1
|
Farsheed AC, Zevallos-Delgado C, Yu LT, Saeidifard S, Swain JWR, Makhoul JT, Thomas AJ, Cole CC, Garcia Huitron E, Grande-Allen KJ, Singh M, Larin KV, Hartgerink JD. Tunable Macroscopic Alignment of Self-Assembling Peptide Nanofibers. ACS NANO 2024; 18:12477-12488. [PMID: 38699877 PMCID: PMC11285723 DOI: 10.1021/acsnano.4c02030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
Progress in the design and synthesis of nanostructured self-assembling systems has facilitated the realization of numerous nanoscale geometries, including fibers, ribbons, and sheets. A key challenge has been achieving control across multiple length scales and creating macroscopic structures with nanoscale organization. Here, we present a facile extrusion-based fabrication method to produce anisotropic, nanofibrous hydrogels using self-assembling peptides. The application of shear force coinciding with ion-triggered gelation is used to kinetically trap supramolecular nanofibers into aligned, hierarchical macrostructures. Further, we demonstrate the ability to tune the nanostructure of macroscopic hydrogels through modulating phosphate buffer concentration during peptide self-assembly. In addition, increases in the nanostructural anisotropy of fabricated hydrogels are found to enhance their strength and stiffness under hydrated conditions. To demonstrate their utility as an extracellular matrix-mimetic biomaterial, aligned nanofibrous hydrogels are used to guide directional spreading of multiple cell types, but strikingly, increased matrix alignment is not always correlated with increased cellular alignment. Nanoscale observations reveal differences in cell-matrix interactions between variably aligned scaffolds and implicate the need for mechanical coupling for cells to understand nanofibrous alignment cues. In total, innovations in the supramolecular engineering of self-assembling peptides allow us to decouple nanostructure from macrostructure and generate a gradient of anisotropic nanofibrous hydrogels. We anticipate that control of architecture at multiple length scales will be critical for a variety of applications, including the bottom-up tissue engineering explored here.
Collapse
Affiliation(s)
- Adam C Farsheed
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | | | - Le Tracy Yu
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Sajede Saeidifard
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Joseph W R Swain
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Jonathan T Makhoul
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Adam J Thomas
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Carson C Cole
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| | - Eric Garcia Huitron
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
| | | | - Manmohan Singh
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Kirill V Larin
- Department of Biomedical Engineering, University of Houston, Houston, Texas 77204, United States
| | - Jeffrey D Hartgerink
- Department of Bioengineering, Rice University, Houston, Texas 77005, United States
- Department of Chemistry, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
2
|
Tomas Bort E, Joseph MD, Wang Q, Carter EP, Roth NJ, Gibson J, Samadi A, Kocher HM, Simoncelli S, McCormick PJ, Grose RP. Purinergic GPCR-integrin interactions drive pancreatic cancer cell invasion. eLife 2023; 12:e86971. [PMID: 36942939 PMCID: PMC10069867 DOI: 10.7554/elife.86971] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) continues to show no improvement in survival rates. One aspect of PDAC is elevated ATP levels, pointing to the purinergic axis as a potential attractive therapeutic target. Mediated in part by highly druggable extracellular proteins, this axis plays essential roles in fibrosis, inflammation response, and immune function. Analyzing the main members of the PDAC extracellular purinome using publicly available databases discerned which members may impact patient survival. P2RY2 presents as the purinergic gene with the strongest association with hypoxia, the highest cancer cell-specific expression, and the strongest impact on overall survival. Invasion assays using a 3D spheroid model revealed P2Y2 to be critical in facilitating invasion driven by extracellular ATP. Using genetic modification and pharmacological strategies, we demonstrate mechanistically that this ATP-driven invasion requires direct protein-protein interactions between P2Y2 and αV integrins. DNA-PAINT super-resolution fluorescence microscopy reveals that P2Y2 regulates the amount and distribution of integrin αV in the plasma membrane. Moreover, receptor-integrin interactions were required for effective downstream signaling, leading to cancer cell invasion. This work elucidates a novel GPCR-integrin interaction in cancer invasion, highlighting its potential for therapeutic targeting.
Collapse
Affiliation(s)
- Elena Tomas Bort
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Megan D Joseph
- London Centre for Nanotechnology, University College LondonLondonUnited Kingdom
- Department of Chemistry, University College LondonLondonUnited Kingdom
| | - Qiaoying Wang
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Edward P Carter
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Nicolas J Roth
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Jessica Gibson
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Ariana Samadi
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Hemant M Kocher
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Sabrina Simoncelli
- London Centre for Nanotechnology, University College LondonLondonUnited Kingdom
- Department of Chemistry, University College LondonLondonUnited Kingdom
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Queen Mary University of LondonLondonUnited Kingdom
| | - Richard P Grose
- Centre for Tumour Biology, Barts Cancer Institute, Queen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
3
|
Kurisinkal EE, Caroprese V, Koga MM, Morzy D, Bastings MMC. Selective Integrin α5β1 Targeting through Spatially Constrained Multivalent DNA-Based Nanoparticles. Molecules 2022; 27:molecules27154968. [PMID: 35956918 PMCID: PMC9370198 DOI: 10.3390/molecules27154968] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/02/2022] [Indexed: 11/16/2022] Open
Abstract
Targeting cells specifically based on receptor expression levels remains an area of active research to date. Selective binding of receptors cannot be achieved by increasing the individual binding strength, as this does not account for differing distributions of receptor density across healthy and diseased cells. Engaging receptors above a threshold concentration would be desirable in devising selective diagnostics. Integrins are prime target candidates as they are readily available on the cell surface and have been reported to be overexpressed in diseases. Insights into their spatial organization would therefore be advantageous to design selective targeting agents. Here, we investigated the effect of activation method on integrin α5β1 clustering by immunofluorescence and modeled the global neighbor distances with input from an immuno-staining assay and image processing of microscopy images. This data was used to engineer spatially-controlled DNA-scaffolded bivalent ligands, which we used to compare trends in spatial-selective binding observed across HUVEC, CHO and HeLa in resting versus activated conditions in confocal microscopy images. For HUVEC and CHO, the data demonstrated an improved selectivity and localisation of binding for smaller spacings ~7 nm and ~24 nm, in good agreement with the model. A deviation from the mode predictions for HeLa was observed, indicative of a clustered, instead of homogeneous, integrin organization. Our findings demonstrate how low-technology imaging methods can guide the design of spatially controlled ligands to selectively differentiate between cell type and integrin activation state.
Collapse
Affiliation(s)
- Eva E. Kurisinkal
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Vincenzo Caroprese
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Marianna M. Koga
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Diana Morzy
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
| | - Maartje M. C. Bastings
- Programmable Biomaterials Laboratory, Institute of Materials, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
- Interfaculty Bioengineering Institute, School of Engineering, Ecole Polytechnique Fédérale Lausanne, 1015 Lausanne, Switzerland
- Correspondence:
| |
Collapse
|
4
|
Picker J, Lan Z, Arora S, Green M, Hahn M, Cosgriff-Hernandez E, Hook M. Prokaryotic Collagen-Like Proteins as Novel Biomaterials. Front Bioeng Biotechnol 2022; 10:840939. [PMID: 35372322 PMCID: PMC8968730 DOI: 10.3389/fbioe.2022.840939] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/10/2022] [Indexed: 12/13/2022] Open
Abstract
Collagens are the major structural component in animal extracellular matrices and are critical signaling molecules in various cell-matrix interactions. Its unique triple helical structure is enabled by tripeptide Gly-X-Y repeats. Understanding of sequence requirements for animal-derived collagen led to the discovery of prokaryotic collagen-like protein in the early 2000s. These prokaryotic collagen-like proteins are structurally similar to mammalian collagens in many ways. However, unlike the challenges associated with recombinant expression of mammalian collagens, these prokaryotic collagen-like proteins can be readily expressed in E. coli and are amenable to genetic modification. In this review article, we will first discuss the properties of mammalian collagen and provide a comparative analysis of mammalian collagen and prokaryotic collagen-like proteins. We will then review the use of prokaryotic collagen-like proteins to both study the biology of conventional collagen and develop a new biomaterial platform. Finally, we will describe the application of Scl2 protein, a streptococcal collagen-like protein, in thromboresistant coating for cardiovascular devices, scaffolds for bone regeneration, chronic wound dressing and matrices for cartilage regeneration.
Collapse
Affiliation(s)
- Jonathan Picker
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Ziyang Lan
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Srishtee Arora
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| | - Mykel Green
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Mariah Hahn
- Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY, United States
| | | | - Magnus Hook
- Center for Infectious and Inflammatory Diseases, Institute of Biosciences and Technology, Texas A&M, Houston, TX, United States
| |
Collapse
|
5
|
Achilli S, Berthet N, Renaudet O. Antibody recruiting molecules (ARMs): synthetic immunotherapeutics to fight cancer. RSC Chem Biol 2021; 2:713-724. [PMID: 34212148 PMCID: PMC8190906 DOI: 10.1039/d1cb00007a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Antibody-recruiting molecules (ARMs) are one of the most promising tools to redirect the immune response towards cancer cells. In this review, we aim to highlight the recent advances in the field. We will illustrate the advantages of different ARM approaches and emphasize the importance of a multivalent presentation of the binding units. Antibody-recruiting molecules (ARMs) are one of the most promising tools to redirect the immune response towards cancer cells.![]()
Collapse
Affiliation(s)
- Silvia Achilli
- Univ. Grenoble Alpes, CNRS DCM UMR 5250 F-38000 Grenoble France
| | | | | |
Collapse
|
6
|
Dhavalikar P, Robinson A, Lan Z, Jenkins D, Chwatko M, Salhadar K, Jose A, Kar R, Shoga E, Kannapiran A, Cosgriff-Hernandez E. Review of Integrin-Targeting Biomaterials in Tissue Engineering. Adv Healthc Mater 2020; 9:e2000795. [PMID: 32940020 PMCID: PMC7960574 DOI: 10.1002/adhm.202000795] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/27/2020] [Indexed: 12/12/2022]
Abstract
The ability to direct cell behavior has been central to the success of numerous therapeutics to regenerate tissue or facilitate device integration. Biomaterial scientists are challenged to understand and modulate the interactions of biomaterials with biological systems in order to achieve effective tissue repair. One key area of research investigates the use of extracellular matrix-derived ligands to target specific integrin interactions and induce cellular responses, such as increased cell migration, proliferation, and differentiation of mesenchymal stem cells. These integrin-targeting proteins and peptides have been implemented in a variety of different polymeric scaffolds and devices to enhance tissue regeneration and integration. This review first presents an overview of integrin-mediated cellular processes that have been identified in angiogenesis, wound healing, and bone regeneration. Then, research utilizing biomaterials are highlighted with integrin-targeting motifs as a means to direct these cellular processes to enhance tissue regeneration. In addition to providing improved materials for tissue repair and device integration, these innovative biomaterials provide new tools to probe the complex processes of tissue remodeling in order to enhance the rational design of biomaterial scaffolds and guide tissue regeneration strategies.
Collapse
Affiliation(s)
- Prachi Dhavalikar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew Robinson
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ziyang Lan
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Dana Jenkins
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Malgorzata Chwatko
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Karim Salhadar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Anupriya Jose
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Ronit Kar
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Erik Shoga
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | - Aparajith Kannapiran
- Department of Biomedical Engineering, University of Texas at Austin, Austin, TX, 78712, USA
| | | |
Collapse
|
7
|
Ibata N, Terentjev EM. Development of Nascent Focal Adhesions in Spreading Cells. Biophys J 2020; 119:2063-2073. [PMID: 33068539 DOI: 10.1016/j.bpj.2020.09.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 08/11/2020] [Accepted: 09/21/2020] [Indexed: 12/31/2022] Open
Abstract
The eukaryotic cell develops organelles to sense and respond to the mechanical properties of its surroundings. These mechanosensing organelles aggregate into symmetry-breaking patterns to mediate cell motion and differentiation on substrate. The spreading of a cell plated onto a substrate is one of the simplest paradigms in which angular symmetry-breaking assemblies of mechanical sensors are seen to develop. We review evidence for the importance of the edge of the cell-extracellular matrix adhesion area in the aggregation of mechanosensors and develop a theoretical model for the clustering of mechanosensors into nascent focal adhesions on this contact ring. To study the spatial patterns arising on this topological feature, we use a one-dimensional lattice model with a nearest-neighbor interaction between individual integrin-mediated mechanosensors. We find the effective Ginzburg-Landau free energy for this model and determine the spectrum of spatial modes as the cell spreads and increases its contact area with the substrate. To test our model, we compare its predictions with measured distributions of paxillin in spreading fibroblasts.
Collapse
Affiliation(s)
- Neil Ibata
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom
| | - Eugene M Terentjev
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Hou Y, Xie W, Yu L, Camacho LC, Nie C, Zhang M, Haag R, Wei Q. Surface Roughness Gradients Reveal Topography-Specific Mechanosensitive Responses in Human Mesenchymal Stem Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1905422. [PMID: 32064782 DOI: 10.1002/smll.201905422] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 11/28/2019] [Indexed: 05/24/2023]
Abstract
The topographic features of an implant, which mechanically regulate cell behaviors and functions, are critical for the clinical success in tissue regeneration. How cells sense and respond to the topographical cues, e.g., interfacial roughness, is yet to be fully understood and even debatable. Here, the mechanotransduction and fate determination of human mesenchymal stem cells (MSCs) on surface roughness gradients are systematically studied. The broad range of topographical scales and high-throughput imaging is achieved based on a catecholic polyglycerol coating fabricated by a one-step-tilted dip-coating approach. It is revealed that the adhesion of MSCs is biphasically regulated by interfacial roughness. The cell mechanotransduction is investigated from focal adhesion to transcriptional activity, which explains that cellular response to interfacial roughness undergoes a direct force-dependent mechanism. Moreover, the optimized roughness for promoting cell fate specification is explored.
Collapse
Affiliation(s)
- Yong Hou
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Wenyan Xie
- Institute of Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2 + 4, 14195, Berlin, Germany
| | - Leixiao Yu
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Luis Cuellar Camacho
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Chuanxiong Nie
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Man Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustr. 3, 14195, Berlin, Germany
| | - Qiang Wei
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials and Engineering, Sichuan University, 610065, Chengdu, China
| |
Collapse
|
9
|
Tatkiewicz WI, Seras-Franzoso J, García-Fruitós E, Vazquez E, Kyvik AR, Ventosa N, Guasch J, Villaverde A, Veciana J, Ratera I. High-Throughput Cell Motility Studies on Surface-Bound Protein Nanoparticles with Diverse Structural and Compositional Characteristics. ACS Biomater Sci Eng 2019; 5:5470-5480. [PMID: 33464066 DOI: 10.1021/acsbiomaterials.9b01085] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Eighty areas with different structural and compositional characteristics made of bacterial inclusion bodies formed by the fibroblast growth factor (FGF-IBs) were simultaneously patterned on a glass surface with an evaporation-assisted method that relies on the coffee-drop effect. The resulting surface patterned with these protein nanoparticles enabled to perform a high-throughput study of the motility of NIH-3T3 fibroblasts under different conditions including the gradient steepness, particle concentrations, and area widths of patterned FGF-IBs, using for the data analysis a methodology that includes "heat maps". From this analysis, we observed that gradients of concentrations of surface-bound FGF-IBs stimulate the total cell movement but do not affect the total net distances traveled by cells. Moreover, cells tend to move toward an optimal intermediate FGF-IB concentration (i.e., cells seeded on areas with high IB concentrations moved toward areas with lower concentrations and vice versa, reaching the optimal concentration). Additionally, a higher motility was obtained when cells were deposited on narrow and highly concentrated areas with IBs. FGF-IBs can be therefore used to enhance and guide cell migration, confirming that the decoration of surfaces with such IB-like protein nanoparticles is a promising platform for regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
- Witold I Tatkiewicz
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Joaquin Seras-Franzoso
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Elena García-Fruitós
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Esther Vazquez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Adriana R Kyvik
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Nora Ventosa
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Judith Guasch
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain.,Dynamic Biomimetics for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Antonio Villaverde
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Jaume Veciana
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| | - Imma Ratera
- Department of Molecular Nanoscience and Organic Materials, Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Campus UAB, 08193 Bellaterra, Spain.,CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), 08193 Bellaterra, Spain
| |
Collapse
|
10
|
Irons L, Owen MR, O'Dea RD, Brook BS. Effect of Loading History on Airway Smooth Muscle Cell-Matrix Adhesions. Biophys J 2019; 114:2679-2690. [PMID: 29874617 DOI: 10.1016/j.bpj.2018.04.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 04/05/2018] [Accepted: 04/16/2018] [Indexed: 01/06/2023] Open
Abstract
Integrin-mediated adhesions between airway smooth muscle (ASM) cells and the extracellular matrix (ECM) regulate how contractile forces generated within the cell are transmitted to its external environment. Environmental cues are known to influence the formation, size, and survival of cell-matrix adhesions, but it is not yet known how they are affected by dynamic fluctuations associated with tidal breathing in the intact airway. Here, we develop two closely related theoretical models to study adhesion dynamics in response to oscillatory loading of the ECM, representing the dynamic environment of ASM cells in vivo. Using a discrete stochastic-elastic model, we simulate individual integrin binding and rupture events and observe two stable regimes in which either bond formation or bond rupture dominate, depending on the amplitude of the oscillatory loading. These regimes have either a high or low fraction of persistent adhesions, which could affect the level of strain transmission between contracted ASM cells and the airway tissue. For intermediate loading, we observe a region of bistability and hysteresis due to shared loading between existing bonds; the level of adhesion depends on the loading history. These findings are replicated in a related continuum model, which we use to investigate the effect of perturbations mimicking deep inspirations (DIs). Because of the bistability, a DI applied to the high adhesion state could either induce a permanent switch to a lower adhesion state or allow a return of the system to the high adhesion state. Transitions between states are further influenced by the frequency of oscillations, cytoskeletal or ECM stiffnesses, and binding affinities, which modify the magnitudes of the stable adhesion states as well as the region of bistability. These findings could explain (in part) the transient bronchodilatory effect of a DI observed in asthmatics compared to a more sustained effect in normal subjects.
Collapse
Affiliation(s)
- Linda Irons
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom.
| | - Markus R Owen
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Reuben D O'Dea
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Bindi S Brook
- Centre for Mathematical Medicine and Biology, School of Mathematical Sciences, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
11
|
Multiscale model of integrin adhesion assembly. PLoS Comput Biol 2019; 15:e1007077. [PMID: 31163027 PMCID: PMC6568411 DOI: 10.1371/journal.pcbi.1007077] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 06/14/2019] [Accepted: 05/08/2019] [Indexed: 01/09/2023] Open
Abstract
The ability of adherent cells to form adhesions is critical to numerous phases of their physiology. The assembly of adhesions is mediated by several types of integrins. These integrins differ in physical properties, including rate of diffusion on the plasma membrane, rapidity of changing conformation from bent to extended, affinity for extracellular matrix ligands, and lifetimes of their ligand-bound states. However, the way in which nanoscale physical properties of integrins ensure proper adhesion assembly remains elusive. We observe experimentally that both β-1 and β-3 integrins localize in nascent adhesions at the cell leading edge. In order to understand how different nanoscale parameters of β-1 and β-3 integrins mediate proper adhesion assembly, we therefore develop a coarse-grained computational model. Results from the model demonstrate that morphology and distribution of nascent adhesions depend on ligand binding affinity and strength of pairwise interactions. Organization of nascent adhesions depends on the relative amounts of integrins with different bond kinetics. Moreover, the model shows that the architecture of an actin filament network does not perturb the total amount of integrin clustering and ligand binding; however, only bundled actin architectures favor adhesion stability and ultimately maturation. Together, our results support the view that cells can finely tune the expression of different integrin types to determine both structural and dynamic properties of adhesions.
Collapse
|
12
|
Lopes D, Martins-Cruz C, Oliveira MB, Mano JF. Bone physiology as inspiration for tissue regenerative therapies. Biomaterials 2018; 185:240-275. [PMID: 30261426 PMCID: PMC6445367 DOI: 10.1016/j.biomaterials.2018.09.028] [Citation(s) in RCA: 209] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 09/15/2018] [Accepted: 09/17/2018] [Indexed: 12/14/2022]
Abstract
The development, maintenance of healthy bone and regeneration of injured tissue in the human body comprise a set of intricate and finely coordinated processes. However, an analysis of current bone regeneration strategies shows that only a small fraction of well-reported bone biology aspects has been used as inspiration and transposed into the development of therapeutic products. Specific topics that include inter-scale bone structural organization, developmental aspects of bone morphogenesis, bone repair mechanisms, role of specific cells and heterotypic cell contact in the bone niche (including vascularization networks and immune system cells), cell-cell direct and soluble-mediated contact, extracellular matrix composition (with particular focus on the non-soluble fraction of proteins), as well as mechanical aspects of native bone will be the main reviewed topics. In this Review we suggest a systematic parallelization of (i) fundamental well-established biology of bone, (ii) updated and recent advances on the understanding of biological phenomena occurring in native and injured tissue, and (iii) critical discussion of how those individual aspects have been translated into tissue regeneration strategies using biomaterials and other tissue engineering approaches. We aim at presenting a perspective on unexplored aspects of bone physiology and how they could be translated into innovative regeneration-driven concepts.
Collapse
Affiliation(s)
- Diana Lopes
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Cláudia Martins-Cruz
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal
| | - Mariana B Oliveira
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| | - João F Mano
- Department of Chemistry, CICECO - Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago,, 3810 193 Aveiro, Portugal.
| |
Collapse
|
13
|
Pérez del Río E, Martinez Miguel M, Veciana J, Ratera I, Guasch J. Artificial 3D Culture Systems for T Cell Expansion. ACS OMEGA 2018; 3:5273-5280. [PMID: 30023914 PMCID: PMC6044561 DOI: 10.1021/acsomega.8b00521] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/24/2018] [Indexed: 06/08/2023]
Abstract
Adoptive cell therapy, i.e., the extraction, manipulation, and administration of ex vivo generated autologous T cells to patients, is an emerging alternative to regular procedures in cancer treatment. Nevertheless, these personalized treatments require laborious and expensive laboratory procedures that should be alleviated to enable their incorporation into the clinics. With the objective to improve the ex vivo expansion of large amount of specific T cells, we propose the use of three-dimensional (3D) structures during their activation with artificial antigen-presenting cells, thus resembling the natural environment of the secondary lymphoid organs. Thus, the activation, proliferation, and differentiation of T cells have been analyzed when cultured in the presence of two 3D systems, Matrigel and a 3D polystyrene scaffold, showing an increase in cell proliferation compared to standard suspension systems.
Collapse
Affiliation(s)
- Eduardo Pérez del Río
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Networking Research
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and Dynamic Biomaterials
for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Marc Martinez Miguel
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Networking Research
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and Dynamic Biomaterials
for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Jaume Veciana
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Networking Research
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and Dynamic Biomaterials
for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Imma Ratera
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Networking Research
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and Dynamic Biomaterials
for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| | - Judith Guasch
- Institute
of Materials Science of Barcelona (ICMAB-CSIC), Networking Research
Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), and Dynamic Biomaterials
for Cancer Immunotherapy, Max Planck Partner Group, ICMAB-CSIC, Campus UAB, 08193 Bellaterra, Spain
| |
Collapse
|
14
|
Alge DL, Anseth KS. Thiol‐X Reactions in Tissue Engineering. THIOL‐X CHEMISTRIES IN POLYMER AND MATERIALS SCIENCE 2013. [DOI: 10.1039/9781849736961-00165] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Thiol‐based click reactions have played a key role in the synthesis of biomaterial scaffolds for regenerative medicine applications. Of particular importance has been their use in creating cell‐laden hydrogel matrices for both fundamental and translational applications. Thiol‐X reactions are often exploited in biological applications as they allow for the facile incorporation of biofunctional components, which has led to many key advancements for the field of tissue engineering. In this chapter, we summarize the important considerations for cytocompatible macromolecular monomer design and subsequent cellular encapsulation in hydrogel formulations. Briefly, we review the main thiol‐X reactions that have been used to synthesize hydrogel cell scaffold systems; provide a generalized protocol for the preparation of cell‐laden hydrogels; present highlights that demonstrate specific advantages of thiol‐X reactions and advances in their application in regenerative medicine research; and conclude with a prospectus on future directions for the field in using thiol‐X chemistries to engineer more advanced hydrogel materials.
Collapse
Affiliation(s)
- Daniel L. Alge
- Department of Chemical and Biological Engineering University of Colorado, Boulder, CO 80303‐1904 USA
| | - Kristi S. Anseth
- Department of Chemical and Biological Engineering University of Colorado, Boulder, CO 80303‐1904 USA
| |
Collapse
|
15
|
Abstract
In the past decade, novel materials, probes and tools have enabled fundamental and applied cancer researchers to take a fresh look at the complex problem of tumour invasion and metastasis. These new tools, which include imaging modalities, controlled but complex in vitro culture conditions, and the ability to model and predict complex processes in vivo, represent an integration of traditional with novel engineering approaches; and their potential effect on quantitatively understanding tumour progression and invasion looks promising.
Collapse
Affiliation(s)
- Muhammad H Zaman
- The Department of Biomedical Engineering, Boston University, 44 Cummington Street, Boston MA 02215, USA.
| |
Collapse
|
16
|
Muth CA, Steinl C, Klein G, Lee-Thedieck C. Regulation of hematopoietic stem cell behavior by the nanostructured presentation of extracellular matrix components. PLoS One 2013; 8:e54778. [PMID: 23405094 PMCID: PMC3566109 DOI: 10.1371/journal.pone.0054778] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2012] [Accepted: 12/18/2012] [Indexed: 01/16/2023] Open
Abstract
Hematopoietic stem cells (HSCs) are maintained in stem cell niches, which regulate stem cell fate. Extracellular matrix (ECM) molecules, which are an essential part of these niches, can actively modulate cell functions. However, only little is known on the impact of ECM ligands on HSCs in a biomimetic environment defined on the nanometer-scale level. Here, we show that human hematopoietic stem and progenitor cell (HSPC) adhesion depends on the type of ligand, i.e., the type of ECM molecule, and the lateral, nanometer-scaled distance between the ligands (while the ligand type influenced the dependency on the latter). For small fibronectin (FN)-derived peptide ligands such as RGD and LDV the critical adhesive interligand distance for HSPCs was below 45 nm. FN-derived (FN type III 7-10) and osteopontin-derived protein domains also supported cell adhesion at greater distances. We found that the expression of the ECM protein thrombospondin-2 (THBS2) in HSPCs depends on the presence of the ligand type and its nanostructured presentation. Functionally, THBS2 proved to mediate adhesion of HSPCs. In conclusion, the present study shows that HSPCs are sensitive to the nanostructure of their microenvironment and that they are able to actively modulate their environment by secreting ECM factors.
Collapse
Affiliation(s)
- Christine Anna Muth
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
| | - Carolin Steinl
- Section for Transplantation Immunology and Immunohematology, Center for Medical Research, University of Tübingen, Tübingen, Germany
| | - Gerd Klein
- Section for Transplantation Immunology and Immunohematology, Center for Medical Research, University of Tübingen, Tübingen, Germany
| | - Cornelia Lee-Thedieck
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, Stuttgart, Germany
- Department of Biophysical Chemistry, University of Heidelberg, Heidelberg, Germany
- Institute of Functional Interfaces, Karlsruhe Institute of Technology (KIT), Eggenstein-Leopoldshafen, Germany
| |
Collapse
|