1
|
Gao D, Yan C, Wang Y, Yang H, Liu M, Wang Y, Li C, Li C, Cheng G, Zhang L. Drug-eluting contact lenses: Progress, challenges, and prospects. Biointerphases 2024; 19:040801. [PMID: 38984804 DOI: 10.1116/6.0003612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/17/2024] [Indexed: 07/11/2024] Open
Abstract
Topical ophthalmic solutions (eye drops) are becoming increasingly popular in treating and preventing ocular diseases for their safety, noninvasiveness, and ease of handling. However, the static and dynamic barriers of eyes cause the extremely low bioavailability (<5%) of eye drops, making ocular therapy challenging. Thus, drug-eluting corneal contact lenses (DECLs) have been intensively investigated as a drug delivery device for their attractive properties, such as sustained drug release and improved bioavailability. In order to promote the clinical application of DECLs, multiple aspects, i.e., drug release and penetration, safety, and biocompatibility, of these drug delivery systems were thoroughly examined. In this review, we systematically discussed advances in DECLs, including types of preparation materials, drug-loading strategies, drug release mechanisms, strategies for penetrating ocular barriers, in vitro and in vivo drug delivery and penetration detection, safety, and biocompatibility validation methods, as well as challenges and future perspectives.
Collapse
Affiliation(s)
- Dongdong Gao
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116033, China
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Chunxiao Yan
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| | - Yong Wang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Heqing Yang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Mengxin Liu
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| | - Yi Wang
- Department of Pharmaceutical Sciences, State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian, Liaoning 116023, China
| | - Chunmei Li
- Tsinglan School, Songshan Lake, Dongguan 523000, China
| | - Chao Li
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Gang Cheng
- School of Engineering, Westlake University, Hangzhou, Zhejiang 310030, China
| | - Lijun Zhang
- Faculty of Medicine, Dalian University of Technology, Dalian, Liaoning 116033, China
- The Third People's Hospital of Dalian, Liaoning Provincial Key Laboratory of Cornea and Ocular Surface Diseases, Liaoning Provincial Optometry Technology Engineering Research Center, Dalian, Liaoning 116033, China
| |
Collapse
|
2
|
Rykowska I, Michałkiewicz O, Nowak I, Nowak R. Drug-Modified Contact Lenses-Properties, Release Kinetics, and Stability of Active Substances with Particular Emphasis on Cyclosporine A: A Review. Molecules 2024; 29:2609. [PMID: 38893485 PMCID: PMC11173495 DOI: 10.3390/molecules29112609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 05/27/2024] [Accepted: 05/29/2024] [Indexed: 06/21/2024] Open
Abstract
The following review focuses on the manufacturing and parameterizing of ocular drug delivery systems (DDS) using polymeric materials to create soft contact lenses. It discusses the types of drugs embedded into contact lenses, the various polymeric materials used in their production, methods for assessing the mechanical properties of polymers, and techniques for studying drug release kinetics. The article also explores strategies for investigating the stability of active substances released from contact lenses. It specifically emphasizes the production of soft contact lenses modified with Cyclosporine A (CyA) for the topical treatment of specific ocular conditions. The review pays attention to methods for monitoring the stability of Cyclosporine A within the discussed DDS, as well as investigating the influence of polymer matrix type on the stability and release of CyA.
Collapse
Affiliation(s)
- Iwona Rykowska
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (I.R.); (I.N.)
| | - Ola Michałkiewicz
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (I.R.); (I.N.)
| | - Iwona Nowak
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznanskiego 8, 61-614 Poznan, Poland; (I.R.); (I.N.)
| | - Rafał Nowak
- Department of Ophthalmology, Military Institute of Medicine, ul. Szaserów 128, 04-141 Warsaw, Poland;
| |
Collapse
|
3
|
Reis IM, Dixon PJ, Sekar P, Chauhan A. Sustained Delivery of Olopatadine from Vitamin-E Loaded Contact Lenses. J Ocul Pharmacol Ther 2024; 40:126-135. [PMID: 38489059 PMCID: PMC11265619 DOI: 10.1089/jop.2023.0111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 12/03/2023] [Indexed: 03/17/2024] Open
Abstract
Purpose: Topical antihistamines, such as olopatadine hydrochloride, an H1 receptor antagonist, are commonly prescribed for treating allergic conjunctivitis. Drug delivery via eye drops has many deficiencies including a short residence time due to tear drainage via the nasolacrimal duct, which results in a low bioavailability and potential for side effects. These deficiencies could be mitigated by a drug-eluting contact lens such as the recently approved ACUVUE® THERAVISION™ WITH KETOTIFEN which is a daily disposable etafilcon, a drug-eluting contact lens with ketotifen (19 μg per lens). Here, we investigate the feasibility of designing a drug-eluting lens with sustained release of olopatadine for treating allergies using an extended wear lens. Methods: Nanobarrier depots composed of vitamin-E (VE) are formed through direct entrapment by ethanol-driven swelling. The drug-loaded lenses are characterized for transparency and water content. In vitro release is measured under sink conditions and fitted to a diffusion control release model to determine diffusivity and partition coefficient. Results: In vitro studies indicate that ACUVUE OASYS® and ACUVUE TruEye™ lenses loaded with ∼0.3 g of VE/g of hydrogel effectively prolong olopatadine dynamics by 7-fold and 375-fold, respectively. Incorporation of VE into the lenses retains visible light transmission and other properties. Conclusion: The VE incorporation in commercial lenses significantly increases the release duration offering the possibility of antiallergy extended wear lenses.
Collapse
Affiliation(s)
- Inês M. Reis
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Philip J. Dixon
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Poorvajan Sekar
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
| | - Anuj Chauhan
- Department of Chemical Engineering, University of Florida, Gainesville, Florida, USA
- Department of Chemical Engineering, Colorado School of Mines, Golden, Colorado, USA
| |
Collapse
|
4
|
Sun R, Ma S, Chen X, Deng Y, Gou J, Yin T, He H, Wang Y, Tang X, Zhang Y. Inflammation-responsive molecular-gated contact lens for the treatment of corneal neovascularization. J Control Release 2023; 360:818-830. [PMID: 37481212 DOI: 10.1016/j.jconrel.2023.07.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/24/2023]
Abstract
Corneal neovascularization (CNV) badly damages the corneal transparency, resulting in visual disturbance and blindness. The frequent administration of glucocorticoid eye drops in clinical increases the possibility of side effects and reduces patient compliance. Considering CNV is often accompanied by an increase in ROS production, a ROS-responsive monomer 2-(methylthio)ethyl methacrylate was introduced into the matrix as a "gating switch". The prepared dexamethasone contact lenses (MCLs@Dex) showed a significant H2O2-responsive release for 168 h. To avoid corneal hypoxia and neovascularization caused by long-term wearing, high‑oxygen-permeability fluorosiloxane materials were incorporated. The oxygen permeability of MCLs@Dex was 4 times that of commercially available hydrogel contact lenses and had ultra-low protein adsorption, which meets the requirements of long-term wearing. In vivo pharmacokinetic studies showed that MCLs@Dex increased the mean residence time by 19.7 times and bioavailability by 2.29 times compared with eye drops, validating the ROS response and sustained release properties. More importantly, MCLs@Dex had satisfactory effects on reducing inflammation and decreasing the related cytokines and oxidative stress levels, and demonstrated significant inhibition of neovascularization, with a suppression rate of 76.53% on the 14th day. This responsive drug delivery system provides a promising new method for the safe and effective treatment of ocular surface diseases.
Collapse
Affiliation(s)
- Rong Sun
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Shuting Ma
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Xi Chen
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yaxin Deng
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Jingxin Gou
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Tian Yin
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Haibing He
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yanjiao Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Xing Tang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China
| | - Yu Zhang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, Liaoning, PR China.
| |
Collapse
|
5
|
Lovrec-Krstič T, Orthaber K, Maver U, Sarenac T. Review of Potential Drug-Eluting Contact Lens Technologies. MATERIALS (BASEL, SWITZERLAND) 2023; 16:ma16103653. [PMID: 37241280 DOI: 10.3390/ma16103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 05/05/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023]
Abstract
The field of ophthalmology is expanding exponentially, both in terms of diagnostic and therapeutic capabilities, as well as the worldwide increasing incidence of eye-related diseases. Due to an ageing population and climate change, the number of ophthalmic patients will continue to increase, overwhelming healthcare systems and likely leading to under-treatment of chronic eye diseases. Since drops are the mainstay of therapy, clinicians have long emphasised the unmet need for ocular drug delivery. Alternative methods, i.e., with better compliance, stability and longevity of drug delivery, would be preferred. Several approaches and materials are being studied and used to overcome these drawbacks. We believe that drug-loaded contact lenses are among the most promising and are a real step toward dropless ocular therapy, potentially leading to a transformation in clinical ophthalmic practice. In this review, we outline the current role of contact lenses in ocular drug delivery, focusing on materials, drug binding and preparation, concluding with a look at future developments.
Collapse
Affiliation(s)
- Tina Lovrec-Krstič
- Community Health Centre Dr. Adolfa Drolca Maribor, Department of Radiology with Centre for Breast Disease, Ulica talcev 5, 2000 Maribor, Slovenia
| | - Kristjan Orthaber
- Department of Anesthesiology, Intensive Care and Pain Therapy, University Medical Center Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| | - Uroš Maver
- Institute of Biomedical Sciences and Department of Pharmacology, Faculty of Medicine, University of Maribor, Taborska ulica 8, 2000 Maribor, Slovenia
| | - Tomislav Sarenac
- Department of Ophthalmology, University Medical Center Maribor, Ljubljanska 5, 2000 Maribor, Slovenia
| |
Collapse
|
6
|
Smułek W, Grząbka-Zasadzińska A, Kilian A, Ciesielczyk F, Borysiak S, Baranowska HM, Walkowiak K, Kaczorek E, Jarzębski M. Design of vitamin-loaded emulsions in agar hydrogel matrix dispersed with plant surfactants. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
|
7
|
Abdi B, Mofidfar M, Hassanpour F, Kirbas Cilingir E, Kalajahi SK, Milani PH, Ghanbarzadeh M, Fadel D, Barnett M, Ta CN, Leblanc RM, Chauhan A, Abbasi F. Therapeutic contact lenses for the treatment of corneal and ocular surface diseases: advances in extended and targeted drug delivery. Int J Pharm 2023; 638:122740. [PMID: 36804524 DOI: 10.1016/j.ijpharm.2023.122740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 02/01/2023] [Accepted: 02/14/2023] [Indexed: 02/21/2023]
Abstract
The eye is one of the most important organs in the human body providing critical information on the environment. Many corneal diseases can lead to vision loss affecting the lives of people around the world. Ophthalmic drug delivery has always been a major challenge in the medical sciences. Since traditional methods are less efficient (∼ 5%) at delivering drugs to ocular tissues, contact lenses have generated growing interest in ocular drug delivery due to their potential to enhance drug bioavailability in ocular tissues. The main techniques used to achieve sustained release are discussed in this review, including soaking in drug solutions, incorporating drug into multilayered contact lenses, use of vitamin E barriers, molecular imprinting, nanoparticles, micelles and liposomes. The most clinically relevant results on different eye pathologies are presented. In addition, this review summarizes the benefits of contact lenses over eye drops, strategies for incorporating drugs into lenses to achieve sustained release, results of in vitro and in vivo studies, and the recent advances in the commercialization of therapeutic contact lenses for allergic conjunctivitis.
Collapse
Affiliation(s)
- Behnam Abdi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Mohammad Mofidfar
- Department of Chemistry, Stanford University, Stanford, CA, USA; School of Medicine, Stanford University, Stanford, CA, USA
| | - Fatemeh Hassanpour
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | | | - Sepideh K Kalajahi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Paria H Milani
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Mahsa Ghanbarzadeh
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Daddi Fadel
- Center for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, ON, Canada
| | - Melissa Barnett
- University of California, Davis Eye Center, Sacramento, CA, USA
| | - Christopher N Ta
- Department of Ophthalmology, Stanford University School of Medicine, Stanford, CA, USA
| | - Roger M Leblanc
- Department of Chemistry, University of Miami, Coral Gables, FL, USA.
| | - Anuj Chauhan
- Chemical and Biological Engineering Department, Colorado School of Mines, CO, USA.
| | - Farhang Abbasi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran.
| |
Collapse
|
8
|
Innovation in the Development of Synthetic and Natural Ocular Drug Delivery Systems for Eye Diseases Treatment: Focusing on Drug-Loaded Ocular Inserts, Contacts, and Intraocular Lenses. Pharmaceutics 2023; 15:pharmaceutics15020625. [PMID: 36839947 PMCID: PMC9961328 DOI: 10.3390/pharmaceutics15020625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
Nowadays, ocular drug delivery still remains a challenge, since the conventional dosage forms used for anterior and posterior ocular disease treatments, such as topical, systemic, and intraocular administration methods, present important limitations mainly related to the anatomical complexity of the eye. In particular, the blood-ocular barrier along with the corneal barrier, ocular surface, and lacrimal fluid secretion reduce the availability of the administered active compounds and their efficacy. These limitations have increased the need to develop safe and effective ocular delivery systems able to sustain the drug release in the interested ocular segment over time. In the last few years, thanks to the innovations in the materials and technologies employed, different ocular drug delivery systems have been developed. Therefore, this review aims to summarize the synthetic and natural drug-loaded ocular inserts, contacts, and intraocular lenses that have been recently developed, emphasizing the characteristics that make them promising for future ocular clinical applications.
Collapse
|
9
|
Peng C, Kuang L, Zhao J, Ross AE, Wang Z, Ciolino JB. Bibliometric and visualized analysis of ocular drug delivery from 2001 to 2020. J Control Release 2022; 345:625-645. [PMID: 35321827 DOI: 10.1016/j.jconrel.2022.03.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 03/15/2022] [Accepted: 03/16/2022] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To perform a bibliometric analysis in the field of ocular drug delivery research to characterize the current international trends and to present visual representations of the past and emerging trends on ocular drug delivery research over the past decade. METHOD In this cross-sectional study, a bibliometric analysis of data retrieved and extracted from the Web of Science Core Collection (WoSCC) database was performed to analyze evolution and theme trends on ocular drug delivery research from January 1, 2001, to December 31, 2020. A total of 4334 articles on ocular drug delivery were evaluated for specific characteristics, such as publication year, journals, authors, institutions, countries/regions, references, and keywords. Co-authorship analysis, co-occurrence analysis, co-citation analysis, and network visualization were constructed by VOSviewer. Some important subtopics identified by bibliometric characterization were further discussed and reviewed. RESULTS From 2001 to 2020, the annual global publications increased by 746.15%, from 52 to 440. International Journal of Pharmaceutics published the most manuscripts (250 publications) and produced the highest citations (9509 citations), followed by Investigative Ophthalmology & Visual Science (202 publications) and Journal of Ocular Pharmacology and Therapeutics (136 publications). The United States (1289 publications, 31,512 citations), the University of Florida (82 publications, 2986 citations), and Chauhan, Anuj (52 publications, 2354 citations) were the most productive and impactful institution, country, and author respectively. The co-occurrence cluster analysis of the top 100 keywords form five clusters: (1) micro/nano ocular drug delivery systems; (2) the treatment of inflammation and posterior diseases; (3) macroscopic ocular drug delivery systems/devices; (4) the characteristics of drug delivery systems; (5) and the ocular drug delivery for glaucoma treatment. Diabetic macular edema, anti-VEGF, ranibizumab, bevacizumab, micelles and latanoprost, were the latest high-frequency keywords, indicating the emerging frontiers of ocular drug delivery. Further discussions into the subtopics were provided to assist researchers to determine the range of research topics and plan research direction. CONCLUSIONS Over the last two decades there has been a progressive increase in the number of publications and citations on research related to ocular drug delivery across many countries, institutions, and authors. The present study sheds light on current trends, global collaboration patterns, basic knowledge, research hotspots, and emerging frontiers of ocular drug delivery. Novel solutions for ocular drug delivery and the treatment of inflammation and posterior diseases were the major themes over the last 20 years.
Collapse
|
10
|
|
11
|
Pereira-da-Mota AF, Phan CM, Concheiro A, Jones L, Alvarez-Lorenzo C. Testing drug release from medicated contact lenses: The missing link to predict in vivo performance. J Control Release 2022; 343:672-702. [DOI: 10.1016/j.jconrel.2022.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 12/13/2022]
|
12
|
Enhanced topical corticosteroids delivery to the eye: A trade-off in strategy choice. J Control Release 2021; 339:91-113. [PMID: 34560157 DOI: 10.1016/j.jconrel.2021.09.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 09/16/2021] [Accepted: 09/18/2021] [Indexed: 12/19/2022]
Abstract
Topical corticosteroids are the primary treatment of ocular inflammation caused by surgery, injury, or other conditions. Drug pre-corneal residence time, drug water solubility, and drug corneal permeability coefficient are the major factors that determine the ocular drug bioavailability after topical administration. Although growing research successfully enhanced local delivery of corticosteroids utilizing various strategies, rational and dynamic approaches to strategy selection are still lacking. Within this review, an overview of the various strategies as well as their performance in retention, solubility, and permeability coefficient of corticosteroids are provided. On this basis, the tradeoff of strategy selection is discussed, which may shed light on the rational choice and application of ophthalmic delivery enhancement strategies.
Collapse
|
13
|
Mofidfar M, Abdi B, Ahadian S, Mostafavi E, Desai TA, Abbasi F, Sun Y, Manche EE, Ta CN, Flowers CW. Drug delivery to the anterior segment of the eye: A review of current and future treatment strategies. Int J Pharm 2021; 607:120924. [PMID: 34324989 PMCID: PMC8579814 DOI: 10.1016/j.ijpharm.2021.120924] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 07/02/2021] [Accepted: 07/05/2021] [Indexed: 01/03/2023]
Abstract
Research in the development of ophthalmic drug formulations and innovative technologies over the past few decades has been directed at improving the penetration of medications delivered to the eye. Currently, approximately 90% of all ophthalmic drug formulations (e.g. liposomes, micelles) are applied as eye drops. The major challenge of topical eye drops is low bioavailability, need for frequent instillation due to the short half-life, poor drug solubility, and potential side effects. Recent research has been focused on improving topical drug delivery devices by increasing ocular residence time, overcoming physiological and anatomical barriers, and developing medical devices and drug formulations to increase the duration of action of the active drugs. Researchers have developed innovative technologies and formulations ranging from sub-micron to macroscopic size such as prodrugs, enhancers, mucus-penetrating particles (MPPs), therapeutic contact lenses, and collagen corneal shields. Another approach towards the development of effective topical drug delivery is embedding therapeutic formulations in microdevices designed for sustained release of the active drugs. The goal is to optimize the delivery of ophthalmic medications by achieving high drug concentration with prolonged duration of action that is convenient for patients to administer.
Collapse
Affiliation(s)
| | - Behnam Abdi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Samad Ahadian
- Terasaki Institute for Biomedical Innovation, Los Angeles, CA, USA
| | - Ebrahim Mostafavi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Stanford Cardiovascular Institute, Stanford University, CA, USA
| | - Tejal A Desai
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Farhang Abbasi
- Institute of Polymeric Materials (IPM), Sahand University of Technology, New Town of Sahand, Tabriz, Iran; Faculty of Polymer Engineering, Sahand University of Technology, New Town of Sahand, Tabriz, Iran
| | - Yang Sun
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Edward E Manche
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Christopher N Ta
- Byers Eye Institute, Stanford University School of Medicine, Palo Alto, CA, USA.
| | - Charles W Flowers
- USC Roski Eye Institute, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
14
|
Lanier OL, Manfre M, Kulkarni S, Bailey C, Chauhan A. Combining modeling of drug uptake and release of cyclosporine in contact lenses to determine partition coefficient and diffusivity. Eur J Pharm Sci 2021; 164:105891. [PMID: 34051298 DOI: 10.1016/j.ejps.2021.105891] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 11/19/2022]
Abstract
Ophthalmic drug delivery via eye drops is inefficient because only about 1-5% of the drug permeates the cornea during the short residence time of a few minutes. Contact lenses are receiving considerable attention for delivering ophthalmic drugs because of higher bioavailability and the possibility of sustained release from hour to days, and possibly longer. The drug release durations from contact lenses are typically measured in vitro and it is challenging to relate the in vitro release to in vivo release, particularly for hydrophobic drugs which may not exhibit sink release in vitro and in vivo. The in vitro release can be fitted to diffusion equation to determine the partition coefficient and diffusivity, which can then be utilized to model in vivo release. The Higuchi equation is frequently used to model the short time release from a contact lens to determine diffusivity with the implicit assumption that the release is under sink conditions and the starting concentration in the lens was uniform. Both conditions may be violated when measuring release of hydrophobic drugs from contact lenses because the diffusivity and partition coefficient, and also the time needed for equilibrium are not known a priori. Here we develop a method to use the data for both loading and release of cyclosporine, which is a common hydrophobic ophthalmic drug, to determine the partition coefficient and diffusivity. The proposed approach does not require sink conditions and also does not require the lens to be fully equilibrated during loading, which may take almost a month for lenses considered here. The model is based on solving the diffusion equation in the gel along with a mass balance in the fluid. The model equations are solved numerically by finite difference. When the value of partition coefficient is high, such as it is for cyclosporine, the dynamic data is only sensitive to a ratio of partition coefficient and diffusivity, and this ratio had to first be determined from the loading data. Then the two unknown parameters were obtained by minimizing the error between the model prediction and experimental data. The method was used to determine D and K for several silicone hydrogel formulations with varying ratio of hydrogel and silicone fractions.
Collapse
Affiliation(s)
- Olivia L Lanier
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401, United States
| | - Miranda Manfre
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401, United States
| | - Sandesh Kulkarni
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401, United States
| | - Claire Bailey
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401, United States
| | - Anuj Chauhan
- Chemical and Biological Engineering Department, Colorado School of Mines, Golden, CO 80401, United States.
| |
Collapse
|
15
|
Bertsch P, Bergfreund J, Windhab EJ, Fischer P. Physiological fluid interfaces: Functional microenvironments, drug delivery targets, and first line of defense. Acta Biomater 2021; 130:32-53. [PMID: 34077806 DOI: 10.1016/j.actbio.2021.05.051] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 12/13/2022]
Abstract
Fluid interfaces, i.e. the boundary layer of two liquids or a liquid and a gas, play a vital role in physiological processes as diverse as visual perception, oral health and taste, lipid metabolism, and pulmonary breathing. These fluid interfaces exhibit a complex composition, structure, and rheology tailored to their individual physiological functions. Advances in interfacial thin film techniques have facilitated the analysis of such complex interfaces under physiologically relevant conditions. This allowed new insights on the origin of their physiological functionality, how deviations may cause disease, and has revealed new therapy strategies. Furthermore, the interactions of physiological fluid interfaces with exogenous substances is crucial for understanding certain disorders and exploiting drug delivery routes to or across fluid interfaces. Here, we provide an overview on fluid interfaces with physiological relevance, namely tear films, interfacial aspects of saliva, lipid droplet digestion and storage in the cell, and the functioning of lung surfactant. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe therapies and drug delivery approaches targeted at fluid interfaces. STATEMENT OF SIGNIFICANCE: Fluid interfaces are inherent to all living organisms and play a vital role in various physiological processes. Examples are the eye tear film, saliva, lipid digestion & storage in cells, and pulmonary breathing. These fluid interfaces exhibit complex interfacial compositions and structures to meet their specific physiological function. We provide an overview on physiological fluid interfaces with a focus on interfacial phenomena. We elucidate their structure-function relationship, discuss diseases associated with interfacial composition, and describe novel therapies and drug delivery approaches targeted at fluid interfaces. This sets the scene for ocular, oral, or pulmonary surface engineering and drug delivery approaches.
Collapse
|
16
|
Torres-Luna C, Hu N, Domszy R, Fan X, Yang J, Briber RM, Wang NS, Yang A. Effect of Carbon Chain Length, Ionic Strength, and pH on the In Vitro Release Kinetics of Cationic Drugs from Fatty-Acid-Loaded Contact Lenses. Pharmaceutics 2021; 13:pharmaceutics13071060. [PMID: 34371751 PMCID: PMC8309118 DOI: 10.3390/pharmaceutics13071060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/01/2021] [Accepted: 07/05/2021] [Indexed: 11/17/2022] Open
Abstract
This paper explores the use of fatty acids in silicone hydrogel contact lenses for extending the release duration of cationic drugs. Drug release kinetics was dependent on the carbon chain length of the fatty acid loaded in the lens, with 12-, 14- and 18-carbon chain length fatty acids increasing the uptake and the release duration of ketotifen fumarate (KTF) and tetracaine hydrochloride (THCL). Drug release kinetics from oleic acid-loaded lenses was evaluated in phosphate buffer saline (PBS) at different ionic strengths (I = 167, 500, 1665 mM); the release duration of KTF and THCL was decreased with increasing ionic strength of the release medium. Furthermore, the release of KTF and THCL in deionized water did not show a burst and was significantly slower compared to that in PBS. The release kinetics of KTF and THCL was significantly faster when the pH of the release medium was decreased from 7.4 towards 5.5 because of the decrease in the relative amounts of oleate anions in the lens mostly populated at the polymer–pore interfaces. The use of boundary charges at the polymer–pore interfaces of a contact lens to enhance drug partition and extend its release is further confirmed by loading cationic phytosphingosine in contact lenses to attract an anionic drug.
Collapse
Affiliation(s)
- Cesar Torres-Luna
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA;
- Lynthera Corporation, 1200 Corporate Blvd., STE 10C, Lancaster, PA 17601, USA; (N.H.); (R.D.); (J.Y.)
| | - Naiping Hu
- Lynthera Corporation, 1200 Corporate Blvd., STE 10C, Lancaster, PA 17601, USA; (N.H.); (R.D.); (J.Y.)
| | - Roman Domszy
- Lynthera Corporation, 1200 Corporate Blvd., STE 10C, Lancaster, PA 17601, USA; (N.H.); (R.D.); (J.Y.)
| | - Xin Fan
- Department of Chemical Engineering, Auburn University, Auburn, AL 36849, USA;
| | - Jeff Yang
- Lynthera Corporation, 1200 Corporate Blvd., STE 10C, Lancaster, PA 17601, USA; (N.H.); (R.D.); (J.Y.)
| | - Robert M. Briber
- Department of Materials Science & Engineering, University of Maryland, College Park, MD 20740, USA;
| | - Nam Sun Wang
- Department of Chemical & Biomolecular Engineering, University of Maryland, College Park, MD 20740, USA;
- Correspondence: (N.S.W.); (A.Y.); Tel.: +1-(301)-405-1910 (N.S.W.); +1-(717)-522-1739 (A.Y.)
| | - Arthur Yang
- Lynthera Corporation, 1200 Corporate Blvd., STE 10C, Lancaster, PA 17601, USA; (N.H.); (R.D.); (J.Y.)
- Correspondence: (N.S.W.); (A.Y.); Tel.: +1-(301)-405-1910 (N.S.W.); +1-(717)-522-1739 (A.Y.)
| |
Collapse
|
17
|
Fang G, Yang X, Wang Q, Zhang A, Tang B. Hydrogels-based ophthalmic drug delivery systems for treatment of ocular diseases. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2021; 127:112212. [PMID: 34225864 DOI: 10.1016/j.msec.2021.112212] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/21/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022]
Abstract
An increasing number of people worldwide are affected by eye diseases, eventually leading to visual impairment or complete blindness. Conventional treatment involves the use of eye drops. However, these formulations often confer low ocular bioavailability and frequent dosing is required. Therefore, there is an urgent need to develop more effective drug delivery systems to tackle the current limitations. Hydrogels are multifunctional ophthalmic drug delivery systems capable of extending drug residence time and sustaining release of drugs. In this review, common ocular diseases and corresponding therapeutic drugs are briefly introduced. In addition, various types of hydrogels reported for ophthalmic drug delivery, including in-situ gelling hydrogels, contact lenses, low molecular weight supramolecular hydrogels, cyclodextrin/poly (ethylene glycol)-based supramolecular hydrogels and hydrogel-forming microneedles, are summarized. Besides, marketed hydrogel-based opthalmic formulations and clinical trials are also highlighted. Finally, critical considerations regarding clinical translation of biologics-loaded hydrogels are discussed.
Collapse
Affiliation(s)
- Guihua Fang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Xuewen Yang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Qiuxiang Wang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Aiwen Zhang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China
| | - Bo Tang
- School of Pharmacy, Jiangsu Key Laboratory of Inflammation and Molecular Drug Targets, Nantong University, 19 Qixiu Road, Nantong, Jiangsu Province 226001, China.
| |
Collapse
|
18
|
Jones L, Hui A, Phan CM, Read ML, Azar D, Buch J, Ciolino JB, Naroo SA, Pall B, Romond K, Sankaridurg P, Schnider CM, Terry L, Willcox M. CLEAR - Contact lens technologies of the future. Cont Lens Anterior Eye 2021; 44:398-430. [PMID: 33775384 DOI: 10.1016/j.clae.2021.02.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 02/01/2021] [Indexed: 12/20/2022]
Abstract
Contact lenses in the future will likely have functions other than correction of refractive error. Lenses designed to control the development of myopia are already commercially available. Contact lenses as drug delivery devices and powered through advancements in nanotechnology will open up further opportunities for unique uses of contact lenses. This review examines the use, or potential use, of contact lenses aside from their role to correct refractive error. Contact lenses can be used to detect systemic and ocular surface diseases, treat and manage various ocular conditions and as devices that can correct presbyopia, control the development of myopia or be used for augmented vision. There is also discussion of new developments in contact lens packaging and storage cases. The use of contact lenses as devices to detect systemic disease has mostly focussed on detecting changes to glucose levels in tears for monitoring diabetic control. Glucose can be detected using changes in colour, fluorescence or generation of electric signals by embedded sensors such as boronic acid, concanavalin A or glucose oxidase. Contact lenses that have gained regulatory approval can measure changes in intraocular pressure to monitor glaucoma by measuring small changes in corneal shape. Challenges include integrating sensors into contact lenses and detecting the signals generated. Various techniques are used to optimise uptake and release of the drugs to the ocular surface to treat diseases such as dry eye, glaucoma, infection and allergy. Contact lenses that either mechanically or electronically change their shape are being investigated for the management of presbyopia. Contact lenses that slow the development of myopia are based upon incorporating concentric rings of plus power, peripheral optical zone(s) with add power or non-monotonic variations in power. Various forms of these lenses have shown a reduction in myopia in clinical trials and are available in various markets.
Collapse
Affiliation(s)
- Lyndon Jones
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong.
| | - Alex Hui
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
| | - Chau-Minh Phan
- Centre for Ocular Research & Education (CORE), School of Optometry & Vision Science, University of Waterloo, Waterloo, Canada; Centre for Eye and Vision Research (CEVR), 17W Hong Kong Science Park, Hong Kong
| | - Michael L Read
- Eurolens Research, Division of Pharmacy and Optometry, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Dimitri Azar
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, USA; Verily Life Sciences, San Francisco, CA, USA
| | - John Buch
- Johnson & Johnson Vision Care, Jacksonville, FL, USA
| | - Joseph B Ciolino
- Department of Ophthalmology, Massachusetts Eye and Ear Infirmary, Harvard Medical School, Boston, MA, USA
| | - Shehzad A Naroo
- College of Health and Life Sciences, Aston University, Birmingham B4 7ET, UK
| | - Brian Pall
- Johnson & Johnson Vision Care, Jacksonville, FL, USA
| | - Kathleen Romond
- Department of Ophthalmology and Visual Sciences, University of Illinois College of Medicine, Chicago, IL, USA
| | - Padmaja Sankaridurg
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia; Brien Holden Vision Institute, Sydney, Australia
| | | | - Louise Terry
- School of Optometry and Vision Sciences, Cardiff University, UK
| | - Mark Willcox
- School of Optometry and Vision Science, UNSW Sydney, Sydney, NSW, Australia
| |
Collapse
|
19
|
Grassiri B, Zambito Y, Bernkop-Schnürch A. Strategies to prolong the residence time of drug delivery systems on ocular surface. Adv Colloid Interface Sci 2021; 288:102342. [PMID: 33444845 DOI: 10.1016/j.cis.2020.102342] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 12/09/2020] [Accepted: 12/09/2020] [Indexed: 12/12/2022]
Abstract
Ocular diseases may be treated via different routes of administration, such as topical, intracameral, intravitreal, oral and parenteral. Among them the topical route is most accepted by patients, although it provides in many cases the lowest bioavailability. Indeed, when a topical formulation reaches the precorneal area, i.e., the drug absorption and/or action site, it is rapidly eliminated due to eye protection mechanisms such as blinking, basal and reflex tearing, and naso-lacrimal draining. To avoid this and to reduce the frequency of dosing, various strategies have been developed to prolong drug residence time after topical administration. These strategies include the use of viscosity increasing and mucoadhesive excipients as well as combinations thereof. From the drug delivery system point of view, liquid and semisolid formulations are preferred over solid formulations such as ocular inserts and contact lenses. Furthermore, liquid and semisolid formulations can contain nano- and microcarrier systems that contribute to a prolonged residence time. Within this review an overview about the different types of excipients and formulations as well as their performance in valid animal models and clinical trials is provided.
Collapse
Affiliation(s)
- Brunella Grassiri
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy
| | - Ylenia Zambito
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy; Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa 56100, Italy
| | - Andreas Bernkop-Schnürch
- Institute of Pharmacy/Dep. of Pharmaceutical Technology, Center for Chemistry and Biomedicine, University of Innsbruck, Innrain 80/82, 6020 Innsbruck, Austria.
| |
Collapse
|
20
|
Toffoletto N, Saramago B, Serro AP. Therapeutic Ophthalmic Lenses: A Review. Pharmaceutics 2020; 13:36. [PMID: 33379411 PMCID: PMC7824655 DOI: 10.3390/pharmaceutics13010036] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 12/09/2020] [Accepted: 12/17/2020] [Indexed: 12/17/2022] Open
Abstract
An increasing incidence of eye diseases has been registered in the last decades in developed countries due to the ageing of population, changes in lifestyle, environmental factors, and the presence of concomitant medical conditions. The increase of public awareness on ocular conditions leads to an early diagnosis and treatment, as well as an increased demand for more effective and minimally invasive solutions for the treatment of both the anterior and posterior segments of the eye. Despite being the most common route of ophthalmic drug administration, eye drops are associated with compliance issues, drug wastage by lacrimation, and low bioavailability due to the ocular barriers. In order to overcome these problems, the design of drug-eluting ophthalmic lenses constitutes a non-invasive and patient-friendly approach for the sustained drug delivery to the eye. Several examples of therapeutic contact lenses and intraocular lenses have been developed, by means of different strategies of drug loading, leading to promising results. This review aims to report the recent advances in the development of therapeutic ophthalmic lenses for the treatment and/or prophylaxis of eye pathologies (i.e., glaucoma, cataract, corneal diseases, or posterior segment diseases) and it gives an overview of the future perspectives and challenges in the field.
Collapse
Affiliation(s)
- Nadia Toffoletto
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, University of Lisbon, Av. Rovisco Pais, 1049-001 Lisbon, Portugal; (B.S.); (A.P.S.)
- Centro de Investigação Interdisciplinar Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| |
Collapse
|
21
|
Castro-Balado A, Mondelo-García C, Varela-Rey I, Moreda-Vizcaíno B, Sierra-Sánchez JF, Rodríguez-Ares MT, Hermelo-Vidal G, Zarra-Ferro I, González-Barcia M, Yebra-Pimentel E, Giráldez-Fernández MJ, Otero-Espinar FJ, Fernández-Ferreiro A. Recent Research in Ocular Cystinosis: Drug Delivery Systems, Cysteamine Detection Methods and Future Perspectives. Pharmaceutics 2020; 12:E1177. [PMID: 33287176 PMCID: PMC7761701 DOI: 10.3390/pharmaceutics12121177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/27/2020] [Accepted: 12/02/2020] [Indexed: 11/16/2022] Open
Abstract
Cystinosis is a rare genetic disorder characterized by the accumulation of cystine crystals in different tissues and organs. Although renal damage prevails during initial stages, the deposition of cystine crystals in the cornea causes severe ocular manifestations. At present, cysteamine is the only topical effective treatment for ocular cystinosis. The lack of investment by the pharmaceutical industry, together with the limited stability of cysteamine, make it available only as two marketed presentations (Cystaran® and Cystadrops®) and as compounding formulations prepared in pharmacy departments. Even so, new drug delivery systems (DDSs) need to be developed, allowing more comfortable dosage schedules that favor patient adherence. In the last decades, different research groups have focused on the development of hydrogels, nanowafers and contact lenses, allowing a sustained cysteamine release. In parallel, different determination methods and strategies to increase the stability of the formulations have also been developed. This comprehensive review aims to compile all the challenges and advances related to new cysteamine DDSs, analytical determination methods, and possible future therapeutic alternatives for treating cystinosis.
Collapse
Affiliation(s)
- Ana Castro-Balado
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Cristina Mondelo-García
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Iria Varela-Rey
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Beatriz Moreda-Vizcaíno
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Jesús F. Sierra-Sánchez
- Pharmacy Department, Hospital de Jerez de la Frontera, Jerez de la Frontera, 11407 Cádiz, Spain;
| | - María Teresa Rodríguez-Ares
- Ophthalmology Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain;
| | - Gonzalo Hermelo-Vidal
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Irene Zarra-Ferro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Miguel González-Barcia
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| | - Eva Yebra-Pimentel
- Department of Applied Physics, Optometry, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (E.Y.-P.); (M.J.G.-F.)
| | - María Jesús Giráldez-Fernández
- Department of Applied Physics, Optometry, Faculty of Optics and Optometry, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain; (E.Y.-P.); (M.J.G.-F.)
| | - Francisco J. Otero-Espinar
- Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of Santiago de Compostela (USC), 15782 Santiago de Compostela, Spain;
| | - Anxo Fernández-Ferreiro
- Pharmacy Department, University Clinical Hospital of Santiago de Compostela (SERGAS), 15706 Santiago de Compostela, Spain; (A.C.-B.); (C.M.-G.); (I.V.-R.); (I.Z.-F.); (M.G.-B.)
- Pharmacology Group, Health Research Institute of Santiago de Compostela (FIDIS), 15706 Santiago de Compostela, Spain;
| |
Collapse
|
22
|
Fan X, Torres-Luna C, Azadi M, Domszy R, Hu N, Yang A, David AE. Evaluation of commercial soft contact lenses for ocular drug delivery: A review. Acta Biomater 2020; 115:60-74. [PMID: 32853799 DOI: 10.1016/j.actbio.2020.08.025] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/13/2020] [Accepted: 08/18/2020] [Indexed: 02/07/2023]
Abstract
Soft contact lenses have generated growing interest in ocular drug delivery due to their potential to enhance drug bioavailability in ocular tissues. Commercially available soft contact lenses offer several advantages for ocular drug delivery as they are manufactured on a large scale, which guarantees the availability of a consistent and reproducible product, and their favorable safety profile is well-established through broad clinical use. Here we review the rationale for using commercially available soft contact lenses for ocular drug delivery; summarize the evolution of the materials used in contact lens fabrication; and explore various methods used to improve the drug release characteristics and its tissue penetration. While significant progress has been made, several issues still require further attention for the commercial launch of a viable drug-eluting contact lens product, including control of initial burst release, shelf-life stability, and drug loss during processing or storage.
Collapse
|
23
|
Extended delivery of cationic drugs from contact lenses loaded with unsaturated fatty acids. Eur J Pharm Biopharm 2020; 155:1-11. [DOI: 10.1016/j.ejpb.2020.07.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 06/26/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022]
|
24
|
Lanier OL, Christopher KG, Macoon RM, Yu Y, Sekar P, Chauhan A. Commercialization challenges for drug eluting contact lenses. Expert Opin Drug Deliv 2020; 17:1133-1149. [DOI: 10.1080/17425247.2020.1787983] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Olivia L. Lanier
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| | | | - Russell M. Macoon
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Yifan Yu
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Poorvajan Sekar
- Department of Chemical Engineering, University of Florida, Gainesville, FL, USA
| | - Anuj Chauhan
- Chemical and Biological Engineering, Colorado School of Mines, Golden, CO, USA
| |
Collapse
|
25
|
|
26
|
Rajamanickam R, Kwon K, Tae G. Soft and elastic hollow microcapsules embedded silicone elastomer films with enhanced water uptake and permeability for mechanical stimuli responsive drug delivery applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 111:110789. [PMID: 32279753 DOI: 10.1016/j.msec.2020.110789] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 01/21/2020] [Accepted: 02/28/2020] [Indexed: 10/24/2022]
Abstract
Polydimethylsiloxane (PDMS) film with significantly enhanced water permeability and uptake was prepared by incorporating spherical elastic hollow microcapsules (eHMCs) in it. eHMCs were prepared through O/W/O emulsification method. Water permeability and uptake of the film increased significantly in proportion to the amount of embedded eHMCs while minimizing the changes in elastic characteristics and transparency of PDMS. The release rate of loaded water soluble model drug from the eHMC-embedded PDMS film could be controlled by the magnitude of uniaxial mechanical stimulus applied over the film and initial drug loading amount, with negligible release of drug from the film in the absence of external stimulation. Thus, these biocompatible and elastic composite PDMS films are potentially useful, including as an easily accessible and instantly effective way of controlling hydrophilic drug release using the mechanical stimulus as well as a soft elastomer with enhanced water uptake and permeability.
Collapse
Affiliation(s)
- Raja Rajamanickam
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Kiyoon Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea
| | - Giyoong Tae
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology, 123 Cheomdangwagi-ro, Buk-gu, Gwangju 61005, Republic of Korea.
| |
Collapse
|
27
|
Zhang X, Cao X, Qi P. Therapeutic contact lenses for ophthalmic drug delivery: major challenges. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:549-560. [PMID: 31902299 DOI: 10.1080/09205063.2020.1712175] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Xiuju Zhang
- Department of General Practice, Linyi People’s Hospital, Linyi, Shandong, China
| | - Xiuzhen Cao
- Department of Anus and Intestine Surgery, Taian Central Hospital, Taian, Shandong, China
| | - Ping Qi
- Department of General Practice, Linyi People’s Hospital, Linyi, Shandong, China
| |
Collapse
|
28
|
Torres-Luna C, Hu N, Tammareddy T, Domszy R, Yang J, Wang NS, Yang A. Extended delivery of non-steroidal anti-inflammatory drugs through contact lenses loaded with Vitamin E and cationic surfactants. Cont Lens Anterior Eye 2019; 42:546-552. [DOI: 10.1016/j.clae.2019.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/08/2019] [Accepted: 04/09/2019] [Indexed: 11/28/2022]
|
29
|
Moreddu R, Vigolo D, Yetisen AK. Contact Lens Technology: From Fundamentals to Applications. Adv Healthc Mater 2019; 8:e1900368. [PMID: 31183972 DOI: 10.1002/adhm.201900368] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 05/20/2019] [Indexed: 12/29/2022]
Abstract
Contact lenses are ocular prosthetic devices used by over 150 million people worldwide. Primary applications of contact lenses include vision correction, therapeutics, and cosmetics. Contact lens materials have significantly evolved over time to minimize adverse effects associated with contact lens wearing, to maintain a regular corneal metabolism, and to preserve tear film stability. This article encompasses contact lens technology, including materials, chemical and physical properties, manufacturing processes, microbial contamination, and ocular complications. The function and the composition of the tear fluid are discussed to assess its potential as a diagnostic media. The regulatory standards of contact lens devices with regard to biocompatibility and contact lens market are presented. Future prospects in contact lens technology are evaluated, with particular interest given to theranostic applications for in situ continuous monitoring the ocular physiology.
Collapse
Affiliation(s)
- Rosalia Moreddu
- Department of Chemical EngineeringImperial College London SW7 2AZ London UK
- School of Chemical EngineeringUniversity of Birmingham B15 2TT Birmingham UK
| | - Daniele Vigolo
- School of Chemical EngineeringUniversity of Birmingham B15 2TT Birmingham UK
| | - Ali K. Yetisen
- Department of Chemical EngineeringImperial College London SW7 2AZ London UK
| |
Collapse
|
30
|
Mutlu Z, Shams Es‐haghi S, Cakmak M. Recent Trends in Advanced Contact Lenses. Adv Healthc Mater 2019; 8:e1801390. [PMID: 30938941 DOI: 10.1002/adhm.201801390] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 02/28/2019] [Indexed: 12/28/2022]
Abstract
Exploiting contact lenses for ocular drug delivery is an emerging field in the area of biomedical engineering and advanced healthcare materials. Despite all the research conducted in this area, still, new technologies are in their early stages of the development, and more work must be done in terms of clinical trials to commercialize these technologies. A great challenge in using contact lenses for drug delivery is to achieve a prolonged drug release profile within the therapeutic range for various eye-related problems and diseases. In general, desired release kinetics to avoid the initial burst release is the zero-order kinetics within the therapeutic range. This review highlights the new technologies developed to achieve efficient and extended drug delivery. It also provides an overview of the materials and methods for fabrication of contact lenses and their mechanical and optical properties.
Collapse
Affiliation(s)
- Zeynep Mutlu
- Birck Nanotechnology CenterPurdue University West Lafayette IN 47907‐2057 USA
- School of Materials EngineeringPurdue University West Lafayette IN 47907‐2045 USA
| | - Siamak Shams Es‐haghi
- Birck Nanotechnology CenterPurdue University West Lafayette IN 47907‐2057 USA
- School of Materials EngineeringPurdue University West Lafayette IN 47907‐2045 USA
| | - Mukerrem Cakmak
- Birck Nanotechnology CenterPurdue University West Lafayette IN 47907‐2057 USA
- School of Materials EngineeringPurdue University West Lafayette IN 47907‐2045 USA
- School of Mechanical EngineeringPurdue University West Lafayette IN 47907‐2088 USA
| |
Collapse
|
31
|
Musgrave CSA, Fang F. Contact Lens Materials: A Materials Science Perspective. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E261. [PMID: 30646633 PMCID: PMC6356913 DOI: 10.3390/ma12020261] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 01/06/2019] [Accepted: 01/07/2019] [Indexed: 12/22/2022]
Abstract
More is demanded from ophthalmic treatments using contact lenses, which are currently used by over 125 million people around the world. Improving the material of contact lenses (CLs) is a now rapidly evolving discipline. These materials are developing alongside the advances made in related biomaterials for applications such as drug delivery. Contact lens materials are typically based on polymer- or silicone-hydrogel, with additional manufacturing technologies employed to produce the final lens. These processes are simply not enough to meet the increasing demands from CLs and the ever-increasing number of contact lens (CL) users. This review provides an advanced perspective on contact lens materials, with an emphasis on materials science employed in developing new CLs. The future trends for CL materials are to graft, incapsulate, or modify the classic CL material structure to provide new or improved functionality. In this paper, we discuss some of the fundamental material properties, present an outlook from related emerging biomaterials, and provide viewpoints of precision manufacturing in CL development.
Collapse
Affiliation(s)
| | - Fengzhou Fang
- Centre of MicroNano Manufacturing Technology (MNMT-Dublin), University College Dublin, D14 YH57 Dublin, Ireland.
- State Key Laboratory of Precision Measuring Technology and Instruments, Centre of MicroNano Manufacturing Technology (MNMT), Tianjin University, Tianjin 300072, China.
| |
Collapse
|
32
|
Dixon P, Christopher K, Jovic N, Chauhan A. Spectroscopy of Oxygen-Sensitive Material for Measuring Contact Lens Oxygen Transmissibility. Curr Eye Res 2019; 44:514-521. [PMID: 30589397 DOI: 10.1080/02713683.2018.1559335] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE Oxygen permeability or transmissibility is a crucial parameter for contact lenses to ensure that extended wear will not induce corneal hypoxia. This work tests a new method of using the oxidation of cysteamine, an oxygen-sensitive chemical, to quantify the oxygen transmissibility of current commercial contact lenses and contact lenses loaded with vitamin E. METHODS 3D printing was used to modify eye drop bottles and quartz cuvettes to create systems that allowed insertion of a contact lens in between the cysteamine solution and air. Both systems were exposed to atmospheric conditions where the only path of entry for oxygen was through the contact lens. The entering oxygen reacted with cysteamine, and the rate of cysteamine oxidation was measured using UV-vis spectrophotometry. The rate was then stoichiometrically related to oxygen transmissibility. RESULTS The eye drop method predicted transmissibility values within 9% of established, commercial values. The cuvette method predicted values within 10% of established values for silicone hydrogel lenses without any correction factor and within 11% for poly-hydroxyethyl-methacrylate lenses after correcting for oxygen entering the system. Incorporation of 20% (w/w) vitamin E into Acuvue® Oasys® lenses did not have a significant impact on the oxygen transmissibility. CONCLUSIONS Both methods presented in this work can reliably measure oxygen transmissibility of contacts lenses or other materials. Further improvements in manufacturing could lead to improved accuracy and reliability, allowing wider use of this method for quantifying the oxygen transport in contact lenses.
Collapse
Affiliation(s)
- Phillip Dixon
- a Department of Chemical Engineering , University of Florida , Gainesville , FL , USA
| | - Keith Christopher
- a Department of Chemical Engineering , University of Florida , Gainesville , FL , USA
| | - Nina Jovic
- a Department of Chemical Engineering , University of Florida , Gainesville , FL , USA
| | - Anuj Chauhan
- a Department of Chemical Engineering , University of Florida , Gainesville , FL , USA.,b Department of Chemical and Biological Engineering , Colorado School of Mines , Golden , CO , USA
| |
Collapse
|
33
|
Abstract
Contact lenses have been a common means of vision correction for more than half a century. Recent developments have raised the possibility that the next few decades will see a considerable broadening of the range of applications for contact lenses, with associated expansions in the number and type of individuals who consider them a valuable option. The novel applications of contact lenses include treatment platforms for myopic progression, biosensors, and ocular drug delivery. Orthokeratology has shown the most consistent treatment for myopia control with the least side effects. Recent work has resulted in commercialization of a device to monitor intraocular pressure for up to 24 hours, and extensive efforts are underway to develop a contact lens sensor capable of continuous glucose tear film monitoring for the management of diabetes. Other studies on drug-eluting contact lenses have focused on increasing the release duration through molecular imprinting, use of vitamin E, and increased drug binding to polymers by sandwiching a poly (lactic-co-glycolic acid) layer in the lens. This review demonstrates the potential for contact lenses to provide novel opportunities for refractive management, diagnosis, and management of diseases.
Collapse
|
34
|
Controlled delivery of pirfenidone through vitamin E-loaded contact lens ameliorates corneal inflammation. Drug Deliv Transl Res 2018; 8:1114-1126. [DOI: 10.1007/s13346-018-0541-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
35
|
Hui A. Contact lenses for ophthalmic drug delivery. Clin Exp Optom 2018; 100:494-512. [PMID: 28940532 DOI: 10.1111/cxo.12592] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 07/03/2017] [Accepted: 07/03/2017] [Indexed: 01/28/2023] Open
Abstract
Contact lenses as a means to deliver pharmaceuticals to the eye have seen a significant increase in research interest in the past few years. This review will detail the in vitro experiments which have investigated use of these contact lenses in the context of the desired pharmacological treatment goals in the management of infectious, inflammatory, allergic and glaucomatous diseases of the eye. The techniques researchers have employed to modify and tailor drug release rates from these materials, including the use of vitamin E diffusion barriers, modified ionicity, molecular imprinting and incorporation of drug reservoirs, will be discussed, as well as their impact on drug release kinetics. Finally, the demonstration of the feasibility of these materials when applied in vivo in animal models as well as in humans with and without disease will be presented and their results discussed relating to their implications for the future of the field.
Collapse
Affiliation(s)
- Alex Hui
- School of Optometry and Vision Science, The University of New South Wales, Sydney, New South Wales, Australia
| |
Collapse
|
36
|
Ocular Drug Delivery Barriers-Role of Nanocarriers in the Treatment of Anterior Segment Ocular Diseases. Pharmaceutics 2018; 10:pharmaceutics10010028. [PMID: 29495528 PMCID: PMC5874841 DOI: 10.3390/pharmaceutics10010028] [Citation(s) in RCA: 205] [Impact Index Per Article: 34.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 02/12/2018] [Accepted: 02/23/2018] [Indexed: 12/20/2022] Open
Abstract
Ocular drug delivery is challenging due to the presence of anatomical and physiological barriers. These barriers can affect drug entry into the eye following multiple routes of administration (e.g., topical, systemic, and injectable). Topical administration in the form of eye drops is preferred for treating anterior segment diseases, as it is convenient and provides local delivery of drugs. Major concerns with topical delivery include poor drug absorption and low bioavailability. To improve the bioavailability of topically administered drugs, novel drug delivery systems are being investigated. Nanocarrier delivery systems demonstrate enhanced drug permeation and prolonged drug release. This review provides an overview of ocular barriers to anterior segment delivery, along with ways to overcome these barriers using nanocarrier systems. The disposition of nanocarriers following topical administration, their safety, toxicity and clinical trials involving nanocarrier systems are also discussed.
Collapse
|
37
|
Yokozaki Y, Shimoyama Y. Loading of vitamin E into silicone hydrogel by supercritical carbon dioxide impregnation toward controlled release of timolol maleate. J Supercrit Fluids 2018. [DOI: 10.1016/j.supflu.2017.08.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
38
|
Dixon P, Fentzke RC, Bhattacharya A, Konar A, Hazra S, Chauhan A. In vitro drug release and in vivo safety of vitamin E and cysteamine loaded contact lenses. Int J Pharm 2017; 544:380-391. [PMID: 29217475 DOI: 10.1016/j.ijpharm.2017.11.059] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 11/22/2017] [Accepted: 11/26/2017] [Indexed: 10/18/2022]
Abstract
Cystinosis is an orphan disease caused by a genetic mutation that leads to deposition of cystine crystals in many organs including cornea. Ophthalmic manifestation of the disease can be treated with hourly instillation of cysteamine eye drops. The hourly eye drop instillation is tedious to the patients leading to poor compliance and additionally, significant degradation of the drug occurs within one week of opening the bottle, which further complicates this delivery approach. This paper focuses on designing a contact lens to treat the disease with improved efficacy compared to eye drops, and also exploring safety of the drug eluding contact lens in an animal model. Our goal is to design a lens that is safe and that can deliver a daily therapeutic dose of cysteamine to the cornea while retaining drug stability. We show that cysteamine diffuses out rapidly from all lenses due to its small size. Vitamin E incorporation increases the release duration of both ACUVUE®OASYS® and ACUVUE® TruEyeTM but the effect is more pronounced in TruEyeTM likely due to the low solubility of vitamin E in the lens matrix and higher aspect ratio of the barriers. The barriers are not effective in hydrogel lenses, which along with the high aspect ratio in silicone hydrogels suggests that barriers could be forming at the interface of the silicone and hydrogel phases. The presence of vitamin E has an additional beneficial effect of reduction in the oxidation rates, likely due to a transport barrier between the oxygen diffusing through the silicone channels and drug located in the hydrogel phase. Based on this study, both Acuvue®OASYS® and ACUVUE® TruEyeTM can be loaded with vitamin E to design a cysteamine eluting contact lenses for effective therapy of cystinosis. The lenses must be worn for about 4-5 hr. each day, which is less than the typical duration of daily-wear. The vitamin E and cysteamine loaded lenses did not exhibit any toxicity in a rabbit model over a period of 7-days.
Collapse
Affiliation(s)
- Phillip Dixon
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, United States.
| | - Richard C Fentzke
- Department of Ophthalmology, Kaiser Permanente, Roseville, CA, 95678, United States.
| | - Arnab Bhattacharya
- Dept of Veterinary Surgery & Radiology, West Bengal University of Animal & Fishery Science, India.
| | | | - Sarbani Hazra
- Dept of Veterinary Surgery & Radiology, West Bengal University of Animal & Fishery Science, India.
| | - Anuj Chauhan
- Department of Chemical Engineering, University of Florida, Gainesville, FL, 32611, United States.
| |
Collapse
|
39
|
Preda G, Rogobete AF, Săndesc D, Bedreag OH, Cradigati CA, Sarandan M, Papurica M, Popovici SE, Dragomirescu M. An in vitro study of the release capacity of the local anaesthetics from siloxane matrices. Rom J Anaesth Intensive Care 2017; 23:123-131. [PMID: 28913485 DOI: 10.21454/rjaic.7518/232.vit] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
AIMS In the field of anaesthesia and intensive care, the controlled release systems capable of delivering constantly local anaesthetics are of interest because of the advantages brought to pain management. In this paper we presented the release profiles by usage of siloxane matrices of two common local anaesthetics, lidocaine and bupivacaine, analysed in vitro. METHODS The siloxane matrices were obtained in accordance with the methods described in the specialized literature, tetraethoxysilane (TEOS) and tetramethoxysilane (TMOS) were used as precursors. Lidocaine and bupivacaine were encapsulated in the synthesized gels. The controlled release was performed in vitro artificial systems in which temperature (30°C, 36.5°C, 40°C) and pH (6, 7, 8) have varied. RESULTS Following the analysis of the artificial systems similar profiles were highlighted for both local anaesthetics. Statistically significant differences were identified (p < 0.05) for systems where the release occurred at temperatures above 36.5°C. There were no statistically significant differences regarding the influence of pH, the type of the entrapped anaesthetic or the type of the precursor used in the synthesis of siloxane matrices. CONCLUSIONS According to this experimental study, the pH, the type of precursor or the type of anaesthetic does not statistically influence the release profile from the studied system. In conclusion, these systems are promising for obtaining pharmaceutical preparations which can be used in current clinical practice. Several studies on controlled release siloxane systems should be carried out both in vitro and in vivo in order to exclude possible toxicity and histopathological effects.
Collapse
Affiliation(s)
- Gabriela Preda
- Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania
| | - Alexandru Florin Rogobete
- Faculty of Chemistry, Biology, Geography, West University of Timisoara, Timisoara, Romania.,Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Clinic of Anaesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Timisoara, Romania
| | - Dorel Săndesc
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Clinic of Anaesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Timisoara, Romania
| | - Ovidiu Horea Bedreag
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Clinic of Anaesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Timisoara, Romania
| | - Carmen Alina Cradigati
- Clinic of Anaesthesia and Intensive Care "Casa Austria", Emergency County Hospital "Pius Brinzeu", Timisoara, Romania
| | - Mirela Sarandan
- Clinic of Anaesthesia and Intensive Care "Casa Austria", Emergency County Hospital "Pius Brinzeu", Timisoara, Romania
| | - Marius Papurica
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania.,Clinic of Anaesthesia and Intensive Care, Emergency County Hospital "Pius Brinzeu", Timisoara, Romania
| | - Sonia Elena Popovici
- Faculty of Medicine, "Victor Babes" University of Medicine and Pharmacy, Timisoara, Romania
| | - Monica Dragomirescu
- Faculty of Animal Science and Biotechnology, Banat University of Agricultural Sciences and Veterinary Medicine, Timisoara, Romania
| |
Collapse
|
40
|
Ashwin BCMA, Saravanan C, Senthilkumaran M, Sumathi R, Suresh P, Muthu Mareeswaran P. Spectral and electrochemical investigation of p-sulfonatocalix[4]arene-stabilized vitamin E aggregation. Supramol Chem 2017. [DOI: 10.1080/10610278.2017.1351612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
| | | | | | - Ragupathi Sumathi
- Department of Industrial Chemistry, Alagappa University, Karaikudi, India
| | - Palanisamy Suresh
- Department of Natural Products Chemistry, School of Chemistry, Madurai Kamaraj University, Madurai, India
| | | |
Collapse
|
41
|
Dominguez-Godinez C, Carracedo G, Pintor J. Diquafosol Delivery from Silicone Hydrogel Contact Lenses: Improved Effect on Tear Secretion. J Ocul Pharmacol Ther 2017; 34:170-176. [PMID: 28700254 DOI: 10.1089/jop.2016.0193] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
PURPOSE The aim of this study was to evaluate the ability to uptake and to deliver diquafosol from commercial contact lenses (CLs) and its effect on tear secretion. METHODS For both in vitro and in vivo experiments, two commercial silicone hydrogel (Si-Hy) CLs (comfilcon A and balafilcon A) were used. The CLs were soaked overnight for 12 h in diquafosol solution and control CLs were soaked in saline solution (NaCl 0.9%). The CLs were introduced into a new well container with 1 mL of saline solution, and aliquots of 100 μL were extracted at different times during a period of 6 h to measure the diquafosol release. For in vivo experiments, nine male New Zealand white rabbits were used. CLs soaked in diquafosol were inserted in the eye and compared with control CLs and diquafosol topical instillation. Schirmer's tests were performed to evaluate tear secretion and diquafosol release at different times during the 6-h period. RESULTS For in vitro experiments, the largest amount of diquafosol was released during the first 24 h for both CL materials under study, without statistical differences between them (P < 0.05). The topical application showed the maximum release at 1 min after instillation, meanwhile the release from both CL materials was at 30 min of insertion. The effect on tear secretion was higher with CL delivery compared with topical instillation (P < 0.05), being 300 min for both CLs and 90 min for topical application. CONCLUSION The use of CLs increases the residence time of diquafosol on the ocular surface with a concomitant enhancement in tear secretion during longer periods.
Collapse
Affiliation(s)
- Carmen Dominguez-Godinez
- 1 Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid , Madrid, Spain
| | - Gonzalo Carracedo
- 1 Department of Optics II (Optometry and Vision), Faculty of Optics and Optometry, Universidad Complutense de Madrid , Madrid, Spain
| | - Jesus Pintor
- 2 Department of Biochemistry and Molecular Biology IV, Faculty of Optics and Optometry, Universidad Complutense de Madrid , Madrid, Spain
| |
Collapse
|
42
|
Approaches in topical ocular drug delivery and developments in the use of contact lenses as drug-delivery devices. Ther Deliv 2017. [DOI: 10.4155/tde-2017-0018] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Drug-delivery approaches have diversified over the last two decades with the emergence of nanotechnologies, smart polymeric systems and multimodal functionalities. The intended target for specific treatment of disease is the key defining developing parameter. One such area which has undergone significant advancements relates to ocular delivery. This has been expedited by the development of material advancement, mechanistic concepts and through the deployment of advanced process technologies. This review will focus on the developments within lens-based drug delivery while touching on conventional and current methods of topical ocular drug delivery. A summary table will provide quick reference to note the key findings in this area. In addition, the review also elucidates current theranostic and diagnostic approaches based on ocular lenses.
Collapse
|
43
|
Guzman G, Es-haghi SS, Nugay T, Cakmak M. Zero-Order Antibiotic Release from Multilayer Contact Lenses: Nonuniform Drug and Diffusivity Distributions Produce Constant-Rate Drug Delivery. Adv Healthc Mater 2017; 6. [PMID: 28177597 DOI: 10.1002/adhm.201600775] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 09/02/2016] [Indexed: 11/11/2022]
Abstract
A novel approach to zero-order constant-rate drug delivery from contact lenses is presented. Quasi-Case II non-Fickian transport is achieved by nonuniform drug and diffusivity distributions within three-layer bimodal amphiphilic conetworks (β-APCNs). The center layer is a highly oxygen permeable β-APCN matrix, which contains the drug and exhibits a high drug diffusivity. The outer β-APCN layers contain no-drug and are loaded with vitamin E, which slows diffusion. In contrast to single-layer neat-polymer and vitamin E-loaded films that display first-order "burst" kinetics, it is demonstrated experimentally and by modeling that the combined effect of nonuniform distribution of drug loading and diffusion constants within the three-layer lens maintains low local drug concentration at the lens-fluid interface and yields zero-order drug delivery. The release rates of topical antibiotics provide constant-rate therapeutic-level delivery with appropriate oxygen permeability for at least 30 h, at which time ≈25% of the drug was released.
Collapse
Affiliation(s)
- Gustavo Guzman
- Polymer Engineering Department; The University of Akron; Akron OH 44325 USA
| | | | - Turgut Nugay
- Chemistry Department; Polymer Research Center; Boğaziçi University; 34342 Bebek, Istanbul Turkey
| | - Mukerrem Cakmak
- Polymer Engineering Department; The University of Akron; Akron OH 44325 USA
| |
Collapse
|
44
|
Lee D, Cho S, Park HS, Kwon I. Ocular Drug Delivery through pHEMA-Hydrogel Contact Lenses Co-Loaded with Lipophilic Vitamins. Sci Rep 2016; 6:34194. [PMID: 27678247 PMCID: PMC5039753 DOI: 10.1038/srep34194] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 09/08/2016] [Indexed: 12/04/2022] Open
Abstract
Ocular drug delivery through hydrogel contact lenses has great potential for the treatment of ocular diseases. Previous studies showed that the loading of lipophilic vitamin E to silicone-hydrogel contact lenses was beneficial in ocular drug delivery. We hypothesized that vitamin E loading to another type of popular hydrogel contact lenses, pHEMA-hydrogel contact lenses, improves ocular drug delivery by increasing the drug loading or the duration of drug release. Loading of vitamin E to pHEMA-hydrogel contact lenses significantly increased the loading of a hydrophilic drug surrogate (Alexa Fluor 488 dye) and two hydrophilic glaucoma drugs (timolol and brimonidine) to the lenses by 37.5%, 19.1%, and 18.7%, respectively. However, the release duration time was not significantly altered. Next, we hypothesized that the lipophilic nature of vitamin E attributes to the enhanced drug loading. Therefore, we investigated the effects of co-loading of another lipophilic vitamin, vitamin A, on drug surrogate delivery. We found out that vitamin A loading also increased the loading of the drug surrogate to pHEMA-hydrogel contact lenses by 30.3%. Similar to vitamin E loading, vitamin A loading did not significantly alter the release duration time of the drug or drug surrogate.
Collapse
Affiliation(s)
- Dasom Lee
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| | - Seungkwon Cho
- GEO medical Co., Ltd, Gwangju 61007, Republic of Korea
| | - Hwa Sung Park
- GEO medical Co., Ltd, Gwangju 61007, Republic of Korea
| | - Inchan Kwon
- School of Materials Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea.,Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Republic of Korea
| |
Collapse
|
45
|
Liu DE, Dursch TJ, Taylor NO, Chan SY, Bregante DT, Radke CJ. Diffusion of water-soluble sorptive drugs in HEMA/MAA hydrogels. J Control Release 2016; 239:242-8. [PMID: 27565214 DOI: 10.1016/j.jconrel.2016.08.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 07/21/2016] [Accepted: 08/22/2016] [Indexed: 11/19/2022]
Abstract
We measure and, for the first time, theoretically predict four prototypical aqueous-drug diffusion coefficients in five soft-contact-lens material hydrogels where solute-specific adsorption is pronounced. Two-photon fluorescence confocal microscopy and UV/Vis-absorption spectrophotometry assess transient solute concentration profiles and concentration histories, respectively. Diffusion coefficients are obtained for acetazolamide, riboflavin, sodium fluorescein, and theophylline in 2-hydroxyethyl methacrylate/methacrylic acid (HEMA/MAA) copolymer hydrogels as functions of composition, equilibrium water content (30-90%), and aqueous pH (2 and 7.4). At pH2, MAA chains are nonionic, whereas at pH7.4, MAA chains are anionic (pKa≈5.2). All studied prototypical drugs specifically interact with HEMA and nonionic MAA (at pH2) moieties. Conversely, none of the prototypical drugs adsorb specifically to anionic MAA (at pH7.4) chains. As expected, diffusivities of adsorbing solutes are significantly diminished by specific interactions with hydrogel strands. Despite similar solute size, relative diffusion coefficients in the hydrogels span several orders of magnitude because of varying degrees of solute interactions with hydrogel-polymer chains. To provide a theoretical framework for the new diffusion data, we apply an effective-medium model extended for solute-specific interactions with hydrogel copolymer strands. Sorptive-diffusion kinetics is successfully described by local equilibrium and Henry's law. All necessary parameters are determined independently. Predicted diffusivities are in good agreement with experiment.
Collapse
Affiliation(s)
- D E Liu
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States
| | - T J Dursch
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States
| | - N O Taylor
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States
| | - S Y Chan
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States
| | - D T Bregante
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States
| | - C J Radke
- Chemical and Biomolecular Engineering Department, University of California, Berkeley, CA 94720, United States; Vision Science Group, University of California, Berkeley, CA 94720, United States.
| |
Collapse
|
46
|
Silva D, Pinto LFV, Bozukova D, Santos LF, Serro AP, Saramago B. Chitosan/alginate based multilayers to control drug release from ophthalmic lens. Colloids Surf B Biointerfaces 2016; 147:81-89. [PMID: 27494772 DOI: 10.1016/j.colsurfb.2016.07.047] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2016] [Revised: 07/15/2016] [Accepted: 07/21/2016] [Indexed: 01/27/2023]
Abstract
In this study we investigated the possibility of using layer-by-layer deposition, based in natural polymers (chitosan and alginate), to control the release of different ophthalmic drugs from three types of lens materials: a silicone-based hydrogel recently proposed by our group as drug releasing soft contact lens (SCL) material and two commercially available materials: CI26Y for intraocular lens (IOLs) and Definitive 50 for SCLs. The optimised coating, consisting in one double layer of (alginate - CaCl2)/(chitosan+glyoxal) topped with a final alginate-CaCl2 layer to avoid chitosan degradation by tear fluid proteins, proved to have excellent features to control the release of the anti-inflammatory, diclofenac, while keeping or improving the physical properties of the lenses. The coating leads to a controlled release of diclofenac from SCL and IOL materials for, at least, one week. Due to its high hydrophilicity (water contact angle≈0) and biocompatibility, it should avoid the use of further surface treatments to enhance the useŕs comfort. However, the barrier effect of this coating is specific for diclofenac, giving evidence to the need of optimizing the chemical composition of the layers in view of the desired drug.
Collapse
Affiliation(s)
- Diana Silva
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Luís F V Pinto
- Altakitin S.A., Rua José Gomes Ferreira, Arm. D, 2660-360 São Julião do Tojal, Lisboa, Portugal; CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Dimitriya Bozukova
- PhysIOL sa/nv, Liège Science Park, Allée des Noisetiers 4, 4031 Liège, Belgium
| | - Luís F Santos
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ana Paula Serro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; CIIEM, Instituto Superior de Ciências da Saúde Egas Moniz, Campus Universitário, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal
| | - Benilde Saramago
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
47
|
Gu Z, Li S, Zhang F, Wang S. Understanding Surface Adhesion in Nature: A Peeling Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2016; 3:1500327. [PMID: 27812476 PMCID: PMC5066691 DOI: 10.1002/advs.201500327] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 11/03/2015] [Indexed: 05/11/2023]
Abstract
Nature often exhibits various interesting and unique adhesive surfaces. The attempt to understand the natural adhesion phenomena can continuously guide the design of artificial adhesive surfaces by proposing simplified models of surface adhesion. Among those models, a peeling model can often effectively reflect the adhesive property between two surfaces during their attachment and detachment processes. In the context, this review summarizes the recent advances about the peeling model in understanding unique adhesive properties on natural and artificial surfaces. It mainly includes four parts: a brief introduction to natural surface adhesion, the theoretical basis and progress of the peeling model, application of the peeling model, and finally, conclusions. It is believed that this review is helpful to various fields, such as surface engineering, biomedicine, microelectronics, and so on.
Collapse
Affiliation(s)
- Zhen Gu
- Laboratory of Bio-Inspired Smart Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 PR China
| | - Siheng Li
- Laboratory of Bio-Inspired Smart Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 PR China
| | - Feilong Zhang
- Beijing National Laboratory for Molecular Sciences (BNLMS) Key Laboratory of Organic Solids Institute of Chemistry Chinese Academy of Sciences Beijing 100190 P. R. China; University of Chinese Academy of Sciences Beijing 100049 P. R. China
| | - Shutao Wang
- Laboratory of Bio-Inspired Smart Interface Science Technical Institute of Physics and Chemistry Chinese Academy of Sciences Beijing 100190 PR China
| |
Collapse
|
48
|
Paradiso P, Serro AP, Saramago B, Colaço R, Chauhan A. Controlled Release of Antibiotics From Vitamin E–Loaded Silicone-Hydrogel Contact Lenses. J Pharm Sci 2016; 105:1164-72. [DOI: 10.1016/s0022-3549(15)00193-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 11/12/2015] [Accepted: 11/20/2015] [Indexed: 11/24/2022]
|
49
|
Abstract
Contact lenses for ophthalmic drug delivery have become very popular, due to their unique advantages like extended wear and more than 50% bioavailability. To achieve controlled and sustained drug delivery from contact lenses, researchers are working on various systems like polymeric nanoparticles, microemulsion, micelle, liposomes, use of vitamin E, etc. Numerous scientists are working on different areas of therapeutic contact lenses to treat ocular diseases by implementing techniques like soaking method, molecular imprinting, entrapment of drug-laden colloidal nanoparticles, drug plate/film, ion ligand polymeric systems, supercritical fluid technology, etc. Though sustained drug delivery was achieved using contact lens, the critical properties such as water content, tensile strength (mechanical properties), ion permeability, transparency and oxygen permeability were altered, which limit the commercialization of therapeutic contact lenses. Also issues like drug stability during processing/fabrication (drug integrity test), zero order release kinetics (prevent burst release), drug release during monomer extraction step after fabrication (to remove un-reacted monomers), protein adherence, drug release during storage in packaging solution, shelf life study, cost-benefit analysis, etc. are still to be addressed. This review provides an expert opinion on different methodology to develop therapeutic contact lenses with special remark of their advantages and limitations.
Collapse
Affiliation(s)
- Furqan A Maulvi
- a Maliba Pharmacy College, Uka Tarsadia University , Gujarat , India
| | - Tejal G Soni
- b Faculty of Pharmacy , Dharmsinh Desai University , Gujarat , India
| | - Dinesh O Shah
- c Shah-Schulman Center for Surface Science and Nanotechnology, Dharmsinh Desai University , Gujarat , India.,d Department of Chemical Engineering and Department of Anaesthesiology , University of Florida , FL , USA , and.,e School of Earth and Environmental Sciences, Columbia University , New York , USA
| |
Collapse
|
50
|
|