1
|
Pan F, Sun L, Li S. Dynamic Processes and Mechanical Properties of Lipid-Nanoparticle Mixtures. Polymers (Basel) 2023; 15:polym15081828. [PMID: 37111975 PMCID: PMC10144953 DOI: 10.3390/polym15081828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/23/2023] [Accepted: 04/03/2023] [Indexed: 04/29/2023] Open
Abstract
In this study, we investigate the dynamic processes and mechanical properties of lipid nanoparticle mixtures in a melt via dissipation particle dynamic simulation. By investigating the distribution of nanoparticles in lamellar and hexagonal lipid matrices in equilibrium state and dynamic processes, we observe that the morphology of such composites depends not only on the geometric features of the lipid matrix but also on the concentration of nanoparticles. The dynamic processes are also demonstrated by calculating the average radius of gyration, which indicates the isotropic conformation of lipid molecules in the x-y plane and that the lipid chains are stretched in the z direction with the addition of nanoparticles. Meanwhile, we predict the mechanical properties of lipid-nanoparticle mixtures in lamellar structures by analyzing the interfacial tensions. Results show that the interfacial tension decreased with the increase in nanoparticle concentration. These results provide molecular-level information for the rational and a priori design of new lipid nanocomposites with ad hoc tailored properties.
Collapse
Affiliation(s)
- Fan Pan
- School of Data Science and Artificial Intelligence, Wenzhou University of Technology, Wenzhou 325035, China
| | - Lingling Sun
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| | - Shiben Li
- Department of Physics, Wenzhou University, Wenzhou 325035, China
| |
Collapse
|
2
|
Han XG, Sun ZH, Liang N, Zhang H. Aggregate behavior in amphiphilic coil/rod block copolymer solutions. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2022.111663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
3
|
Paliwal H, Parihar A, Prajapati BG. Current State-of-the-Art and New Trends in Self-Assembled Nanocarriers as Drug Delivery Systems. FRONTIERS IN NANOTECHNOLOGY 2022. [DOI: 10.3389/fnano.2022.836674] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Self-assembled nanocarrier drug delivery has received profuse attention in the field of diagnosis and treatment of diseases. These carriers have proved that serious life-threatening diseases can be eliminated evidently by virtue of their characteristic design and features. This review is aimed at systematically presenting the research and advances in the field of self-assembled nanocarriers such as polymeric nanoparticles, dendrimers, liposomes, inorganic nanocarriers, solid lipid nanoparticles, polymerosomes, micellar systems, niosomes, and some other nanoparticles. The self-assembled delivery of nanocarriers has been developed in recent years for targeting diseases. Some of the innovative attempts with regard to prolonging drug action, improving bioavailability, avoiding drug resistance, enhancing cellular uptake, and so on have been discussed. The discussion about various delivery systems included the investigation conducted at the preliminary stage, i.e., preclinical trials and assessment of safety. The clinical studies of some of the recently developed self-assembled products are currently at the clinical trial phase or FDA approved.
Collapse
|
4
|
Procházka K, Limpouchová Z, Štěpánek M, Šindelka K, Lísal M. DPD Modelling of the Self- and Co-Assembly of Polymers and Polyelectrolytes in Aqueous Media: Impact on Polymer Science. Polymers (Basel) 2022; 14:404. [PMID: 35160394 PMCID: PMC8838752 DOI: 10.3390/polym14030404] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 02/04/2023] Open
Abstract
This review article is addressed to a broad community of polymer scientists. We outline and analyse the fundamentals of the dissipative particle dynamics (DPD) simulation method from the point of view of polymer physics and review the articles on polymer systems published in approximately the last two decades, focusing on their impact on macromolecular science. Special attention is devoted to polymer and polyelectrolyte self- and co-assembly and self-organisation and to the problems connected with the implementation of explicit electrostatics in DPD numerical machinery. Critical analysis of the results of a number of successful DPD studies of complex polymer systems published recently documents the importance and suitability of this coarse-grained method for studying polymer systems.
Collapse
Affiliation(s)
- Karel Procházka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Zuzana Limpouchová
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Miroslav Štěpánek
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 128 43 Prague, Czech Republic; (Z.L.); (M.Š.)
| | - Karel Šindelka
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
| | - Martin Lísal
- Department of Molecular and Mesoscopic Modelling, Institute of Chemical Process Fundamentals, Czech Academy of Sciences, Rozvojová 135, 165 02 Prague, Czech Republic; (K.Š.); (M.L.)
- Department of Physics, Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Pasteurova 3632, 400 96 Ústí n. Labem, Czech Republic
| |
Collapse
|
5
|
Tang Z, Gao L, Lin J, Cai C, Yao Y, Guerin G, Tian X, Lin S. Anchorage-Dependent Living Supramolecular Self-Assembly of Polymeric Micelles. J Am Chem Soc 2021; 143:14684-14693. [PMID: 34472352 DOI: 10.1021/jacs.1c06020] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Anchorage-dependent contact-inhibited growth usually refers to on-surface cell proliferation inhibited by the proximity of other cells. This phenomenon, prominent in nature, has yet to be achieved with polymeric micelles. Here, we report the control living supra-macromolecular self-assembly of elongated micelles with a liquid crystalline core onto a hydrophobic substrate via the synergetic interactions between the substrate and aggregates dispersed in solution. In this system, seed formation is a transient phenomenon induced by the adsorption and rearrangement of the core-swollen aggregates. The seeds then trigger the growth of elongated micelles onto the substrate in a living controllable manner until the contact with the substrate is disrupted. Brownian dynamic simulations show that this unique behavior is due to the fusion of the aggregates onto both ends of the anchored seeds. More important, the micelle length can be tuned by varying the substrate hydrophobicity, a key step toward the fabrication of intricate structures.
Collapse
Affiliation(s)
- Zhengmin Tang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liang Gao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gerald Guerin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
6
|
Song X, Zhou J, Qiao C, Xu X, Zhao S, Liu H. Engulfing Behavior of Nanoparticles into Thermoresponsive Microgels: A Mesoscopic Simulation Study. J Phys Chem B 2021; 125:2994-3004. [PMID: 33720720 DOI: 10.1021/acs.jpcb.1c00817] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The engulfing of nanoparticles into microgels provides a versatile platform to design nano- and microstructured materials with various shape anisotropies and multifunctional properties. Manipulating the spontaneous engulfment process remains elusive. Herein, we report a mesoscopic simulation study on the engulfing behavior of nanoparticles into thermoresponsive microgels. The effects of the multiple parameters, including binding strength, temperature, and nanoparticle size, are examined systematically. Our simulation results disclose three engulfing states at different temperatures, namely full-engulfing, half-engulfing, and surface contact. The engulfing depth is determined by the complementary balance of interfacial elastocapillarity. Specifically, the van der Waals interaction of hybrid microgel-nanoparticle offers the capillary force while the internally networked structure of microgel reinforces the elasticity repulsion. Our study, validated by relevant experimental results, provides a mechanistic understanding of the interfacial elastocapillarity for nanoparticle-microgels.
Collapse
Affiliation(s)
- Xianyu Song
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Chongqing Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir, Chongqing Three Gorges University, Wanzhou 404020, China
| | - Jianzhuang Zhou
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chongzhi Qiao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaofei Xu
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Shuangliang Zhao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237, China.,Guangxi Key Laboratory of Petrochemical Resource Processing and Process Intensification Technology, Guangxi University, Nanning, 530004, China
| | - Honglai Liu
- State Key Laboratory of Chemical Engineering and School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
7
|
Nam C, Lee WB, Kim Y. Self-assembly of rod-coil diblock copolymer-nanoparticle composites in thin films: dissipative particle dynamics. SOFT MATTER 2021; 17:2384-2391. [PMID: 33480958 DOI: 10.1039/d0sm02149k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this study, the assembled structures of rod-coil diblock copolymer and nanoparticle blends were studied via dissipative particle dynamics (DPD). Thin films were composed of soft confinement DPD fluid beads and the fluctuating film structure was maintained during the simulation process. Analysis of the position of nanoparticles was done in the smectic lamellar phase of the rod-coil polymer matrix, and density distributions of rods, coils, and nanoparticles were obtained as functions of the size of the nanoparticle and the DPD repulsion constant between the rod and the nanoparticle. The distribution of nanoparticles was explained by using the concept of translational entropy of nanoparticles, stretching energy of the polymer chain, relative repulsion enthalpy of nanoparticles to rods or coils, and the effect of the liquid crystalline rod.
Collapse
Affiliation(s)
- Chongyong Nam
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - Won Bo Lee
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea.
| | - YongJoo Kim
- School of Advanced Materials Engineering, Kookmin University, 77 Jeongneung-ro, Seongbuk-gu, Seoul, 02707, Republic of Korea.
| |
Collapse
|
8
|
Liu W, Ji X. Influence of polystyrene ligand length on the spatial arrangement of quantum dots within PS-b-PEO micelles. JOURNAL OF POLYMER RESEARCH 2021. [DOI: 10.1007/s10965-021-02425-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Tang Z, Xu Z, Cai C, Lin J, Yao Y, Yang C, Tian X. 2D Chiral Stripe Nanopatterns Self-Assembled from Rod-Coil Block Copolymers on Microstripes. Macromol Rapid Commun 2020; 41:e2000349. [PMID: 32830421 DOI: 10.1002/marc.202000349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Chiral nanoarchitectures usually possess unique and intriguing properties. However, the construction of 2D chiral nanopatterns through polymer self-assembly is a challenge. Reported herein is the formation of chiral stripe nanopatterns through surface self-assembly of polypeptide-based rod-coil block copolymers on microstripes. The nanostripes align oblique to the boundary of the microstripes, resulting in the chirality of the nanopatterns. The chirality of the nanopatterns is closely related to the width of the microstripes, i.e., a narrower width results in higher chirality. Besides, the chiral sense of the nanopatterns can be regulated by the chirality of the polypeptide blocks. This work demonstrates the transmission of chirality from polymer to nanoarchitecture on a confined surface, which can guide the preparation of nanopatterns with tuned chiral features.
Collapse
Affiliation(s)
- Zhengmin Tang
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhanwen Xu
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunhua Cai
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaping Lin
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yuan Yao
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, 201204, China
| | - Xiaohui Tian
- Z. Tang, Dr. Z. Xu, Prof. C. Cai, Prof. J. Lin, Prof. Y. Yao, Prof. X. Tian, Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
10
|
Yan K, Kong H, Cui Z, Fu P, Liu M, Qiao X, Pang X. A Versatile Strategy for Unimolecular Micelle-Derived Hollow Polymer Nanoparticles as General Nanoreactors. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6690-6697. [PMID: 32493013 DOI: 10.1021/acs.langmuir.0c00673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We reported the synthesis of a well-defined hollow polymer nanoparticle derived from star-shaped unimolecular micelles. β-Cyclodextrin was first applied as an efficient macroinitiator to prepare a star-shaped PCL via ring-opening polymerization (ROP). Then, the star-shaped PCL was modified to be a macro-RAFT agent for photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) polymerization of S-Cl monomers. The prepared unimolecular micelles can be photocross-linked under UV irradiation after a simple nucleophilic substitution reaction, which made -Cl groups to be -N3 groups. After the selective removal of the PCL core, hollow polymer nanoparticles were achieved and exhibited to be a general nanoreactor strategy for the fabrication of nanocrystals with well-controlled architectures. Compared with unimolecular micelle templates, the nanocrystals prepared by hollow templates are absolutely pure as no polymer chains are embedded in the inorganic nanocrystals. In addition, by changing the concentration of the precursor, the structure of the nanocrystal can be changed from a normal spherical structure to a hollow structure.
Collapse
Affiliation(s)
- Kailong Yan
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Huimin Kong
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Zhe Cui
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Peng Fu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Minying Liu
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xiaoguang Qiao
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xinchang Pang
- Henan Joint International Research Laboratory of Living Polymerizations and Functional Nanomaterials, Henan Key Laboratory of Advanced Nylon Materials and Application, School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
11
|
Huang Q, Xu Z, Cai C, Lin J. Micelles with a Loose Core Self‐Assembled from Coil‐
g
‐Rod Graft Copolymers Displaying High Drug Loading Capacity. MACROMOL CHEM PHYS 2020. [DOI: 10.1002/macp.202000121] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Qijing Huang
- Shanghai Key Laboratory of Advanced Polymeric MaterialsKey Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Zhanwen Xu
- Shanghai Key Laboratory of Advanced Polymeric MaterialsKey Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric MaterialsKey Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric MaterialsKey Laboratory for Ultrafine Materials of Ministry of EducationSchool of Materials Science and EngineeringEast China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
12
|
Tao S, Chu Y, Wang Z, Xu X, Tan Q. Morphological transition of amphiphilic block copolymer/PEGylated phospholipid complexes induced by the dynamic subtle balance interactions in the self-assembled aggregates. E-POLYMERS 2020. [DOI: 10.1515/epoly-2020-0018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractRecently, there has been an increasing interest in the control of morphological transition of block copolymer aggregates. Here, we report how to control the morphological transition of methoxy polyethylene glycol–poly(d,l-lactic acid) (PDLLA–MPEG) by adding 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)] (DSPE–PEG). In the aggregates formed by dialyzing DSPE–PEG/PDLLA–MPEG mixed solutions against water, the two hydrophobic fatty acid tails of DSPE–PEG will preferentially anchor to the hydrophobic segment end of PDLLA–MPEG by interdigitating between these two tails and PDLLA segments. Consequently, DSPE–PEG and PDLLA–MPEG will form “ABA” temporary supra-amphiphiles in which A represents a poly(ethylene glycol) (PEG) chain segment and B is a mixed hydrophobic segment composed of PDLLA and DSPE segments; the repulsive force derived from the PEG segments of DSPE–PEG can affect the stability of “ABA” temporary supra-amphiphiles. Our results show that the dynamic subtle balance between the number of “ABA” temporary supra-amphiphiles formed and the strength of repulsive force between the PEG segments of DSPE–PEG drives the morphological structure of DSPE–PEG/PDLLA–MPEG aggregates to change from micelles to vesicles, then to semi-vesicles and finally to mixed micelles, with increasing DSPE–PEG additions.
Collapse
Affiliation(s)
- Susu Tao
- Department of polymeric materials, School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), Tongji University, Caoan Road 4800, Shanghai 201804, P. R. China
| | - Yanyan Chu
- Department of polymeric materials, School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), Tongji University, Caoan Road 4800, Shanghai 201804, P. R. China
| | - Zihao Wang
- Department of polymeric materials, School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), Tongji University, Caoan Road 4800, Shanghai 201804, P. R. China
| | - Xiaoyan Xu
- Department of polymeric materials, School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), Tongji University, Caoan Road 4800, Shanghai 201804, P. R. China
| | - Qinggang Tan
- Department of polymeric materials, School of Materials Science and Engineering, Key Laboratory for Advanced Civil Engineering Materials (Ministry of Education), Tongji University, Caoan Road 4800, Shanghai 201804, P. R. China
| |
Collapse
|
13
|
Mittal A, Singh AK, Kumar A, Parmanand, Achazi K, Haag R, Sharma SK. Fabrication of oligo‐glycerol based hydrolase responsive amphiphilic nanocarriers. POLYM ADVAN TECHNOL 2020. [DOI: 10.1002/pat.4851] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Ayushi Mittal
- Department of ChemistryUniversity of Delhi Delhi India
| | - Abhishek K. Singh
- Institut für Chemie und BiochemieFreie Universität Berlin Berlin Germany
| | - Anoop Kumar
- Department of ChemistryUniversity of Delhi Delhi India
| | - Parmanand
- Department of ChemistryUniversity of Delhi Delhi India
| | - Katharina Achazi
- Institut für Chemie und BiochemieFreie Universität Berlin Berlin Germany
| | - Rainer Haag
- Institut für Chemie und BiochemieFreie Universität Berlin Berlin Germany
| | | |
Collapse
|
14
|
Tang Z, Li D, Lin J, Zhang L, Cai C, Yao Y, Yang C, Tian X. Self-assembly of rod-coil block copolymers on a substrate into micrometer-scale ordered stripe nanopatterns. Polym Chem 2020. [DOI: 10.1039/d0py01404d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Micrometer-scale ordered stripe nanopatterns are readily constructed through an adsorption-assembly of rod-coil block copolymers on the substrate.
Collapse
Affiliation(s)
- Zhengmin Tang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Da Li
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Yuan Yao
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Chunming Yang
- Shanghai Synchrotron Radiation Facility
- Shanghai Advanced Research Institute
- Chinese Academy of Sciences
- Shanghai 201204
- China
| | - Xiaohui Tian
- Shanghai Key Laboratory of Advanced Polymeric Materials
- Key Laboratory for Ultrafine Materials of Ministry of Education
- Frontiers Science Center for Materiobiology and Dynamic Chemistry
- School of Materials Science and Engineering
- East China University of Science and Technology
| |
Collapse
|
15
|
Song X, Qiao C, Tao J, Bao B, Han X, Zhao S. Interfacial Engineering of Thermoresponsive Microgel Capsules: Polymeric Wetting vs Colloidal Adhesion. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02323] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Morphology transformation of micelles self-assembled from amphiphilic coil-coil diblock copolymer/nanoparticle mixture in dilute solution by combining self-consistent field theory and density functional theory. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.07.053] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
17
|
Cai C, Lin J, Lu Y, Zhang Q, Wang L. Polypeptide self-assemblies: nanostructures and bioapplications. Chem Soc Rev 2018; 45:5985-6012. [PMID: 27722321 DOI: 10.1039/c6cs00013d] [Citation(s) in RCA: 105] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Polypeptide copolymers can self-assemble into diverse aggregates. The morphology and structure of aggregates can be varied by changing molecular architectures, self-assembling conditions, and introducing secondary components such as polymers and nanoparticles. Polypeptide self-assemblies have gained significant attention because of their potential applications as delivery vehicles for therapeutic payloads and as additives in the biomimetic mineralization of inorganics. This review article provides an overview of recent advances in nanostructures and bioapplications related to polypeptide self-assemblies. We highlight recent contributions to developing strategies for the construction of polypeptide assemblies with increasing complexity and novel functionality that are suitable for bioapplications. The relationship between the structure and properties of the polypeptide aggregates is emphasized. Finally, we briefly outline our perspectives and discuss the challenges in the field.
Collapse
Affiliation(s)
- Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Yingqing Lu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Qian Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.
| |
Collapse
|
18
|
Zhang Q, Lin J, Wang L, Xu Z. Theoretical modeling and simulations of self-assembly of copolymers in solution. Prog Polym Sci 2017. [DOI: 10.1016/j.progpolymsci.2017.04.003] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Wang Z, Sun S, Li C, Hu S, Faller R. Controllable multicompartment morphologies from cooperative self-assembly of copolymer-copolymer blends. SOFT MATTER 2017; 13:5877-5887. [PMID: 28766653 DOI: 10.1039/c7sm01194f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Multicompartment nanostructures, such as microcapsules with clearly separated shell and core, are not easily accessible by conventional block copolymer self-assembly. We assess a versatile computational strategy through cooperative assembly of diblock copolymer blends to generate spherical and cylindrical compartmentalized micelles with intricate structures and morphologies. The co-assembly strategy combines the advantages of polymer blending and incompatibility-induced phase separation. Following this strategy, various nanoassemblies of pure AB, binary AB/AC and ternary AB/AC/AD systems such as compartmentalized micelles with sponge-like, Janus, capsule-like and onion-like morphologies can be obtained. The formation and structural adjustment of microcapsule micelles, in which the shell or core can be occupied by either pure or mixed diblock copolymers, were explored. The mechanism involving the separation of shell and core copolymers is attributed to the stretching force differences of copolymers which drive the arrangement of different copolymers in a pathway to minimize the total interfacial energy. Moreover, by adjusting block interactions, an efficient approach is exhibited for regulating the shell or core composition and morphology in microcapsule micelles, such as the transition from the "pure shell/mixed core" morphology to the "mixed shell/pure core" morphology in the AB/AC/AD micelle. This mesoscale simulation study identifies the key factors governing co-assembly of diblock copolymer blends and provides bottom-up insights towards the design and optimization of new multicompartment micelles.
Collapse
Affiliation(s)
- Zhikun Wang
- College of Science, China University of Petroleum (East China), Qingdao 266580, Shandong, China.
| | | | | | | | | |
Collapse
|
20
|
Xue J, Guan Z, Lin J, Cai C, Zhang W, Jiang X. Cellular Internalization of Rod-Like Nanoparticles with Various Surface Patterns: Novel Entry Pathway and Controllable Uptake Capacity. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1604214. [PMID: 28464447 DOI: 10.1002/smll.201604214] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 03/17/2017] [Indexed: 06/07/2023]
Abstract
The cellular internalization of rod-like nanoparticles (NPs) is investigated in a combined experimental and simulation study. These rod-like nanoparticles with smooth, abacus-like (i.e., beads-on-wires), and helical surface patterns are prepared by the cooperative self-assembly of poly(γ-benzyl-l-glutamate)-block-poly(ethylene glycol) (PBLG-b-PEG) block copolymers and PBLG homopolymers. All three types of NPs can be internalized via endocytosis. Helical NPs exhibit the best endocytic efficacy, followed by smooth NPs and abacus-like NPs. Coarse-grained molecular dynamics simulations are used to examine the endocytic efficiency of these NPs. The NPs with helical and abacus-like surfaces can be endocytosed via novel "standing up" (tip entry) and "gyroscope-like" (precession) pathways, respectively, which are distinct from the pathway of traditional NPs with smooth surfaces. This finding indicates that the cellular internalization capacity and pathways can be regulated by introducing stripe patterns (helical and abacus-like) onto the surface of rod-like NPs. The results of this study may lead to novel applications of biomaterials, such as advanced drug delivery systems.
Collapse
Affiliation(s)
- Jiaxiao Xue
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhou Guan
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Wenjie Zhang
- Department of Prosthodontics, School of Medicine, Ninth Hospital Affiliated to Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| | - Xinquan Jiang
- Department of Prosthodontics, School of Medicine, Ninth Hospital Affiliated to Shanghai Jiao Tong University, 639 Zhizaoju Road, Shanghai, 200011, China
| |
Collapse
|
21
|
Xu P, Lin J, Wang L, Zhang L. Shear flow behaviors of rod-coil diblock copolymers in solution: A nonequilibrium dissipative particle dynamics simulation. J Chem Phys 2017. [DOI: 10.1063/1.4982938] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Pengxiang Xu
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Liangshun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
22
|
Wu D, Huang Y, Xu F, Mai Y, Yan D. Recent advances in the solution self-assembly of amphiphilic “rod-coil” copolymers. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/pola.28517] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Dongdong Wu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People‘s Republic of China
| | - Yinjuan Huang
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People‘s Republic of China
| | - Fugui Xu
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People‘s Republic of China
| | - Yiyong Mai
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People‘s Republic of China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, Shanghai Jiao Tong University; 800 Dongchuan Road Shanghai 200240 People‘s Republic of China
| |
Collapse
|
23
|
Li Q, Wang L, Lin J. Co-assembly behaviour of Janus nanoparticles and amphiphilic block copolymers in dilute solution. Phys Chem Chem Phys 2017; 19:24135-24145. [DOI: 10.1039/c7cp04501h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This work not only provides insights into assembly behaviors of Janus nanoparticle solutions, but also offers strategies for permeable membranes.
Collapse
Affiliation(s)
- Qing Li
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Liquan Wang
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials
- State Key Laboratory of Bioreactor Engineering
- Key Laboratory for Ultrafine Materials of Ministry of Education
- School of Materials Science and Engineering
- East China University of Science and Technology
| |
Collapse
|
24
|
Zhu X, Lin J, Cai C. Superhelices Self-Assembled from Polypeptide-Based Polymer Mixtures: Multistranded Features. Chem Asian J 2016; 12:224-232. [DOI: 10.1002/asia.201601403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Revised: 11/29/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Xingyu Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; NO.130 Meilong road Shanghai 200237 China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; NO.130 Meilong road Shanghai 200237 China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials; State Key Laboratory of Bioreactor Engineering; Key Laboratory for Ultrafine Materials of Ministry of Education; School of Materials Science and Engineering; East China University of Science and Technology; NO.130 Meilong road Shanghai 200237 China
| |
Collapse
|
25
|
Parshad B, Kumari M, Achazi K, Bӧttcher C, Haag R, Sharma SK. Chemo-Enzymatic Synthesis of Perfluoroalkyl-Functionalized Dendronized Polymers as Cyto-Compatible Nanocarriers for Drug Delivery Applications. Polymers (Basel) 2016; 8:polym8080311. [PMID: 30974586 PMCID: PMC6432502 DOI: 10.3390/polym8080311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 08/04/2016] [Accepted: 08/09/2016] [Indexed: 01/22/2023] Open
Abstract
Among amphiphilic polymers with diverse skeletons, fluorinated architectures have attracted significant attention due to their unique property of segregation and self-assembly into discrete supramolecular entities. Herein, we have synthesized amphiphilic copolymers by grafting hydrophobic alkyl/perfluoroalkyl chains and hydrophilic polyglycerol [G2.0] dendrons onto a co-polymer scaffold, which itself was prepared by enzymatic polymerization of poly[ethylene glycol bis(carboxymethyl) ether]diethylester and 2-azidopropan-1,3-diol. The resulting fluorinated polymers and their alkyl chain analogs were then compared in terms of their supramolecular aggregation behavior, solubilization capacity, transport potential, and release profile using curcumin and dexamethasone drugs. The study of the release profile of encapsulated curcumin incubated with/without a hydrolase enzyme Candida antarctica lipase (CAL-B) suggested that the drug is better stabilized in perfluoroalkyl chain grafted polymeric nanostructures in the absence of enzyme for up to 12 days as compared to its alkyl chain analogs. Although both the fluorinated as well as non-fluorinated systems showed up to 90% release of curcumin in 12 days when incubated with lipase, a comparatively faster release was observed in the fluorinated polymers. Cell viability of HeLa cells up to 95% in aqueous solution of fluorinated polymers (100 μg/mL) demonstrated their excellent cyto-compatibility.
Collapse
Affiliation(s)
- Badri Parshad
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| | - Meena Kumari
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| | - Katharina Achazi
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, Berlin 14195, Germany.
| | - Christoph Bӧttcher
- Forschungszentrum für Elektronenmikroskopie, Institut für Chemie und Biochemie, Freie Universität Berlin, Fabeckstraße 36a, Berlin 14195, Germany.
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustraße 3, Berlin 14195, Germany.
| | - Sunil K Sharma
- Department of Chemistry, University of Delhi, Delhi 110 007, India.
| |
Collapse
|
26
|
Liu W, Mao J, Xue Y, Zhao Z, Zhang H, Ji X. Nanoparticle Loading Induced Morphological Transitions and Size Fractionation of Coassemblies from PS-b-PAA with Quantum Dots. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7596-7605. [PMID: 27447738 DOI: 10.1021/acs.langmuir.6b02202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Inorganic nanoparticles play a very important role in the fabrication and regulation of desirable hybrid structures with block copolymers. In this study, polystyrene-b-poly(acrylic acid) (PS48-b-PAA67) and oleic acid-capped CdSe/CdS core/shell quantum dots (QDs) are coassembled in tetrahydrofuran (THF) through gradual water addition. QDs are incorporated into the hydrophilic PAA blocks because of the strong coordination between PAA blocks and the surface of QDs. Increasing the weight fraction of QDs (ω = 0-0.44) leads to morphological transitions from hybrid spherical micelles to large compound micelles (LCMs) and then to bowl-shaped structures. The coassembly process is monitored using transmission electron microscopy (TEM). Formation mechanism of different morphologies is further proposed in which the PAA blocks bridging QDs manipulates the polymer chain mobility and the resulting morphology. Furthermore, the size and size distribution of assemblies serving as drug carriers will influence the circulation time, organ distribution and cell entry pathway of assemblies. Therefore, it is important to prepare or isolate assemblies with monodisperse or narrow size distribution for biomedical applications. Here, the centrifugation and membrane filtration techniques are applied to fractionate polydisperse coassemblies, and the results indicate that both techniques provide effective size fractionation.
Collapse
Affiliation(s)
- Wei Liu
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049, People's Republic of China
| | - Jun Mao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Yanhu Xue
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Ziliang Zhao
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| | - Haishan Zhang
- Department of Colorectal and Anal Surgery, China-Japan Union Hospital, Jilin University , Changchun 130033, People's Republic of China
| | - Xiangling Ji
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences , Changchun 130022, People's Republic of China
| |
Collapse
|
27
|
Yang C, Li Q, Cai C, Lin J. Nanoparticle-Induced Ellipse-to-Vesicle Morphology Transition of Rod-Coil-Rod Triblock Copolymer Aggregates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:6917-6927. [PMID: 27314970 DOI: 10.1021/acs.langmuir.6b01484] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cooperative self-assembly behavior of rod-coil-rod poly(γ-benzyl-l-glutamate)-block-poly(ethylene glycol)-block-poly(γ-benzyl-l-glutamate) (PBLG-b-PEG-b-PBLG) amphiphilic triblock copolymers and hydrophobic gold nanoparticles (AuNPs) was investigated by both experiments and dissipative particle dynamics (DPD) simulations. It was discovered that pure PBLG-b-PEG-b-PBLG copolymers self-assemble into ellipse-like aggregates, and the morphology transforms into vesicles as AuNPs are introduced. When the hydrophobicity of AuNPs is close to that of the copolymers, AuNPs are homogeneously distributed in the vesicle wall. While for the AuNPs with higher hydrophobicity, they are embedded in the vesicle wall as clusters. In addition to the experimental observations, DPD simulations were performed on the self-assembly behavior of triblock copolymer/nanoparticle mixtures. Simulations well reproduced the morphology transition observed in the experiments and provided additional information such as chain packing mode in aggregates. It is deduced that the main reason for the ellipse-to-vesicle transition of the aggregates is attributed to the breakage of ordered and dense packing of PBLG rods in the aggregate core by encapsulating AuNPs. This study deepens our understanding of the self-assembly behavior of rod-coil copolymer/nanoparticle mixtures and provides strategy for designing hybrid polypeptide nanostructures.
Collapse
Affiliation(s)
- Chaoying Yang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Qing Li
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Chunhua Cai
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | - Jiaping Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| |
Collapse
|
28
|
Hu J, Zhang C, Ji F, Li X, Han J, Wu Y. Revealing the morphological architecture of a shape memory polyurethane by simulation. Sci Rep 2016; 6:29180. [PMID: 27373495 PMCID: PMC4931583 DOI: 10.1038/srep29180] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 06/15/2016] [Indexed: 01/12/2023] Open
Abstract
The lack of specific knowledge of the network structure in shape memory polymers (SMPs) has prevented us from gaining an in-depth understanding of their mechanisms and limited the potential for materials innovation. This paper firstly reveals the unit-cell nanoscale morphological architecture of SMPs by simulation. The phase separated architecture of a segmented shape memory polyurethane (SMPU) with a 30 wt% hard segment content (HSC, 4,4’-diphenylmethane diisocyanate (MDI) and 1,4-butanediol (BDO)) showing good shape memory properties was investigated by dissipative particle dynamics (DPD) simulations. A linked-spherical netpoint-frame phase of MDI, a matrix-switch phase of polycaprolactone (PCL) and a connected-spider-like interphase for BDO were obtained for this SMPU. The BDO interphase can reinforce the MDI network. Based on these simulation results, a three-dimensional (3D) overall morphological architectural model of the SMPU can be established. This theoretical study has verified, enriched and integrated two existing schematic models: one being the morphological model deduced from experiments and the other the frame model for SMPs reported before. It can serve as a theoretical guide for smart polymeric materials design. This method for the simulation of polymer structure at the nanoscale can be extended to many areas such as photonic crystals where nanoscale self-assembly plays a vital role.
Collapse
Affiliation(s)
- Jinlian Hu
- Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; The Hong Kong Polytechnic University Shenzhen Base, Shenzhen, China
| | - Cuili Zhang
- Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; The Hong Kong Polytechnic University Shenzhen Base, Shenzhen, China
| | - Fenglong Ji
- School of Textiles and Clothing, Wuyi University, Jiangmen, Guangdong, 529020, China
| | - Xun Li
- Department Applied Mathematics, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jianping Han
- Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; The Hong Kong Polytechnic University Shenzhen Base, Shenzhen, China
| | - You Wu
- Institute of Textiles and Clothing, the Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; The Hong Kong Polytechnic University Shenzhen Base, Shenzhen, China
| |
Collapse
|
29
|
Ramezanpour M, Leung SSW, Delgado-Magnero KH, Bashe BYM, Thewalt J, Tieleman DP. Computational and experimental approaches for investigating nanoparticle-based drug delivery systems. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2016; 1858:1688-709. [PMID: 26930298 DOI: 10.1016/j.bbamem.2016.02.028] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2016] [Revised: 02/20/2016] [Accepted: 02/23/2016] [Indexed: 12/21/2022]
Abstract
Most therapeutic agents suffer from poor solubility, rapid clearance from the blood stream, a lack of targeting, and often poor translocation ability across cell membranes. Drug/gene delivery systems (DDSs) are capable of overcoming some of these barriers to enhance delivery of drugs to their right place of action, e.g. inside cancer cells. In this review, we focus on nanoparticles as DDSs. Complementary experimental and computational studies have enhanced our understanding of the mechanism of action of nanocarriers and their underlying interactions with drugs, biomembranes and other biological molecules. We review key biophysical aspects of DDSs and discuss how computer modeling can assist in rational design of DDSs with improved and optimized properties. We summarize commonly used experimental techniques for the study of DDSs. Then we review computational studies for several major categories of nanocarriers, including dendrimers and dendrons, polymer-, peptide-, nucleic acid-, lipid-, and carbon-based DDSs, and gold nanoparticles. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- M Ramezanpour
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - S S W Leung
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - K H Delgado-Magnero
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - B Y M Bashe
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - J Thewalt
- Department of Physics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada; Department of Molecular Biology and Biochemistry, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
| | - D P Tieleman
- Centre for Molecular Simulation, Department of Biological Sciences, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
30
|
Cai C, Lin J, Zhu X, Gong S, Wang XS, Wang L. Superhelices with Designed Helical Structures and Temperature-Stimulated Chirality Transitions. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02254] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Chunhua Cai
- Shanghai
Key Laboratory of Advanced Polymeric Materials, State Key Laboratory
of Bioreactor Engineering, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jiaping Lin
- Shanghai
Key Laboratory of Advanced Polymeric Materials, State Key Laboratory
of Bioreactor Engineering, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xingyu Zhu
- Shanghai
Key Laboratory of Advanced Polymeric Materials, State Key Laboratory
of Bioreactor Engineering, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuting Gong
- Shanghai
Key Laboratory of Advanced Polymeric Materials, State Key Laboratory
of Bioreactor Engineering, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Xiao-Song Wang
- Department
of Chemistry, Waterloo Institute of Nanotechnology (WIN), University of Waterloo, Waterloo N2L 3G1, Canada
| | - Liquan Wang
- Shanghai
Key Laboratory of Advanced Polymeric Materials, State Key Laboratory
of Bioreactor Engineering, Key Laboratory for Ultrafine Materials
of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
31
|
The vesicle formation of β-CD and AD self-assembly of dumbbell-shaped amphiphilic triblock copolymer. Colloid Polym Sci 2015. [DOI: 10.1007/s00396-015-3758-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
32
|
Zhang X, Wang L, Zhang L, Lin J, Jiang T. Controllable hierarchical microstructures self-assembled from multiblock copolymers confined in thin films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2533-2544. [PMID: 25654644 DOI: 10.1021/la503985u] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hierarchical microstructures self-assembled from A(BC)n multiblock copolymers confined between two solid surfaces were explored by dissipative particle dynamics simulations. The strategy using confinement allows us to generate hierarchical microstructures with various numbers and different orientations of small-length-scale lamellae. Except for the hierarchical lamellar microstructures with parallel or perpendicular arrangements of small-length-scale lamellae, the coexistence of two different hierarchical lamellae was also discovered by varying the film thickness. The dynamics of hierarchical microstructure formation was further examined. It was found that the formation of the hierarchical microstructures exhibits a stepwise manner where the formation of small-length-scale structures lags behind that of large-length-scale structures. The present work could provide guidance for controllable manufacture of hierarchical microstructures.
Collapse
Affiliation(s)
- Xu Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, State Key Laboratory of Bioreactor Engineering, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, China
| | | | | | | | | |
Collapse
|
33
|
Bakshi MS. Colloidal micelles of block copolymers as nanoreactors, templates for gold nanoparticles, and vehicles for biomedical applications. Adv Colloid Interface Sci 2014; 213:1-20. [PMID: 25262452 DOI: 10.1016/j.cis.2014.08.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/29/2014] [Accepted: 08/07/2014] [Indexed: 12/17/2022]
Abstract
Target drug delivery methodology is becoming increasingly important to overcome the shortcomings of conventional drug delivery absorption method. It improves the action time with uniform distribution and poses minimum side effects, but is usually difficult to design to achieve the desire results. Economically favorable, environment friendly, multifunctional, and easy to design, hybrid nanomaterials have demonstrated their enormous potential as target drug delivery vehicles. A combination of both micelles and nanoparticles makes them fine target delivery vehicles in a variety of biological applications where precision is primarily required to achieve the desired results as in the case of cytotoxicity of cancer cells, chemotherapy, and computed tomography guided radiation therapy.
Collapse
Affiliation(s)
- Mandeep Singh Bakshi
- Department of Chemistry, Wilfrid Laurier University, Science Building, 75 University Ave. W., Waterloo, ON N2L 3C5, Canada.
| |
Collapse
|
34
|
|
35
|
Cheng L, Lin X, Wang F, Liu B, Zhou J, Li J, Li W. Well-Defined Polymeric Double Helices with Solvent-Triggered Destruction from Amphiphilic Hairy-Like Nanoparticles. Macromolecules 2013. [DOI: 10.1021/ma401726x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lin Cheng
- Key Laboratory of Functional Molecular Solids, Ministry
of Education of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xiang Lin
- Key Laboratory of Functional Molecular Solids, Ministry
of Education of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Fengyang Wang
- Key Laboratory of Functional Molecular Solids, Ministry
of Education of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Biao Liu
- Key Laboratory of Functional Molecular Solids, Ministry
of Education of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Jincheng Zhou
- Key Laboratory of Functional Molecular Solids, Ministry
of Education of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Jie Li
- Key Laboratory of Functional Molecular Solids, Ministry
of Education of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Wenlian Li
- Key Laboratory of Functional Molecular Solids, Ministry
of Education of China, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, China
| |
Collapse
|
36
|
Dutt M, Kuksenok O, Balazs AC. Nano-pipette directed transport of nanotube transmembrane channels and hybrid vesicles. NANOSCALE 2013; 5:9773-9784. [PMID: 23963614 DOI: 10.1039/c3nr33991b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Using computational modeling, we simulate the interactions between a nanopipette and transmembrane, end-functionalized nanotubes that are localized within flat bilayers or nanoscopic vesicles. The functional groups (hairs) provide a "handle" for the moving pipette to controllably pick up and move the nanotubes to specific locations in the flat membrane, or the hybrid vesicle to specified regions on a surface. The ability to localize these hybrid vesicles on surfaces paves the way for creating nanoreactor arrays in fluidic devices.
Collapse
Affiliation(s)
- Meenakshi Dutt
- Chemical and Biochemical Engineering Department, Rutgers University, Piscataway, NJ 08854, USA
| | | | | |
Collapse
|
37
|
Yildirim E, Erciyes G, Yurtsever M. Theoretical approach to the structural, electronic, and morphological properties of poly(ɛ-caprolactone) grafted polypyrroles. Macromol Res 2013. [DOI: 10.1007/s13233-013-1111-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
38
|
Jiang T, Wang L, Lin J. Mechanical properties of designed multicompartment gels formed by ABC graft copolymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12298-12306. [PMID: 24011339 DOI: 10.1021/la403098p] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the present work, we designed a multicompartment gel by taking advantage of the ABC graft copolymer with a solvophilic A backbone and solvophobic B and C grafts. The mechanical properties of such designed gels were investigated by a combination of dissipative particle dynamics simulation and a nonequilibrium deformation technique. The extensional moduli of multicompartment gels were found to be dependent on polymer concentration and architectural parameters of the graft copolymers (the sequence of graft arms and the position of the graft points). The graft copolymer solutions undergo a sol-gel transition as the polymer concentration increases. This leads to an abrupt increase in the extensional modulus. The studies also revealed that the multicompartment gels of graft copolymers exhibit higher extensional moduli than those of nonmulticompartment gels of graft copolymers and triblock copolymer gels. The position of graft points plays another important role in determining the extensional moduli of the multicompartment gels. The effects of graft positions on the gel modulus were found to be associated with the bridging fraction of graft copolymer chains. The results gained through the present work may provide useful guidance for designing high-performance gels.
Collapse
Affiliation(s)
- Tao Jiang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, School of Materials Science and Engineering, East China University of Science and Technology , Shanghai 200237, People's Republic of China
| | | | | |
Collapse
|
39
|
Zhu J, Chen T, Jin G, Xu J, Zhong K, Yin B, Jin LY. Self-organization of coil-rod-coil molecular isomers with conjugated rod segments into supramolecular honeycomb and lamellar assemblies. POLYM INT 2013. [DOI: 10.1002/pi.4612] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jikai Zhu
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules (Yanbian University), and Department of Chemistry, College of Science; Yanbian University; No. 977 Gongyuan Road Yanji 133002 People's Republic of China
| | - Tie Chen
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules (Yanbian University), and Department of Chemistry, College of Science; Yanbian University; No. 977 Gongyuan Road Yanji 133002 People's Republic of China
| | - Guangri Jin
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules (Yanbian University), and Department of Chemistry, College of Science; Yanbian University; No. 977 Gongyuan Road Yanji 133002 People's Republic of China
| | - Jingzhe Xu
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules (Yanbian University), and Department of Chemistry, College of Science; Yanbian University; No. 977 Gongyuan Road Yanji 133002 People's Republic of China
| | - Keli Zhong
- College of Chemistry, Chemical Engineering and Food Safety; Bohai University; Jinzhou 121013 People's Republic of China
| | - Bingzhu Yin
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules (Yanbian University), and Department of Chemistry, College of Science; Yanbian University; No. 977 Gongyuan Road Yanji 133002 People's Republic of China
| | - Long Yi Jin
- Key Laboratory for Organism Resources of the Changbai Mountain and Functional Molecules (Yanbian University), and Department of Chemistry, College of Science; Yanbian University; No. 977 Gongyuan Road Yanji 133002 People's Republic of China
| |
Collapse
|
40
|
Chen L, Jiang T, Lin J, Cai C. Toroid formation through self-assembly of graft copolymer and homopolymer mixtures: experimental studies and dissipative particle dynamics simulations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8417-8426. [PMID: 23738828 DOI: 10.1021/la401553a] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Self-assembly of mixture systems containing poly(acrylic acid)-g-poly(γ-benzyl-L-glutamate) graft copolymers (PAA-g-PBLG) and PBLG homopolymers in aqueous solution was investigated by both experiments and computer simulations. It was found that the aggregate morphologies, such as rods, curved rods, and toroids, could be tuned by the homopolymer content. The toroidal micelles with uniform size were formed when the homopolymer content in the hybrid aggregates is higher. The effect of added water content on the toroid formation process was studied. Rods and curved rods were observed sequentially before formation of toroids. We also performed dissipative particle dynamics (DPD) simulations to verify the structure transition and explore the formation mechanism of the toroidal aggregates. The DPD results are in good agreement with the experimental findings and provide additional information such as chain distribution in aggregates, which is difficult to be gained through experiments. On the basis of the experimental and simulation results, the formation mechanism of the toroidal micelles was suggested.
Collapse
Affiliation(s)
- Lili Chen
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | | | | | | |
Collapse
|
41
|
Lin S, Wang Y, Cai C, Xing Y, Lin J, Chen T, He X. Tuning self-assembly and photo-responsive behavior of azobenzene-containing triblock copolymers by combining homopolymers. NANOTECHNOLOGY 2013; 24:085602. [PMID: 23376967 DOI: 10.1088/0957-4484/24/8/085602] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The self-assembly behavior of azobenzene-based triblock copolymers poly(ethylene oxide)-block-polystyrene-block-poly[6-(4-methoxy-4'-oxy-azobenzene) hexyl methacrylate] (PEO-b-PS-b-PMMAZO) and their mixtures with PS or PMMAZO homopolymers was studied by means of transmission electron microscopy, scanning electron microscopy, laser light scattering and UV-vis spectrophotometry. It was found that pure block copolymers self-assembled into spherical micelles with core-shell structures. The addition of PS or PMMAZO homopolymers can not only increase the aggregate size but also have a significant influence on the photo-isomerization behavior and photo-deformation behavior of the aggregate. The photo-isomerization study revealed that a complete trans-cis or cis-trans isomerization of azobenzene chromophores can be acquired when irradiated with UV or visible light for polymers both in organic solutions and in micelles. The photo-isomerization rate of azobenzene chromophores increases when PS homopolymers were incorporated into micelles, while with the addition of PMMAZO homopolymers, it decreases. The photo-induced elongation of the aggregates by irradiation of a linearly polarized laser was observed for all the samples, and the deformation degree increases with the weight fraction of azobenzene groups in the parent copolymers, as well as the PMMAZO content for the mixture micelles.
Collapse
Affiliation(s)
- Shaoliang Lin
- Shanghai Key Laboratory of Advanced Polymeric Materials, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
42
|
Zhai S, Song X, Feng C, Jiang X, Li Y, Lu G, Huang X. Synthesis of α-helix-containing PPEGMEA-g-PBLG, well-defined amphiphilic graft copolymer, by sequential SET-LRP and ROP. Polym Chem 2013. [DOI: 10.1039/c3py00474k] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
43
|
Ordering of Polypeptides in Liquid Crystals, Gels and Micelles. CONTROLLED POLYMERIZATION AND POLYMERIC STRUCTURES 2013. [DOI: 10.1007/12_2013_221] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|