1
|
Piatti E, Miola M, Verné E. Tailoring of bioactive glass and glass-ceramics properties for in vitro and in vivo response optimization: a review. Biomater Sci 2024; 12:4546-4589. [PMID: 39105508 DOI: 10.1039/d3bm01574b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/07/2024]
Abstract
Bioactive glasses are inorganic biocompatible materials that can find applications in many biomedical fields. The main application is bone and dental tissue engineering. However, some applications in contact with soft tissues are emerging. It is well known that both bulk (such as composition) and surface properties (such as morphology and wettability) of an implanted material influence the response of cells in contact with the implant. This review aims to elucidate and compare the main strategies that are employed to modulate cell behavior in contact with bioactive glasses. The first part of this review is focused on the doping of bioactive glasses with ions and drugs, which can be incorporated into the bioceramic to impart several therapeutic properties, such as osteogenic, proangiogenic, or/and antibacterial ones. The second part of this review is devoted to the chemical functionalization of bioactive glasses using drugs, extra-cellular matrix proteins, vitamins, and polyphenols. In the third and final part, the physical modifications of the surfaces of bioactive glasses are reviewed. Both top-down (removing materials from the surface, for example using laser treatment and etching strategies) and bottom-up (depositing materials on the surface, for example through the deposition of coatings) strategies are discussed.
Collapse
Affiliation(s)
- Elisa Piatti
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Marta Miola
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Enrica Verné
- Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| |
Collapse
|
2
|
Lee PS, Heinemann C, Zheng K, Appali R, Alt F, Krieghoff J, Bernhardt A, Boccaccini AR, van Rienen U, Hintze V. The interplay of collagen/bioactive glass nanoparticle coatings and electrical stimulation regimes distinctly enhanced osteogenic differentiation of human mesenchymal stem cells. Acta Biomater 2022; 149:373-386. [PMID: 35817340 DOI: 10.1016/j.actbio.2022.06.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 06/24/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022]
Abstract
Increasing research has incorporated bioactive glass nanoparticles (BGN) and electric field (EF) stimulation for bone tissue engineering and regeneration applications. However, their interplay and the effects of different EF stimulation regimes on osteogenic differentiation of human mesenchymal stem cells (hMSC) are less investigated. In this study, we introduced EF with negligible magnetic field strength through a well-characterized transformer-like coupling (TLC) system, and applied EF disrupted (4/4) or consecutive (12/12) regime on type I collagen (Col) coatings with/without BGN over 28 days. Additionally, dexamethasone was excluded to enable an accurate interpretation of BGN and EF in supporting osteogenic differentiation. Here, we demonstrated the influences of BGN and EF on collagen topography and maintaining coating stability. Coupled with the release profile of Si ions from the BGN, cell proliferation and calcium deposition were enhanced in the Col-BGN samples after 28 days. Further, osteogenic differentiation was initiated as early as d 7, and each EF regime was shown to activate distinct pathways. The disrupted (4/4) regime was associated with the BMP/Smad4 pathways that up-regulate Runx2/OCN gene expression on d 7, with a lesser effect on ALP activity. In contrast, the canonical Wnt/β-Catenin signaling pathway activated through mechanotransduction cues is associated with the consecutive (12/12) regime, with significantly elevated ALP activity and Sp7 gene expression reported on d 7. In summary, our results illustrated the synergistic effects of BGN and EF in different stimulation regimes on osteogenic differentiation that can be further exploited to enhance current bone tissue engineering and regeneration approaches. STATEMENT OF SIGNIFICANCE: The unique release mechanisms of silica from bioactive glass nanoparticles (BGN) were coupled with pulsatile electric field (EF) stimulation to support hMSC osteogenic differentiation, in the absence of dexamethasone. Furthermore, the interplay with consecutive (12/12) and disrupted (4/4) stimulation regimes was investigated. The reported physical, mechanical and topographical effects of BGN and EF on the collagen coating, hMSC and the distinct progression of osteogenic differentiation (canonical Wnt/β-Catenin and BMP/Smad) triggered by respective stimulation regime were not explicitly reported previously. These results provide the fundamentals for further exploitations on BGN composites with metal ions and rotation of EF regimes to enhance osteogenic differentiation. The goal is sustaining continual osteogenic differentiation and achieving a more physiologically-relevant state and bone constructs in vitro.
Collapse
Affiliation(s)
- Poh Soo Lee
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock 18059, Germany; Max Bergmann Centre of Biomaterials, Institute of Materials Science, Faculty of Mechanical Science and Engineering, Technische Universität Dresden, Budapesterstraße 27, Dresden, Saxony 01069, Germany.
| | - Christiane Heinemann
- Max Bergmann Centre of Biomaterials, Institute of Materials Science, Faculty of Mechanical Science and Engineering, Technische Universität Dresden, Budapesterstraße 27, Dresden, Saxony 01069, Germany
| | - Kai Zheng
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Material Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremburg, Cauerstraße 6, Erlangen 91058, Germany
| | - Revathi Appali
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock 18059, Germany; Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Straße 21, Rostock 18059, Germany
| | - Franziska Alt
- Max Bergmann Centre of Biomaterials, Institute of Materials Science, Faculty of Mechanical Science and Engineering, Technische Universität Dresden, Budapesterstraße 27, Dresden, Saxony 01069, Germany
| | - Jan Krieghoff
- Institute of Pharmacy, Pharmaceutical Technology, Faculty of Medicine, University Leipzig. Eilenburgerstraße 15a, Leipzig 04317, Germany
| | - Anne Bernhardt
- Centre for Translational Bone, Joint and Soft Tissue Research, University Hospital Carl Gustav Carus and Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Aldo R Boccaccini
- Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing Medical University, Nanjing 210029, China; Department of Material Science and Engineering, Institute of Biomaterials, University of Erlangen-Nuremburg, Cauerstraße 6, Erlangen 91058, Germany
| | - Ursula van Rienen
- Institute of General Electrical Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, Albert-Einstein-Straße 2, Rostock 18059, Germany; Department of Ageing of Individuals and Society, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Straße 21, Rostock 18059, Germany; Department of Life, Light and Matter, Interdisciplinary Faculty, University of Rostock, Albert-Einstein-Straße 25, Rostock 18059, Germany
| | - Vera Hintze
- Max Bergmann Centre of Biomaterials, Institute of Materials Science, Faculty of Mechanical Science and Engineering, Technische Universität Dresden, Budapesterstraße 27, Dresden, Saxony 01069, Germany.
| |
Collapse
|
3
|
Borgolte M, Riester O, Kacerova T, Rentschler S, Schmidt MS, Jacksch S, Egert M, Laufer S, Csuk R, Deigner HP. Methacryloyl-GlcNAc Derivatives Copolymerized with Dimethacrylamide as a Novel Antibacterial and Biocompatible Coating. Pharmaceutics 2021; 13:pharmaceutics13101647. [PMID: 34683942 PMCID: PMC8541365 DOI: 10.3390/pharmaceutics13101647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/29/2021] [Accepted: 10/02/2021] [Indexed: 11/16/2022] Open
Abstract
Improving medical implants with functional polymer coatings is an effective way to further improve the level of medical care. Antibacterial and biofilm-preventing properties are particularly desirable in the area of wound healing, since there is a generally high risk of infection, often with a chronic course in the case of biofilm formation. To prevent this we here report a polymeric design of polymer-bound N-acetyl-glucosamine-oligoethylene glycol residues that mimic a cationic, antibacterial, and biocompatible chitosan surface. The combination of easy to use, crosslinkable, thin, potentially 3D-printable polymethacrylate layering with antibacterial and biocompatible functional components will be particularly advantageous in the medical field to support a wide range of implants as well as wound dressings. Different polymers containing a N-acetylglucosamine-methacryloyl residue with oligoethylene glycol linkers and a methacryloyl benzophenone crosslinker were synthesized by free radical polymerization. The functional monomers and corresponding polymers were characterized by 1H, 13C NMR, and infrared (IR) spectroscopy. The polymers showed no cytotoxic or antiadhesive effects on fibroblasts as demonstrated by extract and direct contact cell culture methods. Biofilm formation was reduced by up to 70% and antibacterial growth by 1.2 log, particularly for the 5% GlcNAc-4EG polymer, as observed for Escherichia coli and Staphylococcus aureus as clinically relevant Gram-negative and Gram-positive model pathogens.
Collapse
Affiliation(s)
- Max Borgolte
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
- Department of Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Str. 2, 06120 Halle (Saale), Germany;
| | - Oliver Riester
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany;
- Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - Tereza Kacerova
- Department of Chemistry, Czech University of Life Sciences, Kamýcká 129, 16500 Prague, Czech Republic;
- Department of Chemistry, University College London, London WC1H 0AJ, UK
| | - Simone Rentschler
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany;
| | - Magnus S. Schmidt
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
| | - Susanne Jacksch
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
| | - Markus Egert
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
| | - Stefan Laufer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmaceutical Sciences, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany;
- Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
| | - René Csuk
- Department of Organic Chemistry, Martin-Luther University Halle-Wittenberg, Kurt-Mothes Str. 2, 06120 Halle (Saale), Germany;
| | - Hans-Peter Deigner
- Institute of Precision Medicine, Furtwangen University, Jakob-Kienzle Str. 17, 78054 Villingen-Schwenningen, Germany; (M.B.); (O.R.); (S.R.); (M.S.S.); (S.J.); (M.E.)
- Faculty of Science, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076 Tübingen, Germany
- EXIM Department, Fraunhofer Institute IZI (Leipzig), Schillingallee 68, 18057 Rostock, Germany
- Correspondence:
| |
Collapse
|
4
|
Sergi R, Bellucci D, Cannillo V. A Review of Bioactive Glass/Natural Polymer Composites: State of the Art. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E5560. [PMID: 33291305 PMCID: PMC7730917 DOI: 10.3390/ma13235560] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/02/2020] [Accepted: 12/04/2020] [Indexed: 02/07/2023]
Abstract
Collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose are biocompatible and non-cytotoxic, being attractive natural polymers for medical devices for both soft and hard tissues. However, such natural polymers have low bioactivity and poor mechanical properties, which limit their applications. To tackle these drawbacks, collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose can be combined with bioactive glass (BG) nanoparticles and microparticles to produce composites. The incorporation of BGs improves the mechanical properties of the final system as well as its bioactivity and regenerative potential. Indeed, several studies have demonstrated that polymer/BG composites may improve angiogenesis, neo-vascularization, cells adhesion, and proliferation. This review presents the state of the art and future perspectives of collagen, gelatin, silk fibroin, hyaluronic acid, chitosan, alginate, and cellulose matrices combined with BG particles to develop composites such as scaffolds, injectable fillers, membranes, hydrogels, and coatings. Emphasis is devoted to the biological potentialities of these hybrid systems, which look rather promising toward a wide spectrum of applications.
Collapse
Affiliation(s)
| | | | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
| |
Collapse
|
5
|
Incorporation of Bioactive Glasses Containing Mg, Sr, and Zn in Electrospun PCL Fibers by Using Benign Solvents. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10165530] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Poly(ε-caprolactone) (PCL) and PCL/bioactive glass composite fiber mats were produced by electrospinning technique. To improve cell adhesion and proliferation (i) 45S5, (ii) a bioactive glass containing strontium and magnesium oxides, and (iii) a bioactive glass containing zinc oxide were separately added to the starting PCL solution before electrospinning. A good incorporation of bioactive glass particles in PCL electrospun mats was confirmed by SEM and FTIR analyses. Bioactivity was evaluated by immersion of PCL mats and PCL/bioactive glass electrospun fiber mats in simulated body fluid (SBF). Bone murine stromal cells (ST-2) were employed in WST-8 assay to assess cell viability, cell morphology, and proliferation. The results showed that the presence of bioactive glass particles in the fibers enhances cell adhesion and proliferation compared to neat PCL mats. Furthermore, PCL/bioactive glass electrospun mats showed higher wound-healing rate (measured as cell migration rate) in vitro compared to neat PCL electrospun mats. Therefore, the characteristics of the PCL matrix combined with biological properties of bioactive glasses make PCL/bioactive glass composite ideal candidate for biomedical application.
Collapse
|
6
|
Sergi R, Bellucci D, Salvatori R, Cannillo V. Chitosan-Based Bioactive Glass Gauze: Microstructural Properties, In Vitro Bioactivity, and Biological Tests. MATERIALS 2020; 13:ma13122819. [PMID: 32585873 PMCID: PMC7344553 DOI: 10.3390/ma13122819] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/15/2020] [Accepted: 06/19/2020] [Indexed: 01/19/2023]
Abstract
Passive commercial gauzes were turned into interactive wound dressings by impregnating them with a chitosan suspension. To further improve healing, and cell adhesion and proliferation, chitosan/bioactive glass wound dressings were produced with the addition of (i) 45S5, (ii) a Sr- and Mg-containing bioactive glass, and (iii) a Zn-containing bioactive glass to the chitosan suspension. SEM and FTIR analyses evidenced positive results in terms of incorporation of bioactive glass particles. Bioactivity was investigated by soaking chitosan-based bioactive glass wound dressings in simulated body fluid (SBF). Cell viability, proliferation, and morphology were investigated using NIH 3T3 (mouse embryonic fibroblast) cells by neutral red (NR) uptake and MTT assays. Furthermore, the wound-healing rate was evaluated by means of the scratch test, using NIH 3T3. The results showed that bioactive glass particles enhance cell adhesion and proliferation, and wound healing compared to pure chitosan. Therefore, chitosan-based bioactive glass wound dressings combine the properties of the organic matrix with the specific biological characteristics of bioactive glasses to achieve chitosan composites suitable for healing devices.
Collapse
Affiliation(s)
- Rachele Sergi
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
| | - Devis Bellucci
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
| | - Roberta Salvatori
- Laboratorio dei Biomateriali, Dipartimento di Scienze Mediche Chirurgiche Materno-Infantili e dell’Adulto, Università di Modena e Reggio Emilia, Via Campi 213/A, 41125 Modena, Italy;
| | - Valeria Cannillo
- Dipartimento di Ingegneria Enzo Ferrari, Università degli Studi di Modena e Reggio Emilia, Via P. Vivarelli 10, 41125 Modena, Italy; (R.S.); (D.B.)
- Correspondence: ; Tel.: +39-059-2056240
| |
Collapse
|
7
|
Castellanos E, Soberats B, Bujosa S, Rotger C, de la Rica R, Costa A. Development of Plasmonic Chitosan–Squarate Hydrogels via Bioinspired Nanoparticle Growth. Biomacromolecules 2019; 21:966-973. [DOI: 10.1021/acs.biomac.9b01635] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Eduardo Castellanos
- Universitat de les Illes Balears, Cra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Bartolome Soberats
- Universitat de les Illes Balears, Cra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Sergi Bujosa
- Universitat de les Illes Balears, Cra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Carmen Rotger
- Universitat de les Illes Balears, Cra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| | - Roberto de la Rica
- Universitat de les Illes Balears, Cra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
- Multidisciplinary sepsis group, Balearic Islands Health Research Institute (IdISBa), Son Espases University Hospital, S Building, Carretera de Valldemossa 79, 07120 Palma de Mallorca, Spain
| | - Antonio Costa
- Universitat de les Illes Balears, Cra. Valldemossa Km 7.5, 07122 Palma de Mallorca, Spain
| |
Collapse
|
8
|
Nezakati T, Seifalian A, Tan A, Seifalian AM. Conductive Polymers: Opportunities and Challenges in Biomedical Applications. Chem Rev 2018; 118:6766-6843. [DOI: 10.1021/acs.chemrev.6b00275] [Citation(s) in RCA: 354] [Impact Index Per Article: 59.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Toktam Nezakati
- Google Inc.., Mountain View, California 94043, United States
- Centre for Nanotechnology and Regenerative Medicine, Division of Surgery and Interventional Science, University College London, London NW3 2QG, United Kingdom
| | - Amelia Seifalian
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Aaron Tan
- UCL Medical School, University College London, London WC1E 6BT, United Kingdom
| | - Alexander M. Seifalian
- NanoRegMed Ltd. (Nanotechnology and Regenerative Medicine Commercialization Centre), The London Innovation BioScience Centre, London NW1 0NH, United Kingdom
| |
Collapse
|
9
|
Martins T, Moreira CDF, Costa-Júnior ES, Pereira MM. In vitro degradation of chitosan composite foams for biomedical applications and effect of bioactive glass as a crosslinker. BIOMEDICAL GLASSES 2018. [DOI: 10.1515/bglass-2018-0005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
In tissue engineering applications, 3D scaffolds with adequate structure and composition are required to provide durability that is compatiblewith the regeneration of native tissue. In the present study, the degradation of novel flexible 3D composite foams of chitosan (CH) combined with bioactive glass (BG)was evaluated, focusing on the role of BG as a physical crosslinker in the composites, and its effect on the degradation process. Highly porous CH/BG composite foams were obtained, and an elevated degradation temperature and lower degradation rate compared with pure chitosan were observed, probably as a result of greater intermolecular interaction between CH and BG. The Fourier transform infrared spectroscopy (FTIR) data suggest that hydrogen bonds were responsible for the physical crosslinking between CH and BG. The results confirm that CH/BG foams can combine controllable bioactivity and degradation behavior and, therefore, could be useful for tissue regeneration matrices.
Collapse
|
10
|
Zhu C, Taipaleenmäki EM, Zhang Y, Han X, Städler B. Interaction of cells with patterned reactors. Biomater Sci 2018; 6:793-802. [DOI: 10.1039/c7bm00838d] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The patterning of subcompartmentalized enzyme-loaded reactors is illustrated and the effect of triggered encapsulated catalysis on adhering cells is reported.
Collapse
Affiliation(s)
- Chuntao Zhu
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | | | - Yan Zhang
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- 8000 Aarhus
- Denmark
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin 150001
- China
| | - Brigitte Städler
- Interdisciplinary Nanoscience Center (iNANO)
- Aarhus University
- 8000 Aarhus
- Denmark
| |
Collapse
|
11
|
Abstract
This review is focused on the use of membranes for the specific application of bone regeneration. The first section focuses on the relevance of membranes in this context and what are the specifications that they should possess to improve the regeneration of bone. Afterward, several techniques to engineer bone membranes by using "bulk"-like methods are discussed, where different parameters to induce bone formation are disclosed in a way to have desirable structural and functional properties. Subsequently, the production of nanostructured membranes using a bottom-up approach is discussed by highlighting the main advances in the field of bone regeneration. Primordial importance is given to the promotion of osteoconductive and osteoinductive capability during the membrane design. Whenever possible, the films prepared using different techniques are compared in terms of handability, bone guiding ability, osteoinductivity, adequate mechanical properties, or biodegradability. A last chapter contemplates membranes only composed by cells, disclosing their potential to regenerate bone.
Collapse
Affiliation(s)
- Sofia G Caridade
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| | - João F Mano
- Department of Chemistry CICECO, Aveiro Institute of Materials, University of Aveiro , Aveiro, Portugal
| |
Collapse
|
12
|
Patterned surfaces for biological applications: A new platform using two dimensional structures as biomaterials. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.09.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
13
|
Leite ÁJ, Mano JF. Biomedical applications of natural-based polymers combined with bioactive glass nanoparticles. J Mater Chem B 2017; 5:4555-4568. [DOI: 10.1039/c7tb00404d] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The combination of natural polymers with nanoparticles allowed the development of functional bioinspired constructs. This review discusses the composition, design, and applications of bioinspired nanocomposite constructs based on bioactive glass nanoparticles (BGNPs).
Collapse
Affiliation(s)
- Á. J. Leite
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine
- Guimarães
| | - J. F. Mano
- 3B's Research Group – Biomaterials
- Biodegradables and Biomimetics
- University of Minho
- Headquarters of the European Institute of Excellence of Tissue Engineering and Regenerative Medicine
- Guimarães
| |
Collapse
|
14
|
Zhai J, Wang Q, Zeng J, Chen J, Yi X, Shi Z, Tan G, Yu P, Ning C. Spatial charge manipulated set-selective apatite deposition on micropatterned piezoceramic. RSC Adv 2017. [DOI: 10.1039/c7ra04226d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Apatite was selectively deposited with the manipulation of spatial charge on the micropatterned piezoelectric K0.5Na0.5NbO3.
Collapse
Affiliation(s)
- Jinxia Zhai
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| | - Qiyou Wang
- Department of Spine Surgery
- The Third Affiliated Hospital of Sun Yat-sen University
- Guangzhou
- China
| | | | - Junqi Chen
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| | - Xin Yi
- School of Medicine
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| | - Zhifeng Shi
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| | - Guoxin Tan
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- China
| | - Peng Yu
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| | - Chengyun Ning
- College of Materials Science and Engineering
- South China University of Technology
- Guangzhou
- China
- Key Laboratory of Biomedical Sciences and Engineering
| |
Collapse
|
15
|
Abstract
Growth factors are essential orchestrators of the normal bone fracture healing response. For non-union defects, delivery of exogenous growth factors to the injured site significantly improves healing outcomes. However, current clinical methods for scaffold-based growth factor delivery are fairly rudimentary, and there is a need for greater spatial and temporal regulation to increase their in vivo efficacy. Various approaches used to provide spatiotemporal control of growth factor delivery from bone tissue engineering scaffolds include physical entrapment, chemical binding, surface modifications, biomineralization, micro- and nanoparticle encapsulation, and genetically engineered cells. Here, we provide a brief review of these technologies, describing the fundamental mechanisms used to regulate release kinetics. Examples of their use in pre-clinical studies are discussed, and their capacities to provide tunable, growth factor delivery are compared. These advanced scaffold systems have the potential to provide safer, more effective therapies for bone regeneration than the systems currently employed in the clinic.
Collapse
|
16
|
Novel method for fabrication of samples for cell testing of bioceramics in granular form. J Appl Biomater Funct Mater 2016; 14:e449-e454. [PMID: 27373886 DOI: 10.5301/jabfm.5000301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2016] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Bioceramic granules are a widely studied material for regeneration of human tissues, and their biological assessment with in vitro cell cultures plays a fundamental role in the development of bioceramics. Design of samples for cell testing represents an important aspect of the biological evaluation, as it dictates how cells will interact with the biomaterial. The aim of this study was to develop samples for cell testing of bioceramic granules with a novel design that would enable direct physical contacts between cells and bioceramic and improved handling properties for efficient laboratory work. The goal was to produce a bilayered polycaprolactone-bioceramic composite with polycaprolactone serving as a bottom layer and support for a uniform and dense layer of bioceramic granules (upper layer), which would be only partly embedded and physically stabilized in the polymer with at least one face of granules still free of any polymer residues and available for direct attachment of cells. METHODS A novel method for preparation of samples in six steps was developed. A bilayered design of samples with exposed bioceramic particles was accomplished by the application of a water-soluble alginate as a sacrificial polymer in the method protocol. Samples were analyzed with SEM/EDX and ToF-SIMS. RESULTS Bioceramic granules had a uniform and dense morphology and were partly embedded in the polycaprolactone support. Detailed ToF-SIMS study showed that granules were clean and free of any polymer residues. CONCLUSIONS The developed samples enable direct exposure of bioceramic granules to cells and surrounding physiological solution during cell testing, and possess improved handling characteristics.
Collapse
|
17
|
Wang W, Liu Y, Leng J. Recent developments in shape memory polymer nanocomposites: Actuation methods and mechanisms. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.03.007] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
18
|
Pourhaghgouy M, Zamanian A, Shahrezaee M, Masouleh MP. Physicochemical properties and bioactivity of freeze-cast chitosan nanocomposite scaffolds reinforced with bioactive glass. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 58:180-6. [DOI: 10.1016/j.msec.2015.07.065] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2015] [Revised: 07/08/2015] [Accepted: 07/31/2015] [Indexed: 10/23/2022]
|
19
|
Zheng K, Taccardi N, Beltrán AM, Sui B, Zhou T, Marthala VRR, Hartmann M, Boccaccini AR. Timing of calcium nitrate addition affects morphology, dispersity and composition of bioactive glass nanoparticles. RSC Adv 2016. [DOI: 10.1039/c6ra05548f] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Bioactive glass nanoparticles (BGN) are promising materials for a number of biomedical applications.
Collapse
Affiliation(s)
- Kai Zheng
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen–Nuremberg
- 91058 Erlangen
- Germany
| | - Nicola Taccardi
- Institute of Chemical Reaction Engineering
- University of Erlangen–Nuremberg
- 91058 Erlangen
- Germany
| | - Ana Maria Beltrán
- Instituto de Ciencia de Materiales de Sevilla (CSIC-Universidad de Sevilla)
- 41092 Sevilla
- Spain
| | - Baiyan Sui
- Shanghai Biomaterials Research & Testing Center
- Shanghai Key Laboratory of Stomatology
- Ninth People's Hospital
- Shanghai Jiaotong University
- School of Medicine
| | - Tian Zhou
- Shanghai Biomaterials Research & Testing Center
- Shanghai Key Laboratory of Stomatology
- Ninth People's Hospital
- Shanghai Jiaotong University
- School of Medicine
| | - V. R. Reddy Marthala
- Erlangen Catalysis Resource Center
- University of Erlangen–Nuremberg
- 91058 Erlangen
- Germany
| | - Martin Hartmann
- Erlangen Catalysis Resource Center
- University of Erlangen–Nuremberg
- 91058 Erlangen
- Germany
| | - Aldo. R. Boccaccini
- Institute of Biomaterials
- Department of Materials Science and Engineering
- University of Erlangen–Nuremberg
- 91058 Erlangen
- Germany
| |
Collapse
|
20
|
Bédouin Y, Pellen Mussi P, Tricot-Doleux S, Chauvel-Lebret D, Auroy P, Ravalec X, Oudadesse H, Pérez F. 3D cell culture to determine in vitro biocompatibility of bioactive glass in association with chitosan. Biomed Mater Eng 2015; 26:169-81. [DOI: 10.3233/bme-151555] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Y. Bédouin
- Equipe Chimie du Solide et Matériaux – UMR CNRS 6226 – Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
- CHU de Rennes, Pôle d’Odontologie et de Chirurgie Buccale, 2 place Pasteur, 35000 Rennes, France
| | - P. Pellen Mussi
- Equipe Chimie du Solide et Matériaux – UMR CNRS 6226 – Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - S. Tricot-Doleux
- Equipe Chimie du Solide et Matériaux – UMR CNRS 6226 – Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - D. Chauvel-Lebret
- Equipe Chimie du Solide et Matériaux – UMR CNRS 6226 – Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
- CHU de Rennes, Pôle d’Odontologie et de Chirurgie Buccale, 2 place Pasteur, 35000 Rennes, France
| | - P. Auroy
- Faculté de Chirurgie dentaire, Université d’Auvergne, 11 Boulevard Charles de Gaulle, 63000 Clermont-Ferrand, France
- CHU de Clermont-Ferrand, service d’Odontologie, 11 rue Léon Malfreyt, 63000 Clermont-Ferrand, France
| | - X. Ravalec
- CHU de Rennes, Pôle d’Odontologie et de Chirurgie Buccale, 2 place Pasteur, 35000 Rennes, France
| | - H. Oudadesse
- Equipe Chimie du Solide et Matériaux – UMR CNRS 6226 – Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
| | - F. Pérez
- Equipe Chimie du Solide et Matériaux – UMR CNRS 6226 – Sciences Chimiques de Rennes, Université de Rennes 1, Université Européenne de Bretagne, Campus de Beaulieu, 263 avenue du Général Leclerc, 35042 Rennes Cedex, France
- CHU de Nantes, service d’Odontologie, 1 Place Alexis Ricordeau, 44000 Nantes, France
| |
Collapse
|
21
|
Wang Y, Wang J, Wang T, Xu Y, Shi L, Wu Y, Li L, Guo X. Pod-Like Supramicelles with Multicompartment Hydrophobic Cores Prepared by Self-Assembly of Modified Chitosan. NANO-MICRO LETTERS 2015; 8:151-156. [PMID: 30460275 PMCID: PMC6223668 DOI: 10.1007/s40820-015-0070-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2015] [Accepted: 10/07/2015] [Indexed: 05/29/2023]
Abstract
In this paper, pod-like supramicelles with multicompartment hydrophobic cores were prepared by self-assembly of amphiphilic N-phthaloylchitosan-g-poly(N-vinylcaprolactam) (PHCS-g-PNVCL) in aqueous medium. The employed biocompatible amphiphilic polymer was synthesized by grafting the carboxyl terminated poly(N-vinylcaprolactam) (PNVCL-COOH) chains onto N-phthaloylchitosan (PHCS) backbone. 1H NMR and FTIR results confirmed the molecular structure of the copolymers. The morphology of the supramicelles assembled by PHCS-g-PNVCL was revealed by means of TEM and polarized light microscope. In solution, the supramicelles were very stable as monitored by DLS and zeta potential measurements. Temperature and pH presented significant influences on the size and size distribution of the supramicelles. These supramicelles with multicompartment hydrophobic cores should be ideal biomimetic systems with promising applications in drug delivery.
Collapse
Affiliation(s)
- Yiming Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 People’s Republic of China
| | - Jie Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 People’s Republic of China
| | - Tongshuai Wang
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 People’s Republic of China
| | - Yisheng Xu
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 People’s Republic of China
| | - Lei Shi
- Firmenich Aromatics (China) Co., Ltd., Shanghai, 201108 People’s Republic of China
| | - Yongtao Wu
- Firmenich Aromatics (China) Co., Ltd., Shanghai, 201108 People’s Republic of China
| | - Li Li
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 People’s Republic of China
| | - Xuhong Guo
- State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai, 200237 People’s Republic of China
| |
Collapse
|
22
|
Yunus Basha R, Sampath Kumar TS, Doble M. Design of biocomposite materials for bone tissue regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 57:452-63. [PMID: 26354284 DOI: 10.1016/j.msec.2015.07.016] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Revised: 05/24/2015] [Accepted: 07/09/2015] [Indexed: 02/06/2023]
Abstract
Several synthetic scaffolds are being developed using polymers, ceramics and their composites to overcome the limitations of auto- and allografts. Polymer-ceramic composites appear to be the most promising bone graft substitute since the natural bone itself is a composite of collagen and hydroxyapatite. Ceramics provide strength and osteoconductivity to the scaffold while polymers impart flexibility and resorbability. Natural polymers have an edge over synthetic polymers because of their biocompatibility and biological recognition property. But, very few natural polymer-ceramic composites are available as commercial products, and those few are predominantly based on type I collagen. Disadvantages of using collagen include allergic reactions and pathogen transmission. The commercial products also lack sufficient mechanical properties. This review summarizes the recent developments of biocomposite materials as bone scaffolds to overcome these drawbacks. Their characteristics, in vitro and in vivo performance are discussed with emphasis on their mechanical properties and ways to improve their performance.
Collapse
Affiliation(s)
- Rubaiya Yunus Basha
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India
| | - T S Sampath Kumar
- Department of Metallurgical and Materials Engineering, Indian Institute of Technology Madras, Chennai 600036, India
| | - Mukesh Doble
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai 600036, India.
| |
Collapse
|
23
|
Zhang L, Huang Y, Wang J, Rong Y, Lai W, Zhang J, Chen T. Hierarchical Flowerlike Gold Nanoparticles Labeled Immunochromatography Test Strip for Highly Sensitive Detection of Escherichia coli O157:H7. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:5537-5544. [PMID: 25919084 DOI: 10.1021/acs.langmuir.5b00592] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Gold nanoparticles (AuNPs) labeled lateral-flow test strip immunoassay (LFTS) has been widely used in biomedical, feed/food, and environmental analysis fields. Conventional ILFS assay usually uses spherical AuNPs as labeled probes and shows low detection sensitivity, which further limits its widespread practical application. Unlike spherical AuNP used as labeled probe in conventional ILFS, in our present study, a hierarchical flowerlike AuNP specific probe was designed for LFTS and further used to detect Escherichia coli O157:H7 (E. coli O157:H7). Three types of hierarchical flowerlike AuNPs, such as tipped flowerlike, popcornlike, and large-sized flowerlike AuNPs were synthesized in a one-step method. Compared with other two kinds of Au particles, tipped flowerlike AuNPs probes for LFTS particularly exhibited highly sensitive detection of E. coli O157:H7. The remarkable improvement of detection sensitivity of tipped flowerlike AuNPs probes can be achieved even as low as 10(3) colony-forming units (CFU)/mL by taking advantages of its appropriate size and hierarchical structures, which is superior over the detection performance of conventional LFTS. Using this novel tipped flower AuNPs probes, quantitative detection of E. coli O157:H7 can be obtained partially in a wide concentration range with good repeatability. This hierarchical tipped flower-shaped AuNPs probe for LFTS is promising for the practical applications in widespread analysis fields.
Collapse
Affiliation(s)
- Lei Zhang
- †Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, No. 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Youju Huang
- †Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, No. 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Jingyun Wang
- †Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, No. 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
- ‡State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Yun Rong
- †Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, No. 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Weihua Lai
- ‡State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang 330047, China
| | - Jiawei Zhang
- †Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, No. 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| | - Tao Chen
- †Division of Polymer and Composite Materials, Ningbo Institute of Material Technology and Engineering, Chinese Academy of Science, No. 1219 Zhongguan West Road, Zhenhai District, Ningbo 315201, China
| |
Collapse
|
24
|
Li CC, Kharaziha M, Min C, Maas R, Nikkhah M. Microfabrication of Cell-Laden Hydrogels for Engineering Mineralized and Load Bearing Tissues. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2015; 881:15-31. [DOI: 10.1007/978-3-319-22345-2_2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Oliveira MB, Luz GM, Mano JF. A combinatorial study of nanocomposite hydrogels: on-chip mechanical/viscoelastic and pre-osteoblast interaction characterization. J Mater Chem B 2014; 2:5627-5638. [DOI: 10.1039/c4tb00437j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Custódio CA, Reis RL, Mano JF. Engineering biomolecular microenvironments for cell instructive biomaterials. Adv Healthc Mater 2014; 3:797-810. [PMID: 24464880 DOI: 10.1002/adhm.201300603] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/13/2013] [Indexed: 12/12/2022]
Abstract
Engineered cell instructive microenvironments with the ability to stimulate specific cellular responses are a topic of high interest in the fabrication and development of biomaterials for application in tissue engineering. Cells are inherently sensitive to the in vivo microenvironment that is often designed as the cell "niche." The cell "niche" comprising the extracellular matrix and adjacent cells, influences not only cell architecture and mechanics, but also cell polarity and function. Extensive research has been performed to establish new tools to fabricate biomimetic advanced materials for tissue engineering that incorporate structural, mechanical, and biochemical signals that interact with cells in a controlled manner and to recapitulate the in vivo dynamic microenvironment. Bioactive tunable microenvironments using micro and nanofabrication have been successfully developed and proven to be extremely powerful to control intracellular signaling and cell function. This Review is focused in the assortment of biochemical signals that have been explored to fabricate bioactive cell microenvironments and the main technologies and chemical strategies to encode them in engineered biomaterials with biological information.
Collapse
Affiliation(s)
- Catarina A. Custódio
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| | - Rui L. Reis
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| | - João F. Mano
- 3B's Research Group - Biomaterials; Biodegradables and Biomimetics; University of Minho, AvePark, Zona Industrial da Gandra, S. Cláudio do Barco; 4806-909 Caldas das Taipas - Guimarães Portugal
- ICVS/3B's, PT Government Associated Laboratory; Braga/Guimarães Portugal
| |
Collapse
|
27
|
Zhou Z, Huang H, Huang T, Peng C, Ou B, Zhou H, Zeng W, Liu Q, Yang Z, Xiang L, He S. Influences of Molecular Weight and Content of Polyethylene Glycol on Morphology and Size of Nano-Bioactive Glass. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2014. [DOI: 10.1080/10601325.2014.906268] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Samal SK, Dash M, Van Vlierberghe S, Kaplan DL, Chiellini E, van Blitterswijk C, Moroni L, Dubruel P. Cationic polymers and their therapeutic potential. Chem Soc Rev 2012; 41:7147-94. [PMID: 22885409 DOI: 10.1039/c2cs35094g] [Citation(s) in RCA: 469] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The last decade has witnessed enormous research focused on cationic polymers. Cationic polymers are the subject of intense research as non-viral gene delivery systems, due to their flexible properties, facile synthesis, robustness and proven gene delivery efficiency. Here, we review the most recent scientific advances in cationic polymers and their derivatives not only for gene delivery purposes but also for various alternative therapeutic applications. An overview of the synthesis and preparation of cationic polymers is provided along with their inherent bioactive and intrinsic therapeutic potential. In addition, cationic polymer based biomedical materials are covered. Major progress in the fields of drug and gene delivery as well as tissue engineering applications is summarized in the present review.
Collapse
Affiliation(s)
- Sangram Keshari Samal
- Polymer Chemistry & Biomaterials Research Group, Ghent University, Krijgslaan 281, S4-Bis, B-9000 Ghent, Belgium.
| | | | | | | | | | | | | | | |
Collapse
|