various microorganisms, including bacteria, algae, archaea, fungi, and a huge class of viruses. The mechanism of action includes inhibiting the function of the cell membrane/stopping the synthesis of the cell membrane, disturbing the transduction of energy, producing toxic reactive oxygen species (ROS), and inhibiting or reducing RNA and DNA production. Various nanomaterials, including different metallic, silicon, and carbon-based nanomaterials and nanoarchitectures, have been successfully used against different viruses. Recent research strongly agrees that these nanoarchitecture-based virucidal materials (nano-antivirals) have shown activity in the solid state. Therefore, they are very useful in the development of several products, such as fabric and high-touch surfaces. This review thoroughly and critically identifies recently developed nano-antivirals and their products, nano-antiviral deposition methods on various substrates, and possible mechanisms of action. By considering the commercial viability of nano-antivirals, recommendations are made to develop scalable and sustainable nano-antiviral products with contact-killing properties.
Collapse
|
3
|
Zhang H, Yang F, Zhang Q, Hui A, Wang A. Structural Evolution of Palygorskite as the Nanocarrier of Silver Nanoparticles for Improving Antibacterial Activity. ACS APPLIED BIO MATERIALS 2022; 5:3960-3971. [PMID: 35831238 DOI: 10.1021/acsabm.2c00482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The carrier performance of palygorskite (Pal) can be significantly affected by its structure, morphology, and activity, which was regulated by controlling the dissolution degree of the metal-oxygen octahedron of raw Pal (RPal) under the action of oxalic acid (OA) in this study. The RPal and OA-leached RPal (OPal) then served as supports for immobilizing silver nanoparticles (AgNPs) to form RPal/AgNPs and OPal/AgNPs antibacterial nanocomposites. The structural and morphological characterizations were used to confirm the dispersion uniformity of AgNPs on the RPal and OPal nanorods, and antibacterial experiments were conducted to evaluate the performance of as-prepared composites and also investigate their antibacterial mechanism. The results showed that OPal-48h (OA leaching for 48 h) loaded with AgNPs (OPal-48h/AgNPs) possesses the most excellent and broad-spectrum antibacterial properties, where its minimum inhibitory concentration values against E. coli, S. aureus, ESBL-E. coli, and MRSA reached 0.25, 0.125, 0.25, and 0.5 mg/mL, respectively, which are mainly attributed to the optimal balance between surface activity and structural stability of OPal-48h that maximally increased its dispersibility and active sites, therefore contributing to the in situ formation of monodisperse AgNPs on the nanorods of OPal-48h.
Collapse
Affiliation(s)
- Hong Zhang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fangfang Yang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Qian Zhang
- Laboratory Medicine Center, Lanzhou University Second Hospital, Lanzhou 730030, PR China
| | - Aiping Hui
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Center of Eco-material and Green Chemistry, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, PR China.,Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China
| |
Collapse
|
4
|
Omran B, Baek KH. Graphene-derived antibacterial nanocomposites for water disinfection: Current and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 298:118836. [PMID: 35032599 DOI: 10.1016/j.envpol.2022.118836] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/29/2021] [Accepted: 01/08/2022] [Indexed: 05/11/2023]
Abstract
Antimicrobial nanomaterials provide numerous opportunities for the synthesis of next-generation sustainable water disinfectants. Using the keywords graphene and water disinfection and graphene antibacterial activity, a detailed search of the Scopus database yielded 198 and 1433 studies on using graphene for water disinfection applications and graphene antibacterial activity in the last ten years, respectively. Graphene family nanomaterials (GFNs) have emerged as effective antibacterial agents. The current innovations in graphene-, graphene oxide (GO)-, reduced graphene oxide (rGO)-, and graphene quantum dot (GQD)-based nanocomposites for water disinfection, including their functionalization with semiconductor photocatalysts and metal and metal oxide nanoparticles, have been thoroughly discussed in this review. Furthermore, their novel application in the fabrication of 3D porous hydrogels, thin films, and membranes has been emphasized. The physicochemical and structural properties affecting their antibacterial efficiency, such as sheet size, layer number, shape, edges, smoothness/roughness, arrangement mode, aggregation, dispersibility, and surface functionalization have been highlighted. The various mechanisms involved in GFN antibacterial action have been reviewed, including the mechanisms of membrane stress, ROS-dependent and -independent oxidative stress, cell wrapping/trapping, charge transfer, and interaction with cellular components. For safe applications, the potential biosafety and biocompatibility of GFNs in aquatic environments are emphasized. Finally, the current limitations and future perspectives are discussed. This review may provide ideas for developing efficient and practical solutions using graphene-, GO-, rGO-, and GQD-based nanocomposites in water disinfection by rationally employing their unique properties.
Collapse
Affiliation(s)
- Basma Omran
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea; Department of Processes Design & Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo PO, 11727, Egypt
| | - Kwang-Hyun Baek
- Department of Biotechnology, Yeungnam University, Gyeongbuk, Gyeongsan, 38541, Republic of Korea.
| |
Collapse
|
5
|
Dixit N, Singh SP. Laser-Induced Graphene (LIG) as a Smart and Sustainable Material to Restrain Pandemics and Endemics: A Perspective. ACS OMEGA 2022; 7:5112-5130. [PMID: 35187327 PMCID: PMC8851616 DOI: 10.1021/acsomega.1c06093] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 01/19/2022] [Indexed: 05/02/2023]
Abstract
A healthy environment is necessary for a human being to survive. The contagious COVID-19 virus has disastrously contaminated the environment, leading to direct or indirect transmission. Therefore, the environment demands adequate prevention and control strategies at the beginning of the viral spread. Laser-induced graphene (LIG) is a three-dimensional carbon-based nanomaterial fabricated in a single step on a wide variety of low-cost to high-quality carbonaceous materials without using any additional chemicals potentially used for antiviral, antibacterial, and sensing applications. LIG has extraordinary properties, including high surface area, electrical and thermal conductivity, environmental-friendliness, easy fabrication, and patterning, making it a sustainable material for controlling SARS-CoV-2 or similar pandemic transmission through different sources. LIG's antiviral, antibacterial, and antibiofouling properties were mainly due to the thermal and electrical properties and texture derived from nanofibers and micropores. This perspective will highlight the conducted research and the future possibilities on LIG for its antimicrobial, antiviral, antibiofouling, and sensing applications. It will also manifest the idea of incorporating this sustainable material into different technologies like air purifiers, antiviral surfaces, wearable sensors, water filters, sludge treatment, and biosensing. It will pave a roadmap to explore this single-step fabrication technique of graphene to deal with pandemics and endemics in the coming future.
Collapse
Affiliation(s)
- Nandini Dixit
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
| | - Swatantra P. Singh
- Environmental
Science and Engineering Department (ESED), Indian Institute of Technology Bombay, Mumbai 400076, India
- Centre
for Research in Nanotechnology & Science (CRNTS), Indian Institute of Technology Bombay, Mumbai 400076, India
- Interdisciplinary
Program in Climate Studies, Indian Institute
of Technology Bombay, Mumbai 400076, India
| |
Collapse
|
6
|
Nabgan W, Jalil AA, Nabgan B, Ikram M, Ali MW, Lakshminarayana P. A state of the art overview of carbon-based composites applications for detecting and eliminating pharmaceuticals containing wastewater. CHEMOSPHERE 2022; 288:132535. [PMID: 34648794 DOI: 10.1016/j.chemosphere.2021.132535] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/16/2021] [Accepted: 10/08/2021] [Indexed: 06/13/2023]
Abstract
The growing prevalence of new toxins in the environment continues to cause widespread concerns. Pharmaceuticals, organic pollutants, heavy metal ions, endocrine-disrupting substances, microorganisms, and others are examples of persistent organic chemicals whose effects are unknown because they have recently entered the environment and are displaying up in wastewater treatment facilities. Pharmaceutical pollutants in discharged wastewater have become a danger to animals, marine species, humans, and the environment. Although their presence in drinking water has generated significant concerns, little is known about their destiny and environmental effects. As a result, there is a rising need for selective, sensitive, quick, easy-to-handle, and low-cost early monitoring detection systems. This study aims to deliver an overview of a low-cost carbon-based composite to detect and remove pharmaceutical components from wastewater using the literature reviews and bibliometric analysis technique from 1970 to 2021 based on the web of science (WoS) database. Various pollutants in water and soil were reviewed, and different methods were introduced to detect pharmaceutical pollutants. The advantages and drawbacks of varying carbon-based materials for sensing and removing pharmaceutical wastes were also introduced. Finally, the available techniques for wastewater treatment, challenges and future perspectives on the recent progress were highlighted. The suggestions in this article will facilitate the development of novel on-site methods for removing emerging pollutants from pharmaceutical effluents and commercial enterprises.
Collapse
Affiliation(s)
- Walid Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Aishah Abdul Jalil
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia.
| | - Bahador Nabgan
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | - Muhammad Ikram
- Solar Cell Applications Research Lab, Department of Physics, Government College University Lahore, 54000, Punjab, Pakistan.
| | - Mohamad Wijayanuddin Ali
- School of Chemical and Energy Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia; Centre of Hydrogen Energy, Institute of Future Energy, Universiti Teknologi Malaysia, 81310, Skudai, Johor, Malaysia
| | | |
Collapse
|
7
|
Hong Q, Jiang L, Wang S, Huang J, Sun J, Li X, Zuo P, Yin J, Lu J. One-Step In Situ Patternable Reduction of a Ag-rGO Hybrid Using Temporally Shaped Femtosecond Pulses. MATERIALS 2022; 15:ma15020563. [PMID: 35057280 PMCID: PMC8781587 DOI: 10.3390/ma15020563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/29/2021] [Accepted: 01/03/2022] [Indexed: 12/10/2022]
Abstract
In recent years, metallic nanoparticle (NP)–two-dimensional material hybrids have been widely used for photocatalysis and photoreduction. Here, we introduce a femtosecond laser reduction approach that relies on the repetitive ablation of recast layers by usi–ng temporally shaped pulses to achieve the fast fabrication of metallic NP–two-dimensional material hybrids. We selectively deposited silver-reduced graphene oxide (Ag–rGO) hybrids on different substrates under various fabrication conditions. The deposition of the hybrids was attributed to the redistribution of the cooling ejected plume after multiple radiation pulses and the exchange of carriers with ejected plume ions containing activated species such as small carbon clusters and H2O. The proposed one-step in situ fabrication method is a competitive fabrication process that eliminates the additive separation process and exhibits morphological controllability. The Ag–rGO hybrids demonstrate considerable potential for chemomolecular and biomolecular detection because the surface-enhanced Raman scattering signal of the enhancement factor reached 4.04 × 108.
Collapse
Affiliation(s)
- Quan Hong
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China; (Q.H.); (S.W.); (J.H.); (J.S.); (X.L.); (P.Z.)
| | - Lan Jiang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China; (Q.H.); (S.W.); (J.H.); (J.S.); (X.L.); (P.Z.)
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
- Correspondence:
| | - Sumei Wang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China; (Q.H.); (S.W.); (J.H.); (J.S.); (X.L.); (P.Z.)
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Ji Huang
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China; (Q.H.); (S.W.); (J.H.); (J.S.); (X.L.); (P.Z.)
| | - Jiaxin Sun
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China; (Q.H.); (S.W.); (J.H.); (J.S.); (X.L.); (P.Z.)
| | - Xin Li
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China; (Q.H.); (S.W.); (J.H.); (J.S.); (X.L.); (P.Z.)
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Pei Zuo
- Laser Micro/Nano-Fabrication Laboratory, School of Mechanical Engineering, Beijing Institute of Technology, 5 South Zhongguancun Street, Haidian District, Beijing 100081, China; (Q.H.); (S.W.); (J.H.); (J.S.); (X.L.); (P.Z.)
- Beijing Institute of Technology Chongqing Innovation Center, Chongqing 401120, China
| | - Jiangang Yin
- Han’s Laser Technology Industry Group Co., Ltd., 6 Building WanYan Industry Zone, Haoye Road, Fuyong Town, Baoan District, Shenzhen 518103, China; (J.Y.); (J.L.)
| | - Jiangang Lu
- Han’s Laser Technology Industry Group Co., Ltd., 6 Building WanYan Industry Zone, Haoye Road, Fuyong Town, Baoan District, Shenzhen 518103, China; (J.Y.); (J.L.)
| |
Collapse
|
8
|
Patil AG. Facile one pot microbe-mediated in situsynthesis and antibacterial activity of reduced graphene oxide-silver nanocomposite. NANOTECHNOLOGY 2022; 33:135603. [PMID: 34933299 DOI: 10.1088/1361-6528/ac4521] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 12/21/2021] [Indexed: 06/14/2023]
Abstract
The present research deals with the development of a novel bioinspiredin situfabrication of reduced graphene oxide (rGO)-silver nanoparticle (AgNPs) nanocomposite (rGO@AgNCs) using microbes namelyPseudomonas aeruginosa(PA) andStaphylococcus aureus(SA). The fabricated rGO@AgNCs were characterized using Ultraviolet-visible (UV-Vis) spectroscopy, Fourier-transform infrared spectroscopy (FTIR), particle size analysis, polydispersity index (PDI), zeta potential analysis, energy dispersive x-ray analysis (EDAX), Raman spectroscopy, powder x-ray diffraction (PXRD), high-resolution transmission electron microscopy (HR-TEM) analysis, etc. Furthermore, the rGO@AgNCs-PA and rGO@AgNCs-SA interaction with serum protein, pH stability study, andin vitrodissolution of AgNPs were also performed. The research findings of the proposed study demonstrated the simultaneous reduction of graphene oxide (GO) and AgNPs and the formation of rGO@AgNCs in the presence of microbes. Thein vitrodissolution studies of rGO@AgNCs composites showed better AgNPs dissolution with controlled release and offered remarkable matrix integrity throughout the dissolution period. The size and stability of rGO@AgNCs-PA and rGO@AgNCs-SA had no significant changes at physiological pH 7.4. A minimal decrease in the zeta potential of rGO@AgNCs was observed, which may be due to the weak interaction of nanocomposites and albumin. The antibacterial application of the synthesized nanocomposite was evaluated against a pathogenic mastitis-forming bacterium. The obtained results suggested an admirable antibacterial activity of synthesized nanocomposites against the tested microbes. This knowledge will assist the scientific fraternity in designing novel antibacterial agents with enhanced antibacterial activity against various veterinary pathogens in near future.
Collapse
Affiliation(s)
- Ashwini G Patil
- Department of Microbiology, R. C. Patel Arts, Science and Commerce College, Shirpur, 425405, Maharashtra, India
| |
Collapse
|
9
|
Ayub M, Othman MHD, Khan IU, Yusop MZM, Kurniawan TA. Graphene-based nanomaterials as antimicrobial surface coatings: A parallel approach to restrain the expansion of COVID-19. SURFACES AND INTERFACES 2021; 27:101460. [PMID: 34957347 PMCID: PMC8442307 DOI: 10.1016/j.surfin.2021.101460] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 05/26/2023]
Abstract
The recently emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a significant and topmost global health challenge of today. SARS-CoV-2 can propagate through several direct or indirect means resulting in its exponential spread in short times. Consequently, finding new research based real-world and feasible solutions to interrupt the spread of pathogenic microorganisms is indispensable. It has been established that this virus can survive on a variety of available surfaces ranging from a few hours to a few days, which has increased the risk of COVID-19 spread to large populations. Currently, available surface disinfectant chemicals provide only a temporary solution and are not recommended to be used in the long run due to their toxicity and irritation. Apart from the urgent development of vaccine and antiviral drugs, there is also a need to design and develop surface disinfectant antiviral coatings for long-term applications even for new variants. The unique physicochemical properties of graphene-based nanomaterials (GBNs) have been widely investigated for antimicrobial applications. However, the research work for their use in antimicrobial surface coatings is minimal. This perspective enlightens the scope of using GBNs as antimicrobial/antiviral surface coatings to reduce the spread of transmittable microorganisms, precisely, SARS-CoV-2. This study attempts to demonstrate the synergistic effect of GBNs and metallic nanoparticles (MNPs), for their potential antiviral applications in the development of surface disinfectant coatings. Some proposed mechanisms for the antiviral activity of the graphene family against SARS-CoV-2 has also been explained. It is anticipated that this study will potentially lead to new insights and future trends to develop a framework for further investigation on this research area of pivotal importance to minimize the transmission of current and any future viral outbreaks.
Collapse
Affiliation(s)
- Muhammad Ayub
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Imran Ullah Khan
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule, Institute of Applied Sciences & Technology (PAF:IAST), Khanpur Road, Mang, Haripur 22650, Pakistan
| | - Mohd Zamri Mohd Yusop
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Tonni Agustiono Kurniawan
- Key Laboratory of Coastal and Wetland Ecosystems, College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
10
|
Herraiz-Carboné M, Cotillas S, Lacasa E, Sainz de Baranda C, Riquelme E, Cañizares P, Rodrigo MA, Sáez C. A review on disinfection technologies for controlling the antibiotic resistance spread. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149150. [PMID: 34303979 DOI: 10.1016/j.scitotenv.2021.149150] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
The occurrence of antibiotic-resistant bacteria (ARB) in water bodies poses a sanitary and environmental risk. These ARB and other mobile genetic elements can be easily spread from hospital facilities, the point in which, for sure, they are more concentrated. For this reason, novel clean and efficient technologies are being developed for allowing to remove these ARB and other mobile genetic elements before their uncontrolled spread. In this paper, a review on the recent knowledge about the state of the art of the main disinfection technologies to control the antibiotic resistance spread from natural water, wastewater, and hospital wastewater (including urine matrices) is reported. These technologies involve not only conventional processes, but also the recent advances on advanced oxidation processes (AOPs), including electrochemical advanced oxidation processes (EAOPs). This review summarizes the state of the art on the applicability of these technologies and also focuses on the description of the disinfection mechanisms by each technology, highlighting the promising impact of EAOPs on the remediation of this important environmental and health problem.
Collapse
Affiliation(s)
- Miguel Herraiz-Carboné
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain
| | - Salvador Cotillas
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Engracia Lacasa
- Department of Chemical Engineering, Higher Technical School of Industrial Engineering, University of Castilla-La Mancha, Edificio Infante Don Juan Manuel, Campus Universitario s/n, 02071 Albacete, Spain.
| | - Caridad Sainz de Baranda
- Clinical Parasitology and Microbiology Area, University Hospital Complex of Albacete, C/Hermanos Falcó 37, 02006 Albacete, Spain
| | - Eva Riquelme
- Clinical Parasitology and Microbiology Area, University Hospital Complex of Albacete, C/Hermanos Falcó 37, 02006 Albacete, Spain
| | - Pablo Cañizares
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Manuel A Rodrigo
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| | - Cristina Sáez
- Department of Chemical Engineering, Faculty of Chemical Sciences and Technologies, University of Castilla-La Mancha, Edificio Enrique Costa Novella, Campus Universitario s/n, 13005 Ciudad Real, Spain
| |
Collapse
|
11
|
Abstract
Graphene-based materials are found as excellent resources and employed as efficient anti-microbial agents, and they have been receiving significant attention from scientists and researchers in this regard. By giving special attention to recent applications of graphene-based materials, the current review is dedicated to unveiling the antimicrobial properties of graphene and its hybrid composites and their preparation methods. Different factors like the number of layers, concentration, size, and shape of the antibacterial activity are thoroughly discussed. Graphene-based materials could damage the bacteria physically by directly contacting the cell membrane or wrapping the bacterial cell. It can also chemically react to bacteria through oxidative stress and charge transfer mechanisms. This review explains such mechanisms thoroughly and summarizes the antibacterial applications (wound bandages, coatings, food packaging, etc.) of graphene and its hybrid materials.
Collapse
|
12
|
Antibacterial Activity of Copper Nanoparticles (CuNPs) against a Resistant Calcium Hydroxide Multispecies Endodontic Biofilm. NANOMATERIALS 2021; 11:nano11092254. [PMID: 34578571 PMCID: PMC8465890 DOI: 10.3390/nano11092254] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/23/2021] [Accepted: 08/24/2021] [Indexed: 12/16/2022]
Abstract
Endodontic treatment reduces the amount of bacteria by using antimicrobial agents to favor healing. However, disinfecting all of the canal system is difficult due to its anatomical complexity and may result in endodontic failure. Copper nanoparticles have antimicrobial activity against diverse microorganisms, especially to resistant strains, and offer a potential alternative for disinfection during endodontic therapy. This study evaluated the antibacterial action of copper nanoparticles (CuNPs) on an ex vivo multispecies biofilm using plaque count compared to the antibacterial activity of calcium hydroxide Ca(OH)2. There were significant differences between the Ca(OH)2 and CuNPs groups as an intracanal dressing compared with the CuNPs groups as an irrigation solution (p < 0.0001). An increase in the count of the group exposed to 7 days of Ca(OH)2 was observed compared to the group exposed to Ca(OH)2 for 1 day. These findings differ from what was observed with CuNPs in the same period of time. Antibacterial activity of CuNPs was observed on a multispecies biofilm, detecting an immediate action and over-time effect, gradually reaching their highest efficacy on day 7 after application. The latter raises the possibility of the emergence of Ca(OH)2-resistant strains and supports the use of CuNPs as alternative intracanal medication.
Collapse
|
13
|
Fatima N, Qazi UY, Mansha A, Bhatti IA, Javaid R, Abbas Q, Nadeem N, Rehan ZA, Noreen S, Zahid M. Recent developments for antimicrobial applications of graphene-based polymeric composites: A review. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.04.050] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
14
|
Tariq M, Khan AU, Rehman AU, Ullah S, Jan AU, Zakareya, Khan ZUH, Muhammad N, Islam ZU, Yuan Q. Green synthesis of Zno@GO nanocomposite and its' efficient antibacterial activity. Photodiagnosis Photodyn Ther 2021; 35:102471. [PMID: 34343667 DOI: 10.1016/j.pdpdt.2021.102471] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 11/24/2022]
Abstract
Nanotechnologyapplications in the field of biomedicine like drug delivery, cell labeling, and bacterial inhibition are growing . New nano-materials having less toxicity and excellent antibacterial activity attract research interest. In the current study, while taking advantage of green synthesis we have decorated zinc oxide on the surface of grephene oxide forming Zno@GO nanocomposite. The Transmission electron microscopy (TEM) study showed successfully synthesized trigonal small sizes ZnO on the surface of GO nanosheets. The as-synthesized ZnO@GO was used against MDR gram-negative pathogen E-coli (BL21 DE3) and showed excellent antibacterial activity killing about 95 % toxic bacteria within 5 h due to electrostatic interaction between cell membrane of E. coli (BL21 DE3) and ZnO@GO complex. Hence the nano composite subsequently penetrated into the cytoplasm by damaging the cell membrane of bacteria, as a result production of ROS into the cytoplasm led to imbalance of metabolic system in the cell. Moreover, the cell membrane damage of gram-negative bacteria verified through zeta potential and propidium iodide (PI) study. Thus, our study develops a way to solve the challenge of efficient design of a drug delivery system for dissolution enhancement according to the need for required drug release.
Collapse
Affiliation(s)
- Muhammad Tariq
- State Key Laboratory of Water Environment Simulation, Beijing normal university, No 19, Xinjiekouwai street, Haidian District, Beijing 100875, People's Republic of China; Beijing Advaced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Arif Ullah Khan
- Beijing Advaced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| | - Aziz Ur Rehman
- Beijing Advaced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Sadeeq Ullah
- Beijing Advaced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Amin Ullah Jan
- Department of Biotechnology, Shaheed Benazir Bhutoo University Sheringal Dir Upper, Kpk, Pakistan
| | - Zakareya
- Beijing Advaced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | - Zia Ul Haq Khan
- Department of Environmental Sciences, COMSATS University, Vehari 61100, Pakistan
| | - Nawshad Muhammad
- Department of Dental Materials, Institute of basic medical Sciences Khyber Medical University Peshawar, Pakistan
| | - Zia Ul Islam
- Department of Biotechnology, Shaheed Benazir Bhutoo University Sheringal Dir Upper, Kpk, Pakistan
| | - Qipeng Yuan
- Beijing Advaced Innovation Centre for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China.
| |
Collapse
|
15
|
Astani NA, Najafi F, Maghsoumi A, Huma K, Azimi L, Karimi A, Ejtehadi MR, Gumbart JC, Naseri N. Molecular Machinery Responsible for Graphene Oxide's Distinct Inhibitory Effects towards Pseudomonas aeruginosa and Staphylococcus aureus Pathogens. ACS APPLIED BIO MATERIALS 2021; 4:660-668. [PMID: 39420930 PMCID: PMC11486335 DOI: 10.1021/acsabm.0c01203] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Graphene oxide flakes are considered as potential inhibitors for different pathogenic bacteria. However, the efficacy of inhibition changes for different types and strains of bacteria. In this work, we examine Pseudomonas aeruginosa and Staphylococcus aureus, two common hospital-acquired infections, which react quite differently to graphene oxide flakes. The minimum inhibitory tests yield two distinct outcomes: stopped proliferation for S. aureus versus almost no effect for P. aeruginosa. Integrating our experimental evidence with molecular dynamics simulations, we elucidate the molecular machinery involved, explaining the behavior we see in scanning electron microscopy images. According to our simulations, the peptidoglycan network, the outermost layer of S. aureus, is completely entangled with the flakes, acting as a hunting ground, which consequently results in the inhibition of the pathogen itself. Lipopolysaccharides, the outermost layer of P. aeruginosa, on the other hand, resist interacting with the flakes. Lipopolysaccharides make no effective contacts, and thus no effective inhibition of the pathogen takes place. Likewise, the electron microscopy images show complete coverage and wrapping of S. aureus. In contrast, for P. aeruginosa, barely any bacteria are spotted with any flakes on top except for some loosely half-covered cases. As we did not observe any damaged bacteria in our images, we exclude the knife-cutting inhibition mechanism and suggest the wrapping and trapping mechanism for S. aureus for our flakes' rather large size (average area of 0.05 μm2). The molecular machinery suggested in this work can be used for molecular engineering and functionalizing graphene flakes to inhibit different pathogens.
Collapse
Affiliation(s)
- Negar Ashari Astani
- Department of Physics and Energy Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Fahimeh Najafi
- Physics Department, Sharif University of Technology, Tehran, Iran
| | - Ali Maghsoumi
- Physics Department, Sharif University of Technology, Tehran, Iran
| | - Kinza Huma
- Physics Department, Sharif University of Technology, Tehran, Iran
| | - Leila Azimi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Abdollah Karimi
- Pediatric Infections Research Center, Research Institute for Children's Health, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - James. C. Gumbart
- School of Physics, Georgia Institute of Technology, Atlanta, GA, USA
| | - Naimeh Naseri
- Physics Department, Sharif University of Technology, Tehran, Iran
| |
Collapse
|
16
|
Mohammed H, Kumar A, Bekyarova E, Al-Hadeethi Y, Zhang X, Chen M, Ansari MS, Cochis A, Rimondini L. Antimicrobial Mechanisms and Effectiveness of Graphene and Graphene-Functionalized Biomaterials. A Scope Review. Front Bioeng Biotechnol 2020; 8:465. [PMID: 32523939 PMCID: PMC7261933 DOI: 10.3389/fbioe.2020.00465] [Citation(s) in RCA: 131] [Impact Index Per Article: 26.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 04/21/2020] [Indexed: 12/21/2022] Open
Abstract
Bacterial infections represent nowadays the major reason of biomaterials implant failure, however, most of the available implantable materials do not hold antimicrobial properties, thus requiring antibiotic therapy once the infection occurs. The fast raising of antibiotic-resistant pathogens is making this approach as not more effective, leading to the only solution of device removal and causing devastating consequences for patients. Accordingly, there is a large research about alternative strategies based on the employment of materials holding intrinsic antibacterial properties in order to prevent infections. Between these new strategies, new technologies involving the use of carbon-based materials such as carbon nanotubes, fullerene, graphene and diamond-like carbon shown very promising results. In particular, graphene- and graphene-derived materials (GMs) demonstrated a broad range antibacterial activity toward bacteria, fungi and viruses. These antibacterial activities are attributed mainly to the direct physicochemical interaction between GMs and bacteria that cause a deadly deterioration of cellular components, principally proteins, lipids, and nucleic acids. In fact, GMs hold a high affinity to the membrane proteoglycans where they accumulate leading to membrane damages; similarly, after internalization they can interact with bacteria RNA/DNA hydrogen groups interrupting the replicative stage. Moreover, GMs can indirectly determine bacterial death by activating the inflammatory cascade due to active species generation after entering in the physiological environment. On the opposite, despite these bacteria-targeted activities, GMs have been successfully employed as pro-regenerative materials to favor tissue healing for different tissue engineering purposes. Taken into account these GMs biological properties, this review aims at explaining the antibacterial mechanisms underlying graphene as a promising material applicable in biomedical devices.
Collapse
Affiliation(s)
- Hiba Mohammed
- Biomaterials Lab, Department of Health Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.,Biomaterials Lab, Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Novara, Italy
| | - Ajay Kumar
- Biomaterials Lab, Department of Health Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.,Biomaterials Lab, Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Novara, Italy
| | - Elena Bekyarova
- Department of Chemical and Environmental Engineering, University of California, Riverside, Riverside, CA, United States.,Center for Nanoscale Science and Engineering, University of California, Riverside, Riverside, CA, United States
| | - Yas Al-Hadeethi
- Department of Physics, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Xixiang Zhang
- Advanced Nanofabrication, Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | - Mingguang Chen
- Advanced Nanofabrication, Imaging and Characterization Core Lab, King Abdullah University of Science and Technology, Thuwal, Saudi Arabia
| | | | - Andrea Cochis
- Biomaterials Lab, Department of Health Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.,Biomaterials Lab, Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Novara, Italy
| | - Lia Rimondini
- Biomaterials Lab, Department of Health Sciences, Università degli Studi del Piemonte Orientale, Novara, Italy.,Biomaterials Lab, Interdisciplinary Research Center of Autoimmune Diseases, Center for Translational Research on Autoimmune and Allergic Diseases-CAAD, Novara, Italy
| |
Collapse
|
17
|
Liao P, Hu J, Wang H, Li J, Zhou Z. Recent advances in surface‐functionalised photosensitive antibacterials with synergistic effects. BIOSURFACE AND BIOTRIBOLOGY 2019. [DOI: 10.1049/bsbt.2019.0005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Affiliation(s)
- Peizi Liao
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education)School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| | - Jiahao Hu
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education)School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| | - Huagao Wang
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education)School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| | - Jinyang Li
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education)School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| | - Zuowan Zhou
- Key Laboratory of Advanced Technologies of Materials (Ministry of Education)School of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031People's Republic of China
| |
Collapse
|
18
|
Hu C, Wang L, Lin Y, Liang H, Zhou S, Zheng F, Feng X, Rui Y, Shao L. Nanoparticles for the Treatment of Oral Biofilms: Current State, Mechanisms, Influencing Factors, and Prospects. Adv Healthc Mater 2019; 8:e1901301. [PMID: 31763779 DOI: 10.1002/adhm.201901301] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/31/2019] [Indexed: 02/06/2023]
Abstract
Due to their excellent size, designability, and outstanding targeted antibacterial effects, nanoparticles have become a potential option for controlling oral biofilm-related infections. However, the formation of an oral biofilm is a dynamic process, and factors affecting the performance of antibiofilm treatments are complex. As such, when examining the existing literature on the antibiofilm effects of nanoparticles, attention should be paid to the specific mechanisms of action at different stages of oral biofilm formation, as well as relevant influencing factors, in order to achieve an objective and comprehensive evaluation. This review is intended to detail the antibacterial mechanisms of nanoparticles during the four stages of the formation of oral biofilms: 1) acquired film formation; 2) bacterial adhesion; 3) early biofilm development; and 4) biofilm maturation. In addition, factors influencing the antibiofilm properties of nanoparticles are summarized from the aspects of nanoparticles themselves, biofilm models, and host factors. The limitations of current research and possible trends for future research are also discussed. In summary, nanoparticles are a promising antioral biofilm strategy. It is hoped that this review can serve as a reference and inspire ideas for further research on the application of nanoparticles for effectively targeting and treating oral biofilms.
Collapse
Affiliation(s)
- Chen Hu
- Department of StomatologyNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Guangzhou 510515 China
| | - Lin‐Lin Wang
- Department of StomatologyHainan General Hospital Haikou Hainan 570311 China
| | - Yu‐Qing Lin
- Department of StomatologyNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Guangzhou 510515 China
| | - Hui‐Min Liang
- Department of StomatologyNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Guangzhou 510515 China
| | - Shan‐Yu Zhou
- Department of StomatologyThe People's Hospital of Longhua Shenzhen 518109 China
| | - Fen Zheng
- Laboratory Medicine CenterNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Laboratory MedicineFoshan Women and Children Hospital Foshan Guangdong 528000 China
| | - Xiao‐Li Feng
- Department of StomatologyNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Guangzhou 510515 China
| | - Yong‐Yu Rui
- Laboratory Medicine CenterNanfang HospitalSouthern Medical University Guangzhou 510515 China
| | - Long‐Quan Shao
- Department of StomatologyNanfang HospitalSouthern Medical University Guangzhou 510515 China
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering Guangzhou 510515 China
| |
Collapse
|
19
|
Wu T, Zhang B, Wu Z, Zhang J, Liu H, Yu S, Huang Z, Cai X. Three-dimensional reduced graphene oxide aerogel stabilizes molybdenum trioxide with enhanced photocatalytic activity for dye degradation. RSC Adv 2019; 9:37573-37583. [PMID: 35542264 PMCID: PMC9075745 DOI: 10.1039/c9ra08372c] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/13/2019] [Indexed: 11/21/2022] Open
Abstract
By using three-dimensional reduced graphene oxide (rGO) aerogel as a carrier for molybdenum trioxide (MoO3), a series of rGO-MoO3 aerogels were synthesized by a self-assembly process. The results indicated that the as-prepared rGO-MoO3 aerogel had very low density and good mechanical properties, and would not deform under more than 1000 times its own pressure. The rGO-MoO3 aerogel showed more than 90% degradation efficiency for MB within 120 min. After six cycles of recycling, the degradation rate of MB only decreased by 1.6%. As supported by the electron paramagnetic resonance (EPR) measurements, the presence of the rGO aerogel enhanced electron conduction, prolonged carrier lifetime and inhibited electron and hole recombination, thus improving the photocatalytic efficiency of composite aerogel. Besides, the hydroxyl radical (OH˙) and radical anion (˙O2 -) played an important role in the photodegradation of the dye. The outstanding adsorption and photocatalytic degradation performance of the rGO-MoO3 aerogel was attributed to its unique physical properties, such as high porosity, simple recycling process, high hydrophobicity, low density and excellent mechanical stability. The findings presented herein indicated that the rGO-MoO3 aerogel had good application potential, and could serve as a promising photocatalyst for the degradation of dyes in wastewater.
Collapse
Affiliation(s)
- Ting Wu
- Department of Light Chemical Engineering, Guangdong Polytechnic Foshan 528041 P. R. China
| | - Bo Zhang
- School of Metallurgical and Material Engineering, Hunan University of Technology Zhuzhou 412007 P. R. China
| | - Zhimin Wu
- Human Resource Office, Guangdong Polytechnic Foshan 528041 P. R. China
| | - Jinglin Zhang
- Department of Light Chemical Engineering, Guangdong Polytechnic Foshan 528041 P. R. China
| | - Huidi Liu
- Scientific Research Office, Guangdong Polytechnic Foshan 528041 P. R. China
| | - Shaobin Yu
- The No.1 Surgery Department of No.5 People's Hospital of Foshan Foshan 528211 P. R.China
| | - Zhihao Huang
- Department of Light Chemical Engineering, Guangdong Polytechnic Foshan 528041 P. R. China
| | - Xiang Cai
- Department of Light Chemical Engineering, Guangdong Polytechnic Foshan 528041 P. R. China
| |
Collapse
|
20
|
Yañez-Macías R, Muñoz-Bonilla A, De Jesús-Tellez MA, Maldonado-Textle H, Guerrero-Sánchez C, Schubert US, Guerrero-Santos R. Combinations of Antimicrobial Polymers with Nanomaterials and Bioactives to Improve Biocidal Therapies. Polymers (Basel) 2019; 11:E1789. [PMID: 31683853 PMCID: PMC6918310 DOI: 10.3390/polym11111789] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 10/18/2019] [Accepted: 10/24/2019] [Indexed: 11/17/2022] Open
Abstract
The rise of antibiotic-resistant microorganisms has become a critical issue in recent years and has promoted substantial research efforts directed to the development of more effective antimicrobial therapies utilizing different bactericidal mechanisms to neutralize infectious diseases. Modern approaches employ at least two mixed bioactive agents to enhance bactericidal effects. However, the combinations of drugs may not always show a synergistic effect, and further, could also produce adverse effects or stimulate negative outcomes. Therefore, investigations providing insights into the effective utilization of combinations of biocidal agents are of great interest. Sometimes, combination therapy is needed to avoid resistance development in difficult-to-treat infections or biofilm-associated infections treated with common biocides. Thus, this contribution reviews the literature reports discussing the usage of antimicrobial polymers along with nanomaterials or other inhibitors for the development of more potent biocidal therapies.
Collapse
Affiliation(s)
- Roberto Yañez-Macías
- Centro de Investigación en Química Aplicada (CIQA), Boulevard Enrique Reyna No. 140, 25294 Saltillo, Mexico.
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain.
| | - Marco A De Jesús-Tellez
- Centro de Investigación y de Estudios Avanzados (CINVESTAV) Unidad Mérida, A.P. 73, Cordemex, 97310 Mérida, México.
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, D-07743 Jena, Germany.
| | - Hortensia Maldonado-Textle
- Centro de Investigación en Química Aplicada (CIQA), Boulevard Enrique Reyna No. 140, 25294 Saltillo, Mexico.
| | - Carlos Guerrero-Sánchez
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, D-07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena, Humboldtstrasse 10, D-07743 Jena, Germany.
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena, Philosophenweg 7, D-07743 Jena, Germany.
| | - Ramiro Guerrero-Santos
- Centro de Investigación en Química Aplicada (CIQA), Boulevard Enrique Reyna No. 140, 25294 Saltillo, Mexico.
| |
Collapse
|
21
|
Yan Y, Li C, Wu H, Du J, Feng J, Zhang J, Huang L, Tan S, Shi Q. Montmorillonite-Modified Reduced Graphene Oxide Stabilizes Copper Nanoparticles and Enhances Bacterial Adsorption and Antibacterial Activity. ACS APPLIED BIO MATERIALS 2019; 2:1842-1849. [DOI: 10.1021/acsabm.8b00695] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Yayuan Yan
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Chunya Li
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Haoping Wu
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jie Du
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Jing Feng
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| | - Jingxian Zhang
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Langhuan Huang
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Shaozao Tan
- Guangdong Engineering & Technology Research Centre of Graphene-Like Materials and Products, Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Qingshan Shi
- State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou 510070, China
| |
Collapse
|
22
|
Kang Y, Wang C, Qiao Y, Gu J, Zhang H, Peijs T, Kong J, Zhang G, Shi X. Tissue-Engineered Trachea Consisting of Electrospun Patterned sc-PLA/GO-g-IL Fibrous Membranes with Antibacterial Property and 3D-Printed Skeletons with Elasticity. Biomacromolecules 2019; 20:1765-1776. [DOI: 10.1021/acs.biomac.9b00160] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Yuan Kang
- Department of Applied Chemistry, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710129, People’s Republic of China
| | - Chaoli Wang
- Department of Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Youbei Qiao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fourth Military Medical University, Xi’an 710032, People’s Republic of China
| | - Junwei Gu
- Department of Applied Chemistry, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710129, People’s Republic of China
- NPU-QMUL Joint
Research Institute of Advanced Materials and Structures, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Han Zhang
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, United Kingdom
- NPU-QMUL Joint
Research Institute of Advanced Materials and Structures, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Ton Peijs
- School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1 4NS London, United Kingdom
- NPU-QMUL Joint
Research Institute of Advanced Materials and Structures, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Jie Kong
- Department of Applied Chemistry, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710129, People’s Republic of China
- NPU-QMUL Joint
Research Institute of Advanced Materials and Structures, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| | - Guangcheng Zhang
- Department of Applied Chemistry, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710129, People’s Republic of China
| | - Xuetao Shi
- Department of Applied Chemistry, School of Natural and Applied Sciences, Northwestern Polytechnical University, Xi’an 710129, People’s Republic of China
- NPU-QMUL Joint
Research Institute of Advanced Materials and Structures, Northwestern Polytechnical University, Xi’an 710072, People’s Republic of China
| |
Collapse
|
23
|
Di Ruocco C, Acocella MR, Guerra G. Release of Cationic Drugs from Charcoal. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E683. [PMID: 30823578 PMCID: PMC6416595 DOI: 10.3390/ma12040683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/18/2019] [Accepted: 02/21/2019] [Indexed: 11/16/2022]
Abstract
The goal of this research is to improve preparation of charcoal adducts in a manner suitable for cationic drug release, possibly using an eco-friendly procedure. Charcoal, widely commercialized for human ingestion, is oxidized by hydrogen peroxide in mild conditions. Adducts of a cationic drug (lidocaine hydrochloride, a medication used as local anesthetic) with charcoal are prepared after basification of charcoal and characterized mainly by elemental analysis, wide-angle X-ray diffraction, infrared spectroscopy and thermogravimetry. The drug in the prepared adducts is present in amount close to 30% by weight and can be readily released to both neutral and acidic aqueous solutions. Cation release, as studied by UV spectra of aqueous solutions, is faster in acidic solutions and is faster than for adducts with graphite oxide, which can be prepared only in harsh conditions.
Collapse
Affiliation(s)
- Chiara Di Ruocco
- Department of Chemistry and Biology and INSTM Research Unit, Università di Salerno, via Ponte don Melillo, 84084 Fisciano (SA), Italy.
| | - Maria Rosaria Acocella
- Department of Chemistry and Biology and INSTM Research Unit, Università di Salerno, via Ponte don Melillo, 84084 Fisciano (SA), Italy.
| | - Gaetano Guerra
- Department of Chemistry and Biology and INSTM Research Unit, Università di Salerno, via Ponte don Melillo, 84084 Fisciano (SA), Italy.
| |
Collapse
|
24
|
Yousefi N, Lu X, Elimelech M, Tufenkji N. Environmental performance of graphene-based 3D macrostructures. NATURE NANOTECHNOLOGY 2019; 14:107-119. [PMID: 30617310 DOI: 10.1038/s41565-018-0325-6] [Citation(s) in RCA: 136] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/12/2018] [Indexed: 05/19/2023]
Abstract
Three-dimensional macrostructures (3DMs) of graphene and graphene oxide are being developed for fast and efficient removal of contaminants from water and air. The large specific surface area, versatile surface chemistry and exceptional mechanical properties of graphene-based nanosheets enable the formation of robust and high-performance 3DMs such as sponges, membranes, beads and fibres. However, little is known about the relationship between the materials properties of graphene-based 3DMs and their environmental performance. In this Review, we summarize the self-assembly and environmental applications of graphene-based 3DMs in removing contaminants from water and air. We also develop the critical link between the materials properties of 3DMs and their environmental performance, and identify the key parameters that influence their capacities for contaminant removal.
Collapse
Affiliation(s)
- Nariman Yousefi
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada
| | - Xinglin Lu
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Menachem Elimelech
- Department of Chemical and Environmental Engineering, Yale University, New Haven, CT, USA
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University, Montreal, QC, Canada.
| |
Collapse
|
25
|
Zhou J, Fei X, Li C, Yu S, Hu Z, Xiang H, Sun B, Zhu M. Integrating Nano-Cu₂O@ZrP into In Situ Polymerized Polyethylene Terephthalate (PET) Fibers with Enhanced Mechanical Properties and Antibacterial Activities. Polymers (Basel) 2019; 11:E113. [PMID: 30960097 PMCID: PMC6401950 DOI: 10.3390/polym11010113] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 01/05/2019] [Accepted: 01/07/2019] [Indexed: 12/20/2022] Open
Abstract
The approach of in situ polymerization modification has proven to be an effective route for introducing functions for polyester materials. In this work, Cu₂O@ZrP nanosheets with excellent dispersity and high antibacterial activity were integrated into in situ polymerized polyethylene terephthalate (PET) fibers, revealing an enhanced mechanical performance in comparison with the PET fibers fabricated directly via a traditional melt blending method. Additionally, such an in situ polymerized PET/Cu₂O@ZrP fibers displayed highly enhanced mechanical properties; and great antibacterial activities against multi-types of bacterium, including S. aureus, E. coli and C. albicans. For the as-obtained two types of PET/Cu₂O@ZrP fibers, we have detailed their molecular weight (detailed molecular weight) and dispersibility of nano-Cu₂O@ZrP and fibers crystallinity was investigated by Gel chromatography (GPC), Scanning electron microscope (SEM), and X-ray diffractometer (XRD), respectively. The results showed that the aggregation of the nano-Cu₂O@ZrP in the resultant PET matrix could be effectively prevented during its in situ polymerization process, hence we attribute its highly enhanced mechanical properties to its superior dispersion of nano-Cu₂O@ZrP.
Collapse
Affiliation(s)
- Jialiang Zhou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Xiang Fei
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Congqi Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Senlong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Zexu Hu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Hengxue Xiang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Bin Sun
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, International Joint Laboratory for Advanced Fiber and Low-dimension Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China.
| |
Collapse
|
26
|
Ma L, Zhou M, He C, Li S, Fan X, Nie C, Luo H, Qiu L, Cheng C. Graphene-based advanced nanoplatforms and biocomposites from environmentally friendly and biomimetic approaches. GREEN CHEMISTRY 2019. [DOI: 10.1039/c9gc02266j] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Environmentally friendly and biomimetic approaches to fabricate graphene-based advanced nanoplatforms and biocomposites for biomedical applications are summarized in this review.
Collapse
Affiliation(s)
- Lang Ma
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Mi Zhou
- College of Biomass Science and Engineering
- Sichuan University
- Chengdu 610065
- China
| | - Chao He
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Shuang Li
- Functional Materials
- Department of Chemistry
- Technische Universität Berlin
- 10623 Berlin
- Germany
| | - Xin Fan
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chuanxiong Nie
- Department of Chemistry and Biochemistry
- Freie Universitat Berlin
- Berlin 14195
- Germany
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - Li Qiu
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| | - Chong Cheng
- Department of Ultrasound
- West China Hospital
- College of Polymer Science and Engineering
- State Key Laboratory of Polymer Materials Engineering
- Sichuan University
| |
Collapse
|
27
|
El-Shafai N, El-Khouly ME, El-Kemary M, Ramadan M, Eldesoukey I, Masoud M. Graphene oxide decorated with zinc oxide nanoflower, silver and titanium dioxide nanoparticles: fabrication, characterization, DNA interaction, and antibacterial activity. RSC Adv 2019; 9:3704-3714. [PMID: 35518070 PMCID: PMC9060286 DOI: 10.1039/c8ra09788g] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 01/13/2019] [Indexed: 12/28/2022] Open
Abstract
The fabrication, characterization, and antibacterial activity of novel nanocomposites based on graphene oxide (GO) nanosheets decorated with silver, titanium dioxide nanoparticles, and zinc oxide nanoflowers were examined. The fabricated nanocomposites were characterized by various techniques including X-ray diffraction, ultraviolet-visible light absorption and fluorescence spectroscopy, Brunauer–Emmett–Teller theory analysis, Fourier transform infrared, and scanning electron microscopy. The antibacterial activity of the GO–metal oxide nanocomposites against two Gram-positive and two Gram-negative bacteria was examined by using the standard counting plate methodology. The results showed that the fabricated nanocomposites on the surface of GO could inhibit the growth of microbial adhered cells, and consequently prevent the process of biofilm formation in food packaging and medical devices. To confirm the antibacterial activity of the examined GO-nanocomposites, we examined their interactions with bovine serum albumin (BSA) and circulating tumor DNA (ctDNA) by steady-state fluorescence spectroscopy. Upon addition of different amounts of fabricated GO-nanocomposites, the fluorescence intensities of the singlet states of BSA and ctDNA were considerably quenched. The higher quenching was observed in the case of GO–Ag–TiO2@ZnO nanocomposite compared with other control composites. The fabrication, characterization, and antibacterial activity of novel nanocomposites based on graphene oxide (GO) nanosheets decorated with silver, titanium dioxide nanoparticles, and zinc oxide nanoflowers were examined.![]()
Collapse
Affiliation(s)
- Nagi El-Shafai
- Department of Chemistry
- Faculty of Science
- Alexandria University
- Egypt
- Institute of Nanoscience and Nanotechnology
| | - Mohamed E. El-Khouly
- Department of Chemistry
- Faculty of Science
- Kafrelsheikh University
- Egypt
- Institute of Basic and Applied Sciences
| | - Maged El-Kemary
- Institute of Nanoscience and Nanotechnology
- Kafrelsheikh University
- Egypt
- Department of Chemistry
- Faculty of Science
| | - Mohamed Ramadan
- Department of Chemistry
- Faculty of Science
- Alexandria University
- Egypt
| | - Ibrahim Eldesoukey
- Department of Bacteriology, Mycology and Immunology
- Faculty of Veterinary Medicine
- Kafrelsheikh University
- Egypt
| | - Mamdouh Masoud
- Department of Chemistry
- Faculty of Science
- Alexandria University
- Egypt
| |
Collapse
|
28
|
Wu T, Wu Z, Ma D, Xiang W, Zhang J, Liu H, Deng Y, Tan S, Cai X. Fabrication of Few-Layered Porous Graphite for Removing Fluorosurfactant from Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:15181-15188. [PMID: 30398350 DOI: 10.1021/acs.langmuir.8b03030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Due to the persistence, toxicity, and widespread occurrence of fluorosurfactants in the blood of general population, it is very important to develop recyclable and highly effective adsorbent material for their removal from aqueous solution. Herein, a new type of few-layered porous graphite (FPG) was fabricated as an adsorbent, and the adsorption characteristics of FPG toward potassium perfluorobutane sulfonate (PFBS), potassium perfluorohexane sulfonate (PFHxS), and potassium perfluorooctane sulfonate (PFOS) in environmental cleanup were evaluated under laboratory condition. The results indicated that the as-prepared FPG had sorption capacities of 1.22, 1.52, and 2.48 mmol g-1 for PFBS, PFHxS, and PFOS, respectively, which were the highest adsorption values of PFHxS, PFBS, and PFOS on different kinds of today's carbon materials. The efficiency of FPG remained almost constant during the first five cycles of the adsorption-desorption process after heating. The outstanding adsorption performance of FPG was attributed to its unique physical properties, such as high porosity, high hydrophobicity, low density, and excellent heat stability. The findings presented herein indicated that FPG could serve as a promising adsorbent for the removal of fluorosurfactant in waste water.
Collapse
Affiliation(s)
| | | | | | - Weibing Xiang
- Guangdong Gaoming Industrial Innovation Research Institute , Foshan 528500 , P. R. China
| | | | | | | | | | - Xiang Cai
- Guangdong Gaoming Industrial Innovation Research Institute , Foshan 528500 , P. R. China
| |
Collapse
|
29
|
Bai L, Tang X, Kong S, Song Y, He X, Meng F. Main-chain ionic liquid-crystalline polymers bearing quaternary phosphonium ions. POLYM ADVAN TECHNOL 2018. [DOI: 10.1002/pat.4431] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Lu Bai
- College of Science; Northeastern University; Shenyang China
| | - Xinqiao Tang
- College of Science; Northeastern University; Shenyang China
| | - Shengwen Kong
- College of Science; Northeastern University; Shenyang China
| | - Ying Song
- College of Science; Northeastern University; Shenyang China
| | - Xiaozhi He
- College of Science; Northeastern University; Shenyang China
| | - Fanbao Meng
- College of Science; Northeastern University; Shenyang China
| |
Collapse
|
30
|
Bueno-López JI, Rangel-Mendez JR, Alatriste-Mondragón F, Pérez-Rodríguez F, Hernández-Montoya V, Cervantes FJ. Graphene oxide triggers mass transfer limitations on the methanogenic activity of an anaerobic consortium with a particulate substrate. CHEMOSPHERE 2018; 211:709-716. [PMID: 30099155 DOI: 10.1016/j.chemosphere.2018.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 07/30/2018] [Accepted: 08/01/2018] [Indexed: 06/08/2023]
Abstract
Graphene oxide (GO) is an emerging nanomaterial widely used in many manufacturing applications, which is frequently discharged in many industrial effluents eventually reaching biological wastewater treatment systems (WWTS). Anaerobic WWTS are promising technologies for renewable energy production through biogas generation; however, the effects of GO on anaerobic digestion are poorly understood. Thus, it is of paramount relevance to generate more knowledge on these issues to prevent that anaerobic WWTS lose their effectiveness for the removal of pollutants and for biogas production. The aim of this work was to assess the effects of GO on the methanogenic activity of an anaerobic consortium using a particulate biopolymer (starch) and a readily fermentable soluble substrate (glucose) as electron donors. The obtained results revealed that the methanogenic activity of the anaerobic consortium supplemented with starch decreased up to 23-fold in the presence of GO compared to the control incubated in the absence of GO. In contrast, we observed a modest improvement on methane production (>10% compared to the control lacking GO) using 5 mg of GO L-1 in glucose-amended incubations. The decrease in the methanogenic activity is mainly explained by wrapping of starch granules by GO, which caused mass transfer limitation during the incubation. It is suggested that wrapping is driven by electrostatic interactions between negatively charged oxygenated groups in GO and positively charged hydroxyl groups in starch. These results imply that GO could seriously hamper the removal of particulate organic matter, such as starch, as well as methane production in anaerobic WWTS.
Collapse
Affiliation(s)
- J Iván Bueno-López
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a. Sección, 78216 San Luis Potosí, SLP, Mexico
| | - J Rene Rangel-Mendez
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a. Sección, 78216 San Luis Potosí, SLP, Mexico.
| | - Felipe Alatriste-Mondragón
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a. Sección, 78216 San Luis Potosí, SLP, Mexico
| | - Fátima Pérez-Rodríguez
- CONACYT, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a. Sección, 78216 San Luis Potosí, SLP, Mexico
| | - Virginia Hernández-Montoya
- Instituto Tecnológico de Aguascalientes, Av. Adolfo López Mateos No. 1801 Ote., 20256 Aguascalientes, Ags., Mexico
| | - Francisco J Cervantes
- División de Ciencias Ambientales, Instituto Potosino de Investigación Científica y Tecnológica (IPICyT), Camino a la Presa San José 2055, Col. Lomas 4a. Sección, 78216 San Luis Potosí, SLP, Mexico.
| |
Collapse
|
31
|
Qian Y, Cui H, Shi R, Guo J, Wang B, Xu Y, Ding Y, Mao H, Yan F. Antimicrobial anionic polymers: the effect of cations. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.07.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
32
|
Wu T, Liao W, Wang W, Zhou J, Tan W, Xiang W, Zhang J, Guo L, Chen T, Ma D, Yu W, Cai X. Genipin-crosslinked carboxymethyl chitosan nanogel for lung-targeted delivery of isoniazid and rifampin. Carbohydr Polym 2018; 197:403-413. [DOI: 10.1016/j.carbpol.2018.06.034] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 12/15/2022]
|
33
|
Sun W, Wu FG. Two-Dimensional Materials for Antimicrobial Applications: Graphene Materials and Beyond. Chem Asian J 2018; 13:3378-3410. [DOI: 10.1002/asia.201800851] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 07/14/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Wei Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering; Southeast University; 2 Sipailou Road Nanjing 210096 P. R. China
| |
Collapse
|
34
|
Karahan HE, Wang Y, Li W, Liu F, Wang L, Sui X, Riaz MA, Chen Y. Antimicrobial graphene materials: the interplay of complex materials characteristics and competing mechanisms. Biomater Sci 2018; 6:766-773. [PMID: 29387845 DOI: 10.1039/c7bm00987a] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Graphene materials (GMs) exhibit attractive antimicrobial activities promising for biomedical and environmental applications. However, we still lack full control over their behaviour and performance mainly due to the complications arising from the coexistence and interplay of multiple factors. Therefore, in this minireview, we attempt to illustrate the structure-property-activity relationships of GMs' antimicrobial activity. We first examine the chemical/physical complexity of GMs focusing on five aspects of their materials characteristics: (i) chemical composition, (ii) impurities and imperfections, (iii) lateral dimension, (iv) self-association (e.g., restacking), and (v) composite/hybrid formation. Next, we briefly summarise the current understanding of their antimicrobial mechanisms. Then, we assign the outlined materials characteristics of GMs to the proposed antimicrobial mechanisms. Lastly, we share our vision regarding the future of research and development in this fast-emerging field.
Collapse
Affiliation(s)
- H Enis Karahan
- The University of Sydney, School of Chemical and Biomolecular Engineering, NSW 2006, Australia.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Qiu J, Liu L, Zhu H, Liu X. Combination types between graphene oxide and substrate affect the antibacterial activity. Bioact Mater 2018; 3:341-346. [PMID: 29988418 PMCID: PMC6026326 DOI: 10.1016/j.bioactmat.2018.05.001] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 04/25/2018] [Accepted: 05/01/2018] [Indexed: 12/02/2022] Open
Abstract
Duo to their superior physicochemical properties, graphene and its derivatives (GDs), such as graphene oxide (GO) and reduced graphene oxide (rGO), have attracted extensive research interests around the world. In recent years, antibacterial activities of GDs have aroused wide concern and substantial works have been done. However, the underlying antibacterial mechanisms still remain controversial. Antibacterial activities of GDs vary with various factors, such as size, number of layers, oxygen-containing groups, and experimental surroundings. We assume that combination types between graphene oxide and substrate may affect the antibacterial activity. Therefore, in this work, GO was fixed on the titanium surface with three kinds of combination types including drop with gravitational effects (GO-D), electrostatic interaction (GO-APS) and electrophoretic deposition (GO-EPD), and the antibacterial activities in vitro were systematically investigated. Results showed that combination types affected the ability of GO for preventing Staphylococcus aureus (S. aureus) from gathering, sharpness of wrinkles or edges and reactive oxygen spices (ROS) levels. Once S. aureus are in the form of separation without aggregation, GO can effectively interact with them and kill them with sharp wrinkles or edges and high ROS levels. GO-EPD could effectively prevent S. aureus from gathering, own sharp wrinkles or edges and could generate higher ROS levels. As a result, GO-EPD exhibited optimal antibacterial activity against S. aureus, followed by GO-APS and GO-D.
Collapse
Affiliation(s)
- Jiajun Qiu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lu Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
- Shanghai Normal University, Shanghai, 200234, China
| | - Hongqin Zhu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| | - Xuanyong Liu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, China
| |
Collapse
|
36
|
Karahan HE, Wiraja C, Xu C, Wei J, Wang Y, Wang L, Liu F, Chen Y. Graphene Materials in Antimicrobial Nanomedicine: Current Status and Future Perspectives. Adv Healthc Mater 2018; 7:e1701406. [PMID: 29504283 DOI: 10.1002/adhm.201701406] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2017] [Revised: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Graphene materials (GMs), such as graphene, graphene oxide (GO), reduced GO (rGO), and graphene quantum dots (GQDs), are rapidly emerging as a new class of broad-spectrum antimicrobial agents. This report describes their state-of-the-art and potential future covering both fundamental aspects and biomedical applications. First, the current understanding of the antimicrobial mechanisms of GMs is illustrated, and the complex picture of underlying structure-property-activity relationships is sketched. Next, the different modes of utilization of antimicrobial GMs are explained, which include their use as colloidal dispersions, surface coatings, and photothermal/photodynamic therapy agents. Due to their practical relevance, the examples where GMs function as synergistic agents or release platforms for metal ions and/or antibiotic drugs are also discussed. Later, the applicability of GMs in the design of wound dressings, infection-protective coatings, and antibiotic-like formulations ("nanoantibiotics") is assessed. Notably, to support our assessments, the existing clinical applications of conventional carbon materials are also evaluated. Finally, the key hurdles of the field are highlighted, and several possible directions for future investigations are proposed. We hope that the roadmap provided here will encourage researchers to tackle remaining challenges toward clinical translation of promising research findings and help realize the potential of GMs in antimicrobial nanomedicine.
Collapse
Affiliation(s)
- Hüseyin Enis Karahan
- School of Chemical and Biomolecular Engineering The University of Sydney NSW 2006 Australia
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore 637459 Singapore
- Singapore Institute of Manufacturing Technology Singapore 638075 Singapore
| | - Christian Wiraja
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore 637459 Singapore
| | - Chenjie Xu
- School of Chemical and Biomedical Engineering Nanyang Technological University Singapore 637459 Singapore
- NTU‐Northwestern Institute of Nanomedicine Nanyang Technological University 50 Nanyang Avenue Singapore 639798 Singapore
| | - Jun Wei
- Singapore Institute of Manufacturing Technology Singapore 638075 Singapore
| | - Yilei Wang
- School of Chemistry & Chemical Engineering Tianjin University of Technology 391 Binshui, Xidao, Xiqing District Tianjin 300384 China
| | - Liang Wang
- School of Chemistry & Chemical Engineering Tianjin University of Technology 391 Binshui, Xidao, Xiqing District Tianjin 300384 China
| | - Fei Liu
- State Key Laboratory of Applied Microbiology Southern China Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application Guangdong Institute of Microbiology 100 Central Xianlie Road Guangzhou 510070 China
| | - Yuan Chen
- School of Chemical and Biomolecular Engineering The University of Sydney NSW 2006 Australia
| |
Collapse
|
37
|
Ullah S, Ahmad A, Subhan F, Jan A, Raza M, Khan AU, Rahman AU, Khan UA, Tariq M, Yuan Q. Tobramycin mediated silver nanospheres/graphene oxide composite for synergistic therapy of bacterial infection. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:342-348. [DOI: 10.1016/j.jphotobiol.2018.05.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Revised: 05/02/2018] [Accepted: 05/05/2018] [Indexed: 01/26/2023]
|
38
|
Zhu J, Hou J, Zhang Y, Tian M, He T, Liu J, Chen V. Polymeric antimicrobial membranes enabled by nanomaterials for water treatment. J Memb Sci 2018. [DOI: 10.1016/j.memsci.2017.12.071] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Zheng H, Ma R, Gao M, Tian X, Li YQ, Zeng L, Li R. Antibacterial applications of graphene oxides: structure-activity relationships, molecular initiating events and biosafety. Sci Bull (Beijing) 2018; 63:133-142. [PMID: 36658925 DOI: 10.1016/j.scib.2017.12.012] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 11/16/2017] [Accepted: 12/11/2017] [Indexed: 01/21/2023]
Abstract
Bacterial infections may lead to diverse acute or chronic diseases (e.g., inflammation, sepsis and cancer). New antibiotics against bacteria are rarely discovered in recent years, which necessitates the exploration of new antibacterial agents. Engineered nanomaterials (ENMs) have been extensively studied for antibacterial use because of their long lasting killing effects in wide spectra of bacteria. Graphene oxide (GO) is one of the most widely studied ENMs and exhibit strong bactericidal effects. The physicochemical properties of GO play important roles in bacterial killing by triggering a cascade of toxic events. Many studies have explored the signaling pathways of GO in bacteria. Although molecular initiating events (MIEs) of GO in bacteria dominate its killing efficiency as well as toxicity mechanisms, they have been rarely reviewed. In this report, we discussed the structure-activity relationships (SARs) involved in GO-induced bacterial killing and the MIEs including redox reaction with biomolecules, mechanical destruction of membranes and catalysis of extracellular metabolites. Furthermore, we summarized the clinical or commercial applications of GO-based antibacterial products and discussed their biosafety in mammal. Finally, we reviewed the remaining challenges in GO for antibacterial applications, which may offer new insights for the development of nano antibacterial studies.
Collapse
Affiliation(s)
- Huizhen Zheng
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Ronglin Ma
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Meng Gao
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Xin Tian
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Yong-Qiang Li
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | - Lingwen Zeng
- Institute of Environmental and Food Safety, Wuhan Academy of Agricultural Science and Technology, Wuhan 430000, China; Guangzhou Institute of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China.
| | - Ruibin Li
- School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China.
| |
Collapse
|
40
|
Dong Y, Zhao W, Han Y, Zhang J, Nian Y, Zhang H, Li W. Dehydrochlorination of 1,2-dichloroethane over a tetraphenylphosphonium chloride-supported carbon catalyst. NEW J CHEM 2018. [DOI: 10.1039/c8nj02580k] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
An activated carbon-supported tetraphenylphosphonium chloride (TPPC/AC) catalyst shows excellent catalytic activity and stability for dehydrochlorination of 1,2-dichloroethane.
Collapse
Affiliation(s)
- Yanzhao Dong
- Key Laboratory for Green Chemical Technology MOE
- School of Chemical Engineering & Technology
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin 300350
| | - Wei Zhao
- Department of Research and Development
- Zhuhai Coslight Battery Co., Ltd
- Zhuhai 519100
- P. R. China
| | - You Han
- Key Laboratory for Green Chemical Technology MOE
- School of Chemical Engineering & Technology
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin 300350
| | - Jinli Zhang
- Key Laboratory for Green Chemical Technology MOE
- School of Chemical Engineering & Technology
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin 300350
| | - Yao Nian
- Key Laboratory for Green Chemical Technology MOE
- School of Chemical Engineering & Technology
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin 300350
| | - Haiyang Zhang
- School of Chemistry and Chemical Engineering of Shihezi University
- Shihezi
- P. R. China
| | - Wei Li
- Key Laboratory for Green Chemical Technology MOE
- School of Chemical Engineering & Technology
- Tianjin University
- Collaborative Innovation Center of Chemical Science and Chemical Engineering (Tianjin)
- Tianjin 300350
| |
Collapse
|
41
|
Sajjad S, Khan Leghari SA, Iqbal A. Study of Graphene Oxide Structural Features for Catalytic, Antibacterial, Gas Sensing, and Metals Decontamination Environmental Applications. ACS APPLIED MATERIALS & INTERFACES 2017; 9:43393-43414. [PMID: 29154531 DOI: 10.1021/acsami.7b08232] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study represents a comprehensive review about the structural features of graphene oxide (GO) and its significance in environmental applications. Two dimensional (2D) GO is tremendously focused in advanced carbon-based nanomaterials for environmental applications due to its tunable physicochemical characteristics. Herein, we report foundational structural models of GO and explore the chemical bonding of oxygen moieties, with graphite basal plane using various characterization tools. Moreover, the impact of these oxygen moieties and the morphology of GO for environmental applications such as removal of metal ions and catalytic, antibacterial, and gas sensing abilities have here been critically reviewed for the first time. Environmental applications of GO are highly significant because, in the recent era, the fast progress of industries, even in the countryside, results in air and water pollution. GO has been widely investigated by researchers to eradicate such environmental issues and for potential industrial and clinical applications due to its 2D structural features, large surface area, presence of oxygen moieties, nonconductive nature, intense mechanical strength, excellent water dispersibility, and tunable optoelectronic properties. Thence, particular emphasis is directed toward the modification of GO by varying the number of its oxygen functional groups and by coupling it with other exotic nanomaterials to induce unique properties in GO for potential environmental remediation purposes.
Collapse
Affiliation(s)
- Shamaila Sajjad
- International Islamic University , Sector H-10, Islamabad 44000, Pakistan
| | | | - Anum Iqbal
- International Islamic University , Sector H-10, Islamabad 44000, Pakistan
| |
Collapse
|
42
|
Wang F, Lu X, Peng W, Deng Y, Zhang T, Hu Y, Li XY. Sorption Behavior of Bisphenol A and Triclosan by Graphene: Comparison with Activated Carbon. ACS OMEGA 2017; 2:5378-5384. [PMID: 31457806 PMCID: PMC6644336 DOI: 10.1021/acsomega.7b00616] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/09/2017] [Indexed: 05/15/2023]
Abstract
The sorption behavior of bisphenol A (BPA) and triclosan (TCS) on graphene was investigated and compared with that on activated carbon. The kinetic studies showed that BPA sorption on graphene or activated carbon reached equilibrium within 240 min, whereas TCS sorption on these two materials achieved equilibrium in 60 and 120 min. The maximum sorption capacity (q m) of BPA on graphene or activated carbon reached approximately 2.0 × 103 μg/g, which indicated that graphene was not superior to traditional activated carbon for BPA removal. By contrast, the strong partitioning ability of TCS on graphene suggested the potential use of graphene materials to remove TCS from wastewater. Although the pH change from 4.0 to 7.0 did not greatly affect BPA or TCS sorption, the sorption decreased dramatically when the pH was increased from 7.0 to 9.0. This phenomenon should be attributed to the establishment of electrostatic repulsion between anionic BPA (or TCS) molecules and the graphene (or activated carbon) surface under higher pH conditions. The increase of ion (NaCl and CaCl2) concentrations may lead to substantial increase of BPA sorption on graphene or activated carbon due to the salting-out effect. By contrast, ion concentrations had no significant effect on TCS sorption because of the dominant hydrophobic interaction.
Collapse
Affiliation(s)
- Fei Wang
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong, Hong Kong SAR, China
- School
of Environment, Guangzhou Key Laboratory of Environmental Exposure
and Health, and Guangdong Key Laboratory of Environmental Pollution
and Health, Jinan University, Guangzhou 510632, China
- Guangdong
Provincial Key Laboratory of Environmental Pollution Control and Remediation
Technology, Guangzhou 510275, China
| | - Xingwen Lu
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong, Hong Kong SAR, China
- School
of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenchao Peng
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong, Hong Kong SAR, China
- School
of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Yu Deng
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong, Hong Kong SAR, China
| | - Tong Zhang
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong, Hong Kong SAR, China
| | - Yibo Hu
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong, Hong Kong SAR, China
| | - Xiao-yan Li
- Department
of Civil Engineering, The University of
Hong Kong, Pokfulam, Hong Kong, Hong Kong SAR, China
- E-mail: . Phone: 852-28592659. Fax: 852-25595337 (X.-y.L.)
| |
Collapse
|
43
|
Omidi S, Kakanejadifard A, Azarbani F. Noncovalent functionalization of graphene oxide and reduced graphene oxide with Schiff bases as antibacterial agents. J Mol Liq 2017. [DOI: 10.1016/j.molliq.2017.07.074] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
44
|
Chandraker K, Nagwanshi R, Jadhav SK, Ghosh KK, Satnami ML. Antibacterial properties of amino acid functionalized silver nanoparticles decorated on graphene oxide sheets. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 181:47-54. [PMID: 28329722 DOI: 10.1016/j.saa.2017.03.032] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 03/11/2017] [Accepted: 03/15/2017] [Indexed: 06/06/2023]
Abstract
Graphene oxide (GO) sheets decorated with amino acid L-cysteine (L-cys) functionalized silver nanoparticles (GO-L-cys-Ag) was synthesized by AgNO3, trisodium citrate, and NaBH4. GO-L-cys-Ag nanocomposite was characterized by transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectra, ultraviolet-visible (UV-vis) absorption spectra, which demonstrated that a diameter of L-cys-AgNPs compactly deposited on GO. Antibacterial activity tests of GO-L-cys-Ag nanocomposite were carried out using Escherichia coli MTCC 1687 and Staphylococcus aureus MTCC 3160 as model strains of Gram-negative and Gram-positive bacteria, respectively. The effect of bactericide dosage on antibacterial activity of GO-L-cys-Ag nanocomposite was examined by plate count, well diffusion and broth dilution methods. Morphological observation of bacterial cells by scanning electron microscope (SEM) showed that GO-L-cys-Ag nanocomposite was more destructive to cell membrane of Escherichia coli than that of Staphylococcus aureus. The above technique establish that the bactericidal property of GO-L-cys-Ag nanocomposite with wide range of applications in biomedical science.
Collapse
Affiliation(s)
- Kumudini Chandraker
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, (C.G.), India
| | - Rekha Nagwanshi
- Department of Chemistry, Govt. Madhav Science P. G. College, Ujjain 456010, (M.P.), India
| | - S K Jadhav
- School of Studies in Biotechnology, Pt. Ravishankar Shukla University, Raipur 492010, (C.G.), India
| | - Kallol K Ghosh
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, (C.G.), India
| | - Manmohan L Satnami
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, (C.G.), India.
| |
Collapse
|
45
|
Yousefi M, Dadashpour M, Hejazi M, Hasanzadeh M, Behnam B, de la Guardia M, Shadjou N, Mokhtarzadeh A. Anti-bacterial activity of graphene oxide as a new weapon nanomaterial to combat multidrug-resistance bacteria. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 74:568-581. [DOI: 10.1016/j.msec.2016.12.125] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 11/10/2016] [Accepted: 12/16/2016] [Indexed: 12/21/2022]
|
46
|
Ji H, Sun H, Qu X. Antibacterial applications of graphene-based nanomaterials: Recent achievements and challenges. Adv Drug Deliv Rev 2016; 105:176-189. [PMID: 27129441 DOI: 10.1016/j.addr.2016.04.009] [Citation(s) in RCA: 253] [Impact Index Per Article: 28.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2015] [Revised: 04/05/2016] [Accepted: 04/10/2016] [Indexed: 12/19/2022]
Abstract
Graphene has emerged as a novel green broad-spectrum antibacterial material, with little bacterial resistance and tolerable cytotoxic effect on mammalian cells. It exerts its antibacterial action via physical damages such as direct contact of its sharp edges with bacterial membranes and destructive extraction of lipid molecules. These damages also include wrapping and photothermal ablation mechanisms. Alternatively, chemical damage of bacteria is caused by oxidative stress with the generation of reactive oxygen species and charge transfer. Furthermore, graphene has been used as a support to disperse and stabilize various nanomaterials, such as metals, metal oxides, and polymers, with high antibacterial efficiency due to the synergistic effect. In addition, graphene-based antibiotic drug delivery platforms have been constructed. Due to the superior antibacterial properties and good biocompatibility, graphene-based nanocomposites have a wide range of applications, such as antibacterial packaging, wound dressing, and water disinfection. In this review, we highlight the antibacterial mechanism of graphene and summarize recent advances related to the antibacterial activity of graphene-based materials. Many of the recent application examples are further discussed. We hope that this review provides valuable insight, stimulates broader concerns, and spurs further developments in this promising field.
Collapse
|
47
|
Reverse osmosis nanocomposite membranes containing graphene oxides coated by tannic acid with chlorine-tolerant and antimicrobial properties. J Memb Sci 2016. [DOI: 10.1016/j.memsci.2016.04.026] [Citation(s) in RCA: 115] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
48
|
Park M, Song K, Lee T, Cha J, Lyo I, Kim BS. Tailoring Graphene Nanosheets for Highly Improved Dispersion Stability and Quantitative Assessment in Nonaqueous Solvent. ACS APPLIED MATERIALS & INTERFACES 2016; 8:21595-602. [PMID: 27490722 DOI: 10.1021/acsami.6b07272] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Aggregation is a critical limitation for the practical application of graphene-based materials. Herein, we report that graphene oxide (GO) nanosheets chemically modified with ethanolamine (EA), ethylene glycol (EG), and sulfanilic acid (SA) demonstrate superior dispersion stability in organic solvents, specifically EG, based on the differences in their covalent chemistries. Functionalized GO was successfully dispersed in EG at a concentration of 9.0 mg mL(-1) (0.50 vol %), the highest dispersion concentration reported to date. Moreover, our study introduces a unique analytical method for the assessment of dispersion stability and successfully quantifies the instability index based on transmission profiles under centrifugation cycles. Interestingly, GO-EG and GO-EA exhibited highly improved dispersion stabilities approximately 96 and 48 times greater than that of GO in EG solvent, respectively. This finding highlights the critical role of surface functional groups in the enhancement of chemical affinity and miscibility in the surrounding media. We anticipate that the novel structural designs and unique tools presented in this study will further the understanding and application of chemically functionalized carbon materials.
Collapse
Affiliation(s)
| | - Kyonghwa Song
- Central Advanced Research & Engineering Institute, Hyundai Motor Company , Uiwang 16082, Korea
| | | | - JinHyeok Cha
- Central Advanced Research & Engineering Institute, Hyundai Motor Company , Uiwang 16082, Korea
| | - InWoong Lyo
- Central Advanced Research & Engineering Institute, Hyundai Motor Company , Uiwang 16082, Korea
| | | |
Collapse
|
49
|
Shi L, Chen J, Teng L, Wang L, Zhu G, Liu S, Luo Z, Shi X, Wang Y, Ren L. The Antibacterial Applications of Graphene and Its Derivatives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4165-84. [PMID: 27389848 DOI: 10.1002/smll.201601841] [Citation(s) in RCA: 119] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 06/11/2016] [Indexed: 05/20/2023]
Abstract
Graphene materials have unique structures and outstanding thermal, optical, mechanical and electronic properties. In the last decade, these materials have attracted substantial interest in the field of nanomaterials, with applications ranging from biosensors to biomedicine. Among these applications, great advances have been made in the field of antibacterial agents. Here, recent advancements in the use of graphene and its derivatives as antibacterial agents are reviewed. Graphene is used in three forms: the pristine form; mixed with other antibacterial agents, such as Ag and chitosan; or with a base material, such as poly (N-vinylcarbazole) (PVK) and poly (lactic acid) (PLA). The main mechanisms proposed to explain the antibacterial behaviors of graphene and its derivatives are the membrane stress hypothesis, the oxidative stress hypothesis, the entrapment hypothesis, the electron transfer hypothesis and the photothermal hypothesis. This review describes contributions to improving these promising materials for antibacterial applications.
Collapse
Affiliation(s)
- Lin Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Jiongrun Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Lijing Teng
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Lin Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Guanglin Zhu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Sa Liu
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Zhengtang Luo
- Department of Chemical and Biomolecular Engineering, The Hong Kong University of Science and Technology, Hong Kong, 999077, PR China
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| | - Li Ren
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou, 510006, PR China
- School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, PR China
| |
Collapse
|
50
|
Zhang W, Ren G, Xu H, Zhang J, Liu H, Mu S, Cai X, Wu T. Genipin cross-linked chitosan hydrogel for the controlled release of tetracycline with controlled release property, lower cytotoxicity, and long-term bioactivity. JOURNAL OF POLYMER RESEARCH 2016. [DOI: 10.1007/s10965-016-1059-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|