1
|
Huang Z, Ni D, Chen Z, Zhu Y, Zhang W, Mu W. Application of molecular dynamics simulation in the field of food enzymes: improving the thermal-stability and catalytic ability. Crit Rev Food Sci Nutr 2024; 64:11396-11408. [PMID: 37485919 DOI: 10.1080/10408398.2023.2238054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Enzymes can produce high-quality food with low pollution, high function, high acceptability, and medical aid. However, most enzymes, in their native form, do not meet the industrial requirements. Sequence-based and structure-based methods are the two main strategies used for enzyme modification. Molecular Dynamics (MD) simulation is a sufficiently comprehensive technology, from a molecular perspective, which has been widely used for structure information analysis and enzyme modification. In this review, we summarize the progress and development of MD simulation, particularly for software, force fields, and a standard procedure. Subsequently, we review the application of MD simulation in various food enzymes for thermostability and catalytic improvement was reviewed in depth. Finally, the limitations and prospects of MD simulation in food enzyme modification research are discussed. This review highlights the significance of MD simulation and its prospects in food enzyme modification.
Collapse
Affiliation(s)
- Zhaolin Huang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Dawei Ni
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Ziwei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yingying Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wenli Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wanmeng Mu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
- International Joint Laboratory on Food Safety, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
2
|
Berkel Kasikci M, Guilois-Dubois S, Billet K, Jardin J, Guyot S, Morzel M. Interactions between Salivary Proteins and Apple Polyphenols and the Fate of Complexes during Gastric Digestion. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38603459 DOI: 10.1021/acs.jafc.4c00468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Beneficial polyphenols in apples can reach the stomach as complexes formed with salivary proteins. The present study aimed at documenting the interactions between salivary proteins and cider apple polyphenols and the fate of complexes during gastric digestion. A polyphenolic extract was mixed with human saliva, and interactions were characterized by analyzing proteins and polyphenols in the insoluble and soluble fractions of the mixtures, before and after in vitro gastric digestion. Results confirmed that proline-rich proteins can efficiently precipitate polyphenols and suggested that two zinc-binding proteins can also form insoluble complexes with polyphenols. The classes of polyphenols involved in such complexes depended on the polyphenol-to-protein ratio. In vitro gastric digestion led to extensive proteolysis of salivary proteins, and we formulate the hypothesis that the resulting peptides can interact with and precipitate some procyanidins. Saliva may therefore partly modulate the bioaccessibility of at least procyanidins in the gastric compartment.
Collapse
Affiliation(s)
- Müzeyyen Berkel Kasikci
- INRAE, Institut Agro, STLO, 35042 Rennes, France
- Department of Food Engineering, Manisa Celal Bayar University, 45140 Manisa, Turkey
| | | | | | | | | | | |
Collapse
|
3
|
Dufourc EJ. Wine tannins and their aggregation/release with lipids and proteins: Review and perspectives for neurodegenerative diseases. Biophys Chem 2024; 307:107178. [PMID: 38277878 DOI: 10.1016/j.bpc.2024.107178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/10/2024] [Accepted: 01/10/2024] [Indexed: 01/28/2024]
Abstract
Tannins are amphiphilic molecules, often polymeric, which can be generally described as a core containing hydrophobic aromatic rings surrounded by hydroxyl groups. They have been known for millennia and are part of human culture. They are ubiquitous in nature and are best known in the context of wine and tea tasting and food cultures. However, they are also very useful for human health, as they are powerful antioxidants capable of combating the constant aggressions of everyday life. However, their mode of action is only just beginning to be understood. This review, using physicochemical concepts, attempts to summarize current knowledge and present an integrated view of the complex relationship between tannins, proteins and lipids, in the context of wine drinking while eating. There are many thermodynamic equilibria governing the interactions between tannins, saliva proteins, lipid droplets in food, membranes and the taste receptors embedded in them. Taste sensations can be explained using these multiple equilibria: for example, astringency (dry mouth) can be explained by the strong binding of tannin micelles to the proline-rich proteins of saliva, suppressing their lubricating action on the palate. In the presence of lipid droplets in food, the equilibrium is shifted towards tannin-lipid complexes, a situation that reduces the astringency perceived when consuming a tannic wine with fatty foods, the so-called "camembert effect". Tannins bind preferentially to taste receptors located in mouth membranes, but can also fluidify lipids in the non-keratinized mucous membranes of the mouth, which can impair the functioning of taste receptors there. Cholesterol, present in large quantities in keratinized mucous membranes, stiffens them and thus prevents tannins from disrupting the conduction of information through other taste receptors. As tannins assemble and disassemble depending on whether they are in contact with proteins, lipids or taste receptors, a perspective on their potential use in the context of neurodegenerative diseases where fibrillation is a key phenomenon will also be discussed.
Collapse
Affiliation(s)
- Erick J Dufourc
- Institut Européen de Chimie et Biologie UAR3033 CNRS, University of Bordeaux, INSERM US01, Pessac, France; Institute of Chemistry & Biology of Membranes & Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Pessac, France.
| |
Collapse
|
4
|
Ni Y, Li J, Fan L. Tannic acid-enriched nanocellulose hydrogels improve physical and oxidative stability of high-internal-phase Pickering emulsions. Int J Biol Macromol 2024; 259:128796. [PMID: 38104679 DOI: 10.1016/j.ijbiomac.2023.128796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/19/2023]
Abstract
A cellulose suspension and tannic acid (TA) were co-sonicated to prepare TA-incorporated nanocellulose hydrogels with the aim of improving the physical and oxidative stability of high-internal-phase emulsions (HIPEs). Cellulose nanocrystal (CNC) hydrogels were used to stabilize HIPEs, relying on the interfacial adsorption behavior of CNCs and the reversible gelation properties of hydrogels. TA was incorporated due to its ability to improve emulsification performance and antioxidant properties. Introducing TA enhanced the gel strength of hydrogels by decreasing the interfibrillar distance. The utilization of CNC-TA hydrogels effectively improved physical properties of HIPEs. This improvement included a reduction in droplet size from the initial 103.41 μm to 39.66 μm, an enhancement of the gel structure, and an improvement in storage stability. A denser and orderly interfacial structure was formed in CNCs-TA hydrogel stabilized HIPEs due to anchoring TA at the interface driven by the hydrogen-bonding interaction between CNCs and TA. This densely interfacial layer with good antioxidant activity markedly enhanced the oxidative stability of emulsions, as evidenced by the low level of oxidation products in HIPEs. This study has the potential to extend the utilization of CNC-stabilized emulsions to new applications in the food, cosmetic, and pharmaceutical industries.
Collapse
Affiliation(s)
- Yang Ni
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi 214122, China
| | - Jinwei Li
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi 214122, China
| | - Liuping Fan
- State Key Laboratory of Food Science & Technology, Jiangnan University, Wuxi 214122, China; School of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
5
|
Lyu J, Wang S, Ma Y, Xu Y, Tang K. Study on the interaction of tannins and salivary proteins affecting wine aroma volatility: Static HS-SPME and molecular dynamics simulation approaches. Food Res Int 2024; 175:113809. [PMID: 38129011 DOI: 10.1016/j.foodres.2023.113809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 11/22/2023] [Accepted: 12/02/2023] [Indexed: 12/23/2023]
Abstract
The interaction between tannins and salivary proteins might affect intraoral aroma release during wine consumption. In this study, the influence and underlying mechanism of interactions between EGCG and IB5 (salivary proline-rich protein) on wine aroma compounds was analysed by static HS-SPME in vitro and molecular dynamics (MD) simulation. The interaction between IB5 and EGCG could significantly reduce the volatility of most aroma compounds in the model wine by 20 %-70 % (p < 0.05). MD simulations indicated that the energy received by aroma compounds in the mixed system was more pronounced. In addition, the decline rate of rational correlation functions (RCF) of aroma compounds in the mixed system was obviously slower. The analysis of the independent gradient model (IGM) indicated that aroma compounds combined with aggregates of IB5 and EGCG through hydrogen bonds and van der Waals forces. The effect of the interaction between EGCG and IB5 on aroma compounds was confirmed by the volatility and molecular computational simulation. Overall, the results enhance the understanding of the mechanisms affecting retronasal aroma release during wine consumption.
Collapse
Affiliation(s)
- Jiaheng Lyu
- School of Food and Bioengineering, Yantai Institute of Technology, 100 Port City East Steet Ave, Yantai, Shandong, PR China; Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China
| | - Shang Wang
- School of Biological Engineering, Dalian Polytechnic University, Dalian 116034 Dalian, Liaoning, PR China
| | - Yue Ma
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China
| | - Ke Tang
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, 1800 Lihu Ave, Wuxi, Jiangsu, PR China.
| |
Collapse
|
6
|
Jahmidi-Azizi N, Oliva R, Winter R. Alcohol-Induced Conformation Changes and Thermodynamic Signatures in the Binding of Polyphenols to Proline-Rich Salivary Proteins. Chemistry 2023; 29:e202302384. [PMID: 37695254 DOI: 10.1002/chem.202302384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/09/2023] [Accepted: 09/11/2023] [Indexed: 09/12/2023]
Abstract
The first contact of polyphenols (tannins) with the human body occurs in the mouth, where they are known to interact with proline-rich proteins (PRPs). These interactions are important at a sensory level, especially for the development of astringency, but affect also various other biochemical processes. Employing thermodynamic measurements, fluorescence and CD spectroscopy, we investigated the binding process of the prototypical polyphenol ellagic acid (EA) to different IB-PRPs and BSA, also in the presence of ethanol, which is known to influence tannin-protein interactions. Binding of EA to BSA and the small peptide IB7-14 is weak, but very strong to IB9-37. The differences in binding strength and stoichiometry are due to differences in the binding motifs, which also lead to differences in the thermodynamic signatures of the binding process. EA binding to BSA is enthalpy-driven, whereas binding to both IB7-14 and IB9-37 is entropy-driven. The presence of 10 vol.% EtOH, as present in wines, increases the binding constant of EA with BSA and IB7-14 drastically, but not that with IB9-37; however, it changes the binding stoichiometry. These differences can be attributed to the effect of EtOH on the conformation dynamics of the proteins and to changes in hydration properties in alcoholic solution.
Collapse
Affiliation(s)
- Nisrine Jahmidi-Azizi
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227, Dortmund, Germany
| | - Rosario Oliva
- Department of Chemical Sciences, University of Naples Federico II, Via Cintia 4, 80126, Naples, Italy
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Otto-Hahn Street 4a, 44227, Dortmund, Germany
| |
Collapse
|
7
|
Wei F, Wang J, Luo L, Tayyab Rashid M, Zeng L. The perception and influencing factors of astringency, and health-promoting effects associated with phytochemicals: A comprehensive review. Food Res Int 2023; 170:112994. [PMID: 37316067 DOI: 10.1016/j.foodres.2023.112994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 05/14/2023] [Accepted: 05/16/2023] [Indexed: 06/16/2023]
Abstract
Astringency as the complex sensory of drying or shrinking can be perceived from natural foods, including abundant phenolic compounds. Up to now, there have been two possible astringency perception mechanisms of phenolic compounds. The first possible mechanism involved chemosensors and mechanosensors and took salivary binding proteins as the premise. Although piecemeal reports about chemosensors, friction mechanosensor's perception mechanisms were absent. There might be another perception way because a part of astringent phenolic compounds also triggered astringency although they could not bind with salivary proteins, however, the specific mechanism was unclear. Structures caused the differences in astringency perception mechanisms and intensities. Except for structures, other influencing factors also changed astringency perception intensity and aimed to decrease it, which probably ignored the health-promoting effects of phenolic compounds. Therefore, we roundly summarized the chemosensor's perception processes of the first mechanism. Meanwhile, we speculated that friction mechanosensor's probably activated Piezo2 ion channel on cell membranes. Phenolic compounds directly binds with oral epithelial cells, activating Piezo2 ion channel probably the another astringency perception mechanism. Except for structure, the increase of pH values, ethanol concentrations, and viscosity not only lowered astringency perception but were beneficial to improve the bioaccessibility and bioavailability of astringent phenolic compounds, which contributed to stronger antioxidant, anti-inflammatory, antiaging and anticancer effects.
Collapse
Affiliation(s)
- Fang Wei
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Jie Wang
- Tea Research Institute of Chongqing Academy of Agricultural Sciences, Yongchuan, Chongqing 402160, People's Republic of China
| | - Liyong Luo
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China; Tea Research Institute, Southwest University, Beibei, Chongqing 400715, People's Republic of China
| | - Muhammad Tayyab Rashid
- College of Food Science and Engineering, Henan University of Technology, Zhengzhou 450001, People's Republic of China
| | - Liang Zeng
- College of Food Science, Southwest University, Beibei, Chongqing 400715, People's Republic of China.
| |
Collapse
|
8
|
Chen X, Pei Y, Li B, Wang Y, Zhou B, Li B, Liang H. Interfacial decoration of desalted duck egg white nanogels as stabilizer for Pickering emulsion. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2022.107858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
9
|
Li Y, Gao Z, Guo J, Wang J, Yang X. Modulating aroma release of flavour oil emulsion based on mucoadhesive property of tannic acid. Food Chem 2022; 388:132970. [PMID: 35483281 DOI: 10.1016/j.foodchem.2022.132970] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 04/07/2022] [Accepted: 04/10/2022] [Indexed: 11/04/2022]
Abstract
Flavour is a crucial sensory element that determines the consumers' preference for food and beverages. In this study, we determined the effects of complex gum arabic (GA) and tannic acid (TA) on the aroma release of flavour oil emulsions in vitro by simulating oral processing conditions. GA and TA were used to stabilize flavour oil emulsions. Visualization of in vitro retention using ex vivo porcine tongue, detection of aroma release in the model mouth, and sensory evaluation of flavour emulsions were performed to determine the effect of TA and GA. The results indicated that the retention of emulsions and the release of aroma compounds were modulated by TA and GA, which could be because of interactions that occurred between GA and TA in emulsions and mucins on the tongue. GA enhanced aroma release, whereas TA contributed to the retention or slow release of target aroma compounds.
Collapse
Affiliation(s)
- Yanlei Li
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China; Laboratory of Food Proteins and Colloids, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Zhiming Gao
- Glyn O. Phillips Hydrocolloid Research Centre, School of Food and Biological Engineering, Hubei University of Technology, Wuhan 430068, China
| | - Jian Guo
- Laboratory of Food Proteins and Colloids, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Jinmei Wang
- Laboratory of Food Proteins and Colloids, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, School of Food Science and Engineering, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
10
|
González-Muñoz B, Garrido-Vargas F, Pavez C, Osorio F, Chen J, Bordeu E, O'Brien JA, Brossard N. Wine astringency: more than just tannin-protein interactions. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1771-1781. [PMID: 34796497 DOI: 10.1002/jsfa.11672] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 09/22/2021] [Accepted: 11/19/2021] [Indexed: 06/13/2023]
Abstract
Red wines are characterized by their astringency, a very important sensory attribute that affects the perceived quality of wines. Three mechanisms have been proposed to explain astringency, and two theories describe how these mechanisms work in an integrated manner to produce tactile sensations such as drying, roughening, shrinking and puckering. The factors involved include not only tannins and salivary proteins, but also anthocyanins, grape polysaccharides and mannoproteins, as well as other wine matrix components that modulate their interactions. These multifactorial interactions could be responsible for different sensory responses and therefore need to be further studied. This review presents the latest advances in astringency perception and its possible origins, with special attention on the interactions of components, their impact on oral perception and the development of astringency sub-qualities. Future research efforts should concentrate on understanding the mechanisms involved as well as on the limiting factors related to the conformation and stability of the tannin-salivary protein complexes. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Beatriz González-Muñoz
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernanda Garrido-Vargas
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carolina Pavez
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Fernando Osorio
- Departamento de Ciencia y Tecnología de Alimentos, Facultad Tecnológica, Universidad de Santiago de Chile, Santiago, Chile
| | - Jianshe Chen
- School of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, P. R. China
| | - Edmundo Bordeu
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - José A O'Brien
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Natalia Brossard
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
11
|
Lyu J, Chen S, Xu Y, Li J, Nie Y, Tang K. Influence of tannins, human saliva, and the interaction between them on volatility of aroma compounds in a model wine. J Food Sci 2021; 86:4466-4478. [PMID: 34519051 DOI: 10.1111/1750-3841.15895] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/14/2021] [Accepted: 08/01/2021] [Indexed: 01/08/2023]
Abstract
During wine drinking, aroma release is mainly impacted by wine matrix compositions and oral physiological parameters. Notably, tannins in wine could interact with saliva protein to form aggregates which might also affect the volatility of volatiles. To explore tannins, saliva, and the interaction between them on the volatility of volatiles, the volatility of 16 aroma compounds in the model wine mixed with the commercial tannin extracts, human saliva, or both respectively, was evaluated in vitro static condition by using HS-SPME-GC/MS. The volatility of aroma compounds with high hydrophobicity or benzene ring appeared to decrease more when increasing the tannin levels. Specifically, the volatility of ethyl octanoate, β-ionone, and guaiacol was decreased more than 20% by adding 2 g/L tannin extract. The addition of human saliva could significantly inhibit volatility of most aroma compounds in the model wine. Furthermore, the volatility of most aroma compounds in the mixture of tannins and human saliva was significantly lower than the control or the sample which were added with tannins or human saliva individually. The volatility of some aroma compounds in the mixture of the tannin and saliva was only around 50% or less, relative to the control. Two-way ANOVA analysis showed that there was a synergistic effect between tannin and saliva on decreasing the volatility of most aroma compounds (p < 0.05). Overall, understanding the effect of key factors such as tannins and saliva on volatility of volatiles could help to understand the sophisticated retronasal perceptions during wine tasting. PRACTICAL APPLICATION: The outputs of this research will be helpful in understanding the impact of tannins on retronasal aroma release during wine tasting. It might promote the control of tannins in the viticulture and brewing process to improve the retronasal perception of wine aroma.
Collapse
Affiliation(s)
- Jiaheng Lyu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P.R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Shuang Chen
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P.R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Yan Xu
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P.R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Jiming Li
- Center of Science and Technology, ChangYu Group Company Ltd., Yantai, Shandong, P.R. China
| | - Yao Nie
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P.R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| | - Ke Tang
- Laboratory of Brewing Microbiology and Applied Enzymology, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, P.R. China.,State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, P.R. China
| |
Collapse
|
12
|
Dufourc EJ. Wine tannins, saliva proteins and membrane lipids. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2021; 1863:183670. [PMID: 34111413 DOI: 10.1016/j.bbamem.2021.183670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 06/03/2021] [Indexed: 12/12/2022]
Abstract
Polyphenols have been part of human culture for about 6000 years. However, their mode of action in relation to wine tasting while eating is only beginning to be understood. This review, using analytical techniques and physicochemical concepts, attempts to summarize current knowledge and present an integrated view of the complex relationship between tannins, salivary proteins, lipids in food and in oral membranes. The action of tannins on taste sensations and astringency depends on their colloidal state. Although taste sensations are most likely due to interactions with taste receptors, astringency results from strong binding to proline-rich salivary proteins that otherwise lubricate the palate. Tannins disorder non-keratinized mucosa in mouth, possibly perturbing taste receptor function. The 10-15% ethanol present in wines potentiates this action. Cholesterol present in large quantities in keratinized mucosa prevents any disordering action on these oral membranes. Polyphenols bind strongly to the lipid droplets of fatty foods, a situation that reduces the astringency perceived when drinking a tannic wine, the so-called "camembert effect". Based on binding constants mainly measured by NMR, a comprehensive thermodynamic model of the interrelation between polyphenols, salivary proteins, lipids and taste receptors is presented.
Collapse
Affiliation(s)
- Erick J Dufourc
- Institute of Chemistry and Biology of Membranes and Nanoobjects, UMR5248, CNRS, University of Bordeaux, Bordeaux Polytechnic Institute, Allée Geoffroy Saint Hilaire, 33600 Pessac, France.
| |
Collapse
|
13
|
Brossard N, Gonzalez‐Muñoz B, Pavez C, Ricci A, Wang X, Osorio F, Bordeu E, Paola Parpinello G, Chen J. Astringency sub‐qualities of red wines and the influence of wine–saliva aggregates. Int J Food Sci Technol 2021. [DOI: 10.1111/ijfs.15065] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Natalia Brossard
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal Pontificia Universidad Católica de Chile Santiago 7820436 Chile
| | - Beatriz Gonzalez‐Muñoz
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal Pontificia Universidad Católica de Chile Santiago 7820436 Chile
- Departamento de Genética Molecular y Microbiología Facultad de Ciencias Biológicas Pontificia Universidad Católica de Chile Santiago 8331150 Chile
| | - Carolina Pavez
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal Pontificia Universidad Católica de Chile Santiago 7820436 Chile
| | - Arianna Ricci
- Dipartimento di Scienze degli Alimenti Università di Bologna P.za Goidanich 60 Cesena I‐47023 Italy
| | - Xinmiao Wang
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou 310018 China
| | - Fernando Osorio
- Department of Food Science and Technology Universidad de Santiago de Chile Santiago 9170022 Chile
| | - Edmundo Bordeu
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal Pontificia Universidad Católica de Chile Santiago 7820436 Chile
| | | | - Jianshe Chen
- School of Food Science and Biotechnology Zhejiang Gongshang University Hangzhou 310018 China
| |
Collapse
|
14
|
Manjón E, Recio-Torrado A, Ramos-Pineda AM, García-Estévez I, Escribano-Bailón MT. Effect of different yeast mannoproteins on the interaction between wine flavanols and salivary proteins. Food Res Int 2021; 143:110279. [PMID: 33992379 DOI: 10.1016/j.foodres.2021.110279] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/12/2022]
Abstract
Unbalanced wine astringency, caused by a gap between phenolic and technological grape maturities, is one of the consequences of the global climate change in the vitiviniculture. To resolve it, potential strategies are being currently used, like the addition of commercial yeast mannoproteins (MPs) to wines. In this work, the main interactions responsible for the wine astringent sensation, namely, interactions between human salivary proteins and wine flavanols have been studied by Dynamic Light Scattering (DLS) and liquid chromatography coupled to DAD and MS detectors (HPLC-DAD-MS), in presence or absence of two MPs with different saccharide/protein ratio. The results indicate that there are differences on the substrate specificity for each mannoprotein and that its action mechanism could change not only depending on the mannoprotein composition but also on the flavanol structure. MPs with elevated carbohydrate content could act thought the stabilization of soluble aggregates with human salivary proteins and flavanols, mainly non-galloylated flavanol oligomers, whereas MPs with higher protein percentage mostly could precipitate flavanols (mainly non-galloylated ones with low degree of polymerization) which partially prevents the formation of insoluble flavanol-salivary protein aggregates.
Collapse
Affiliation(s)
- Elvira Manjón
- Grupo de Investigación en Polifenoles (GIP), Facultad de Farmacia, Universidad de Salamanca, E37007 Salamanca, Spain
| | - Alberto Recio-Torrado
- Grupo de Investigación en Polifenoles (GIP), Facultad de Farmacia, Universidad de Salamanca, E37007 Salamanca, Spain
| | - Alba M Ramos-Pineda
- Grupo de Investigación en Polifenoles (GIP), Facultad de Farmacia, Universidad de Salamanca, E37007 Salamanca, Spain; Natac Biotech S.L., C/Electrónica 7, E28923 Alcorcón, Spain
| | - Ignacio García-Estévez
- Grupo de Investigación en Polifenoles (GIP), Facultad de Farmacia, Universidad de Salamanca, E37007 Salamanca, Spain.
| | - M Teresa Escribano-Bailón
- Grupo de Investigación en Polifenoles (GIP), Facultad de Farmacia, Universidad de Salamanca, E37007 Salamanca, Spain
| |
Collapse
|
15
|
Dultz S, Mikutta R, Kara SNM, Woche SK, Guggenberger G. Effects of solution chemistry on conformation of self-aggregated tannic acid revealed by laser light scattering. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142119. [PMID: 32920398 DOI: 10.1016/j.scitotenv.2020.142119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 08/27/2020] [Accepted: 08/30/2020] [Indexed: 06/11/2023]
Abstract
Inorganic soil solution constituents can alter the charge, size, and conformation of dissolved organic molecules, thus affecting their environmental behavior. Here, we investigated how pH, cation valence and activities induce conformational changes and aggregation-sedimentation reactions of organic polyelectrolytes. For that we determined the hydrodynamic diameter of the model compound tannic acid by laser light scattering at concentrations of 1-30 g L-1 in the pH range from 3 to 10 and with electrolyte additions of CaCl2 and hydroxyl-Al cations. Charge properties were quantified by polyelectrolyte titration and zeta potential measurements. After dispersion by sonication, aggregation was determined in time sequences up to 60 min and suspension stability was traced in sedimentation experiments. Tannic acid was present in ultrapure water in a self-aggregated state. At pH <3 as well as >7.5, its hydrodynamic diameter increased. Whereas at high pH this behavior could be assigned to unfolding of molecular conformations, at low pH it is likely that charge neutralization decreased repulsive forces and facilitated aggregation. At pH 5 and ionic strengths of up to 5 mM, CaCl2 did not affect aggregation state of tannic acid and results resembled those obtained in ultrapure water. Addition of hydroxyl-Al cations broke-up the self-aggregated tannic acid structures under formation of Al-organic coprecipitates. Strong aggregation only occurred at mixing ratios where opposite surface charges were completely balanced. Under natural conditions, self-aggregation of tannic acid can be expected only at higher solution concentrations. However, at acidic pH, hydroxyl-Al cations and tannic acid may form discrete colloidal particles already at low tannic acid concentrations, resulting in the destabilization of suspensions. Our data emphasize that the soil solution composition strongly modifies the physical state of tannic acid, and likely also of other biopolymers, and thus their interactions within environmental matrices.
Collapse
Affiliation(s)
- Stefan Dultz
- Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany.
| | - Robert Mikutta
- Soil Science and Soil Protection, Martin Luther University Halle-Wittenberg, Von-Seckendorff-Platz 3, 06120 Halle (Saale), Germany.
| | - Selen N M Kara
- Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany
| | - Susanne K Woche
- Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany.
| | - Georg Guggenberger
- Institute of Soil Science, Leibniz Universität Hannover, Herrenhäuser Straße 2, 30419 Hannover, Germany.
| |
Collapse
|
16
|
Guerreiro C, Jesus M, Brandão E, Mateus N, de Freitas V, Soares S. Interaction of a Procyanidin Mixture with Human Saliva and the Variations of Salivary Protein Profiles over a 1-Year Period. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:13824-13832. [PMID: 33170702 DOI: 10.1021/acs.jafc.0c05722] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Procyanidins are widely associated with astringency perception and promptly interact/precipitate salivary proteins (SPs). In this work, the SP profile of 17 volunteers was monitored for 1 year, focusing on the SP families most related to astringency [aPRPs (acidic proline-rich proteins), bPRPs (basic proline-rich proteins), gPRPs (glycosylated proline-rich proteins), cystatins, P-B peptide, and statherin]. Although the total SP content remained constant, bPRPs showed high variability. Saliva from 5 volunteers was selected, each individual's saliva presenting a prominence in one of the referred SP families; each was used to interact with grape seed procyanidin oligomeric fraction. Independent of the prominences, a total depletion in statherin and P-B peptide was observed. These subjects performed a sensory assay and the limit of detection for astringency was determined. Overall, the specificity of SP toward procyanidins seemed to be more important in the interactions than the total SP content. The highest reactivity toward SPs was observed for epicatechin gallate, procyanidin dimers B7, B2g, and trimer C1.
Collapse
Affiliation(s)
- Carlos Guerreiro
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689 Porto, Portugal
| | - Monica Jesus
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689 Porto, Portugal
| | - Elsa Brandão
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689 Porto, Portugal
| | - Nuno Mateus
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689 Porto, Portugal
| | - Victor de Freitas
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689 Porto, Portugal
| | - Susana Soares
- REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689 Porto, Portugal
| |
Collapse
|
17
|
Pérez-Gregorio R, Soares S, Mateus N, de Freitas V. Bioactive Peptides and Dietary Polyphenols: Two Sides of the Same Coin. Molecules 2020; 25:E3443. [PMID: 32751126 PMCID: PMC7435807 DOI: 10.3390/molecules25153443] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 02/06/2023] Open
Abstract
The call for health-promoting nutraceuticals and functional foods containing bioactive compounds is growing. Among the great diversity of functional phytochemicals, polyphenols and, more recently, bioactive peptides have stood out as functional compounds. The amount of an ingested nutrient able to reach the bloodstream and exert the biological activity is a critical factor, and is affected by several factors, such as food components and food processing. This can lead to unclaimed interactions and/or reactions between bioactive compounds, which is particularly important for these bioactive compounds, since some polyphenols are widely known for their ability to interact and/or precipitate proteins/peptides. This review focuses on this important topic, addressing how these interactions could affect molecules digestion, absorption, metabolism and (biological)function. At the end, it is evidenced that further research is needed to understand the true effect of polyphenol-bioactive peptide interactions on overall health outcomes.
Collapse
Affiliation(s)
- Rosa Pérez-Gregorio
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, 4169-007 Porto, Portugal; (N.M.); (V.d.F.)
| | - Susana Soares
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 689, 4169-007 Porto, Portugal; (N.M.); (V.d.F.)
| | | | | |
Collapse
|
18
|
Soares S, Brandão E, Guerreiro C, Soares S, Mateus N, de Freitas V. Tannins in Food: Insights into the Molecular Perception of Astringency and Bitter Taste. Molecules 2020; 25:E2590. [PMID: 32498458 PMCID: PMC7321337 DOI: 10.3390/molecules25112590] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 05/26/2020] [Accepted: 05/29/2020] [Indexed: 02/06/2023] Open
Abstract
Astringency and bitterness are organoleptic properties widely linked to tannin compounds. Due to their significance to food chemistry, the food industry, and to human nutrition and health, these tannins' taste properties have been a line of worldwide research. In recent years, significant advances have been made in understanding the molecular perception of astringency pointing to the contribution of different oral key players. Regarding bitterness, several polyphenols have been identified has new agonists of these receptors. This review summarizes the last data about the knowledge of these taste properties perceived by tannins. Ultimately, tannins' astringency and bitterness are hand-in-hand taste properties, and future studies should be adapted to understand how the proper perception of one taste could affect the perception of the other one.
Collapse
Affiliation(s)
- Susana Soares
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal; (E.B.); (C.G.); (S.S.); (N.M.)
| | | | | | | | | | - Victor de Freitas
- REQUIMTE/LAQV, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 689, 4169-007 Porto, Portugal; (E.B.); (C.G.); (S.S.); (N.M.)
| |
Collapse
|
19
|
Oral Wine Texture Perception and Its Correlation with Instrumental Texture Features of Wine-Saliva Mixtures. Foods 2019; 8:foods8060190. [PMID: 31159443 PMCID: PMC6617004 DOI: 10.3390/foods8060190] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 05/19/2019] [Accepted: 05/30/2019] [Indexed: 11/19/2022] Open
Abstract
Unlike solid food, texture descriptors in liquid food are scarce, and they are frequently reduced to the term viscosity. However, in wines, apart from viscosity, terms, such as astringency, body, unctuosity and density, help describe their texture, relating the complexity and balance among their chemical components. Yet there is uncertainty about which wine components (and their combinations) cause each texture sensation and if their instrumental assessment is possible. Therefore, the aim of the present work was to study the effect of wine texture on its main components, when interacting with saliva. This was completed by using instrumental measurements of density and viscosity, and by using two types of panels (trained and expert). For that, six different model-wine formulations were prepared by adding one or multiple wine components: ethanol, mannoproteins, glycerol, and tannins to a de-alcoholised wine. All formulations were mixed with fresh human saliva (1:1), and their density and rheological properties were measured. Although there were no statistical differences, body perception was higher for samples with glycerol and/or mannoproteins, this was also correlated with density instrumental measurements (R = 0.971, p = 0.029). The viscosity of samples with tannins was the highest due to the formation of complexes between the model-wine and salivary proteins. This also provided astringency, therefore correlating viscosity and astringency feelings (R = 0.855, p = 0.030). No correlation was found between viscosity and body perception because of the overlapping of the phenolic components. Overall, the present results reveal saliva as a key factor when studying the wine texture through instrumental measurements (density and viscosity).
Collapse
|
20
|
Synergistic effect of mixture of two proline-rich-protein salivary families (aPRP and bPRP) on the interaction with wine flavanols. Food Chem 2019; 272:210-215. [DOI: 10.1016/j.foodchem.2018.08.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 07/30/2018] [Accepted: 08/07/2018] [Indexed: 01/20/2023]
|
21
|
Chen G, Huang K, Miao M, Feng B, Campanella OH. Molecular Dynamics Simulation for Mechanism Elucidation of Food Processing and Safety: State of the Art. Compr Rev Food Sci Food Saf 2018; 18:243-263. [PMID: 33337012 DOI: 10.1111/1541-4337.12406] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2018] [Revised: 10/07/2018] [Accepted: 10/10/2018] [Indexed: 12/14/2022]
Abstract
Molecular dynamics (MD) simulation is a useful technique to study the interaction between molecules and how they are affected by various processes and processing conditions. This review summarizes the application of MD simulations in food processing and safety, with an emphasis on the effects that emerging nonthermal technologies (for example, high hydrostatic pressure, pulsed electric field) have on the molecular and structural characteristics of foods and biomaterials. The advances and potential projection of MD simulations in the science and engineering aspects of food materials are discussed and focused on research work conducted to study the effects of emerging technologies on food components. It is expected by showing key case studies that it will stir novel developments as a valuable tool to study the effects of emerging food technologies on biomaterials. This review is useful to food researchers and the food industry, as well as researchers and practitioners working on flavor and nutraceutical encapsulations, dietary carbohydrate product developments, modified starches, protein engineering, and other novel food applications.
Collapse
Affiliation(s)
- Gang Chen
- School of Food Science and Technology, Henan Univ. of Technology, 100 Lianhua St., Zhengzhou 450001, Henan, P. R. China.,State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Kai Huang
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Ming Miao
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Biao Feng
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China
| | - Osvaldo H Campanella
- State Key Laboratory of Food Science and Technology, Jiangnan Univ., 1800 Lihu Ave., Wuxi, 214122, Jiangsu, P. R. China.,Agricultural and Biological Engineering, and Dept. of Food Science, Whistler Center for Carbohydrate Research, Purdue Univ., 745 Agriculture Mall Dr., West Lafayette, IN, 47906, U.S.A
| |
Collapse
|
22
|
Oleson KR, Sprenger KG, Pfaendtner J, Schwartz DT. Inhibition of the Exoglucanase Cel7A by a Douglas-Fir-Condensed Tannin. J Phys Chem B 2018; 122:8665-8674. [PMID: 30111095 DOI: 10.1021/acs.jpcb.8b05850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Douglas-fir forestry residues are a potential feedstock for saccharification-based biofuels, and condensed tannins are expected to make up ∼3% of the dry mass of this feedstock. Condensed tannins are well-known for their ability to interact with proteins and can bind and inhibit cellulase enzymes used in saccharification. In this study, we use molecular docking and classical molecular dynamics simulations to investigate how a characterized condensed tannin from Douglas-fir bark binds to the exoglucanase Cel7A from Trichoderma reesei. Through looking at the "occupancy" and "residency" of specific amino acid residue-tannin interactions, we find that the binding sites are characterized by many simultaneous tannin-enzyme interactions with the strongest occurring on the catalytic module as opposed to the carbohydrate-binding module. The simulations indicate that tannin inhibition can result from binding at or near the catalytic tunnel's entrance and exit. The analyzed tannin further prefers to bind to loops around the catalytic region and has affinity for aromatic and charged amino acid residues. These insights provide direction for the rational design of tannin-resistant cellulases.
Collapse
Affiliation(s)
- Karl R Oleson
- Dept. of Chemical Engineering , University of Washington , Box 351750, Seattle , Washington 98198-1750 , United States
| | - Kayla G Sprenger
- Dept. of Chemical Engineering , University of Washington , Box 351750, Seattle , Washington 98198-1750 , United States.,Institute for Medical Engineering and Science , Massachusetts Institute of Technology , E25-352, Cambridge , Massachusetts 02139 , United States
| | - Jim Pfaendtner
- Dept. of Chemical Engineering , University of Washington , Box 351750, Seattle , Washington 98198-1750 , United States
| | - Daniel T Schwartz
- Dept. of Chemical Engineering , University of Washington , Box 351750, Seattle , Washington 98198-1750 , United States
| |
Collapse
|
23
|
Wang JS, Wang AB, Zang XP, Tan L, Ge Y, Lin XE, Xu BY, Jin ZQ, Ma WH. Physical and oxidative stability of functional avocado oil high internal phase emulsions collaborative formulated using citrus nanofibers and tannic acid. Food Hydrocoll 2018. [DOI: 10.1016/j.foodhyd.2018.02.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
24
|
|
25
|
Perez-Gregorio MR, Simal-Gandara J. A Critical Review of the Characterization of Polyphenol-Protein Interactions and of Their Potential Use for Improving Food Quality. Curr Pharm Des 2018; 23:2742-2753. [PMID: 28155599 DOI: 10.2174/1381612823666170202112530] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 01/31/2017] [Indexed: 01/03/2023]
Abstract
BACKGROUND Interest in protein-phenol interactions in biological systems has grown substantially in recent decades. METHODS The interest has focused largely on food systems in response to reports on the prominent roles of phenolic compounds in nutrition and health. RESULTS Phenolic compounds can have both favourable and adverse nutritional effects. Polyphenols are widely known for their antioxidant, anti-inflammatory, anticancer and antiaging properties; however, they have also been ascribed anti-nutritional effects resulting from interactions with some proteins and enzymes. Interactions between proteins and polyphenols can additionally influence food quality by altering some physical-chemical and sensory properties of foods. These effects may be useful to develop new products in food science and technology provided the nature of physical-chemical interactions between proteins and phenols is accurately elucidated. In this paper, we review the different possible modes of interaction between selected food proteins and phenolic compounds. CONCLUSION Existing knowledge on the mechanisms behind polyphenol-protein reactions, the structures of the resulting products and their potential uses is reviewed.
Collapse
Affiliation(s)
- Maria Rosa Perez-Gregorio
- Departamento de Quimica e Bioquimica, Faculdade de Ciências da Universidade do Porto, Rua Campo Alegre 687, Porto, Portugal
| | - Jesus Simal-Gandara
- Nutrition and Bromatology Group, Department of Analytical and Food Chemistry, Food Science and Technology Faculty, University of Vigo - Ourense Campus, E-32004 Ourense, Spain
| |
Collapse
|
26
|
Study of human salivary proline-rich proteins interaction with food tannins. Food Chem 2018; 243:175-185. [DOI: 10.1016/j.foodchem.2017.09.063] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 09/06/2017] [Accepted: 09/12/2017] [Indexed: 12/12/2022]
|
27
|
García-Estévez I, Ramos-Pineda AM, Escribano-Bailón MT. Interactions between wine phenolic compounds and human saliva in astringency perception. Food Funct 2018; 9:1294-1309. [PMID: 29417111 DOI: 10.1039/c7fo02030a] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Astringency is a complex perceptual phenomenon involving several sensations that are perceived simultaneously. The mechanism leading to these sensations has been thoroughly and controversially discussed in the literature and it is still not well understood since there are many contributing factors. Although we are still far from elucidating the mechanisms whereby astringency develops, the interaction between phenolic compounds and proteins (from saliva, oral mucosa or cells) seems to be most important. This review summarizes the recent trends in the protein-phenol interaction, focusing on the effect of the structure of the phenolic compound on the interaction with salivary proteins and on methodologies based on these interactions to determine astringency.
Collapse
Affiliation(s)
- Ignacio García-Estévez
- Grupo de Investigación en Polifenoles, Departament of Analytical Chemistry, Nutrition and Food Sciences, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno s/n. E37007, Salamanca, Spain.
| | - Alba María Ramos-Pineda
- Grupo de Investigación en Polifenoles, Departament of Analytical Chemistry, Nutrition and Food Sciences, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno s/n. E37007, Salamanca, Spain.
| | - María Teresa Escribano-Bailón
- Grupo de Investigación en Polifenoles, Departament of Analytical Chemistry, Nutrition and Food Sciences, Faculty of Pharmacy, University of Salamanca, Campus Miguel de Unamuno s/n. E37007, Salamanca, Spain.
| |
Collapse
|
28
|
Vidal L, Antúnez L, Giménez A, Medina K, Boido E, Ares G. Sensory characterization of the astringency of commercial Uruguayan Tannat wines. Food Res Int 2017; 102:425-434. [DOI: 10.1016/j.foodres.2017.09.022] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 09/06/2017] [Accepted: 09/08/2017] [Indexed: 11/27/2022]
|
29
|
Volpato L, Gabardo MCL, Leonardi DP, Tomazinho PH, Maranho LT, Baratto-Filho F. Effectiveness of Persea major Kopp (Lauraceae) extract against Enterococcus faecalis: a preliminary in vitro study. BMC Res Notes 2017; 10:119. [PMID: 28264708 PMCID: PMC5339983 DOI: 10.1186/s13104-017-2443-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 03/01/2017] [Indexed: 11/10/2022] Open
Abstract
Background Persea major Kopp (Lauraceae) is a plant with wound healing, antibacterial, and analgesic properties. The aim of this study was to assess the in vitro antibacterial activity of the concentrated crude extract (CCE) and ethyl acetate fraction (EAF) of this plant against Enterococcus faecalis and compare it with calcium hydroxide [Ca(OH)2] paste and 2% chlorhexidine digluconate (CHX). Methods The plant material was collected, and an extract was prepared according to the requirements of the study (CCE and EAF). The minimum inhibitory concentrations (MICs) of CCE, EAF, Ca(OH)2, Ca(OH)2 + CCE, and CHX against E. faecalis were determined using the broth microdilution method Results The EAF inhibited E. faecalis at concentrations of 166.50, 83.25, and 41.62 mg mL−1, and 1.00, 0.50, and 0.25% of CHX solutions showed antimicrobial activity. The MICs of Ca(OH)2 paste were 166.50 and 83.25 mg mL−1, whereas Ca(OH)2 + CCE showed antimicrobial activity only at a concentration of 166.50 mg mL−1. CCE showed no inhibitory effect at any of the concentrations tested Conclusions The CCE did not show any antimicrobial activity against E. faecalis; however, the EAF was the most effective among the three highest concentrations tested.
Collapse
|
30
|
In vitro assay to estimate tea astringency via observing flotation of artificial oil bodies sheltered by caleosin fused with histatin 3. J Food Drug Anal 2017; 25:828-836. [PMID: 28987359 PMCID: PMC9328874 DOI: 10.1016/j.jfda.2016.08.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 08/15/2016] [Accepted: 08/31/2016] [Indexed: 01/31/2023] Open
Abstract
Astringency, a sensory characteristic of food and beverages rich in polyphenols, mainly results from the formation of complexes between polyphenols and salivary proteins, causing a reduction of the lubricating properties of saliva. To develop an in vitro assay to estimate the astringency of oolong tea infusion, artificial oil bodies were constituted with sesame oil sheltered by a modified caleosin fused with histatin 3, one of the human salivary small peptides. Aggregation of artificial oil bodies was induced when they were mixed with oolong tea infusion or its major polyphenolic compound, (−)-epigallocatechin gallate (EGCG) of 100μM as observed in light microscopy. The aggregated artificial oil bodies gradually floated on top of the solution and formed a visible milky layer whose thickness was in proportion to the concentrations of tea infusion. This assay system was applied to test four different oolong tea infusions with sensory astringency corresponding to their EGCG contents. The result showed that relative astringency of the four tea infusions was correlated to the thickness of floated artificial oil bodies, and could be estimated according to the standard curve generated by simultaneously observing a serial dilution of the tea infusion with the highest astringency.
Collapse
|
31
|
Combination of ultrasound, enzymes and mechanical stirring: A new method to improve Vitis vinifera Cabernet Sauvignon must yield, quality and bioactive compounds. FOOD AND BIOPRODUCTS PROCESSING 2017. [DOI: 10.1016/j.fbp.2017.07.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
32
|
Affiliation(s)
- Richard Gawel
- Australian Wine Research Institute, Paratoo Road, Urrbrae, Australia
| | - Paul A. Smith
- Australian Wine Research Institute, Paratoo Road, Urrbrae, Australia
| | - Sara Cicerale
- Deakin University Faculty of Health, School of Exercise and Nutrition Sciences, Burwood, Australia
| | - Russell Keast
- Deakin University Faculty of Health, School of Exercise and Nutrition Sciences, Burwood, Australia
| |
Collapse
|
33
|
Silva MS, García-Estévez I, Brandão E, Mateus N, de Freitas V, Soares S. Molecular Interaction Between Salivary Proteins and Food Tannins. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6415-6424. [PMID: 28589723 DOI: 10.1021/acs.jafc.7b01722] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Polyphenols interaction with salivary proteins (SP) has been related with organoleptic features such as astringency. The aim of this work was to study the interaction between some human SP and tannins through two spectroscopic techniques, fluorescence quenching, and saturation transfer difference-nuclear magnetic resonance (STD-NMR). Generally, the results showed a significant interaction between SP and both condensed tannins and ellagitannins. Herein, STD-NMR proved to be a useful tool to map tannins' epitopes of binding, while fluorescence quenching allowed one to discriminate binding affinities. Ellagitannins showed the greatest binding constants values (KSV from 20.1 to 94.1 mM-1; KA from 0.7 to 8.3 mM-1) in comparison with procyanidins (KSV from 5.4 to 40.0 mM-1; KA from 1.1 to 2.7 mM-1). In fact, punicalagin was the tannin that demonstrated the highest affinity for all three SP. Regarding SP, P-B peptide was the one with higher affinity for ellagitannins. On the other hand, cystatins showed in general the lower KSV and KA values. In the case of condensed tannins, statherin was the SP with the highest affinity, contrasting with the other two SP. Altogether, these results are evidence that the distinct SP present in the oral cavity have different abilities to interact with food tannins class.
Collapse
Affiliation(s)
- Mafalda Santos Silva
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Ignacio García-Estévez
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Elsa Brandão
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Nuno Mateus
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Victor de Freitas
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| | - Susana Soares
- REQUIMTE, LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre, s/n, 4169-007 Porto, Portugal
| |
Collapse
|
34
|
Ferrer-Gallego R, Hernández-Hierro JM, Brás NF, Vale N, Gomes P, Mateus N, de Freitas V, Heredia FJ, Escribano-Bailón MT. Interaction between Wine Phenolic Acids and Salivary Proteins by Saturation-Transfer Difference Nuclear Magnetic Resonance Spectroscopy (STD-NMR) and Molecular Dynamics Simulations. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:6434-6441. [PMID: 28251854 DOI: 10.1021/acs.jafc.6b05414] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The interaction between phenolic compounds and salivary proteins is highly related to the astringency perception. Recently, it has been proven the existence of synergisms on the perceived astringency when phenolic acids were tested as mixtures in comparison to individual compounds, maintaining constant the total amount of the stimulus. The interactions between wine phenolic acids and the peptide fragment IB712 have been studied by saturation-transfer difference (STD) NMR spectroscopy. This technique provided the dissociation constants and the percentage of interaction between both individual and mixtures of hydroxybenzoic and hydroxycinnamic acids and the model peptide. It is noteworthy that hydroxybenzoic acids showed higher affinity for the peptide than hydroxycinnamic acids. To obtain further insights into the mechanisms of interaction, molecular dynamics simulations have been performed. Results obtained not only showed the ability of these compounds to interact with salivary proteins but also may justify the synergistic effect observed in previous sensory studies.
Collapse
Affiliation(s)
- Raúl Ferrer-Gallego
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatologı́a, Facultad de Farmacia, University of Salamanca , 37007 Salamanca, Spain
- VITEC , Parc Tecnològic del Vi, 43730 Falset (Tarragona), Spain
| | - José Miguel Hernández-Hierro
- Food Colour and Quality Laboratory, Department of Nutrition and Food Science, Facultad de Farmacia, Universidad de Sevilla , 41012 Sevilla, Spain
| | - Natércia F Brás
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Nuno Vale
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Paula Gomes
- UCIBIO, REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto , Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Nuno Mateus
- LAQV-REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Victor de Freitas
- LAQV-REQUIMTE, Departamento de Quı́mica e Bioquı́mica, Faculdade de Ciências, Universidade do Porto , 4169-007 Porto, Portugal
| | - Francisco J Heredia
- Food Colour and Quality Laboratory, Department of Nutrition and Food Science, Facultad de Farmacia, Universidad de Sevilla , 41012 Sevilla, Spain
| | - María Teresa Escribano-Bailón
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatologı́a, Facultad de Farmacia, University of Salamanca , 37007 Salamanca, Spain
| |
Collapse
|
35
|
Delimont NM, Rosenkranz SK, Haub MD, Lindshield BL. Salivary proline-rich protein may reduce tannin-iron chelation: a systematic narrative review. Nutr Metab (Lond) 2017; 14:47. [PMID: 28769992 PMCID: PMC5525358 DOI: 10.1186/s12986-017-0197-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Accepted: 06/18/2017] [Indexed: 11/10/2022] Open
Abstract
Background Tannins are often cited for antinutritional effects, including chelation of non-heme iron. Despite this, studies exploring non-heme iron bioavailability inhibition with long-term consumption have reported mixed results. Salivary proline-rich proteins (PRPs) may mediate tannin-antinutritional effects on non-heme iron bioavailability. Aim To review evidence regarding biochemical binding mechanisms and affinity states between PRPs and tannins, as well as effects of PRPs on non-heme iron bioavailability with tannin consumption in vivo. Methods Narrative systematic review and meta-analysis. Common themes in biochemical modeling and affinity studies were collated for summary and synthesis; data were extracted from in vivo experiments for meta-analysis. Results Thirty-two studies were included in analysis. Common themes that positively influenced tannin-PRP binding included specificity of tannin-PRP binding, PRP and tannin stereochemistry. Hydrolyzable tannins have different affinities than condensed tannins when binding to PRPs. In vivo, hepatic iron stores and non-heme iron absorption are not significantly affected by tannin consumption (d = −0.64-1.84; −2.7-0.13 respectively), and PRP expression may increase non-heme iron bioavailability with tannin consumption. Conclusions In vitro modeling suggests that tannins favor PRP binding over iron chelation throughout digestion. Hydrolyzable tannins are not representative of tannin impact on non-heme iron bioavailability in food tannins because of their unique structural properties and PRP affinities. With tannin consumption, PRP production is increased, and may be an initial line of defense against tannin-non-heme iron chelation in vivo. More research is needed to compare competitive binding of tannin-PRP to tannin-non-heme iron complexes, and elucidate PRPs’ role in adaption to non-heme iron bioavailability in vivo. Electronic supplementary material The online version of this article (doi:10.1186/s12986-017-0197-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Nicole M Delimont
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, 1324 Lovers Lane, 208 Justin Hall, Manhattan, KS, USA
| | - Sara K Rosenkranz
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, 1324 Lovers Lane, 208 Justin Hall, Manhattan, KS, USA
| | - Mark D Haub
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, 1324 Lovers Lane, 208 Justin Hall, Manhattan, KS, USA
| | - Brian L Lindshield
- Department of Food, Nutrition, Dietetics and Health, Kansas State University, 1324 Lovers Lane, 208 Justin Hall, Manhattan, KS, USA
| |
Collapse
|
36
|
Smeriglio A, Barreca D, Bellocco E, Trombetta D. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol 2017; 174:1244-1262. [PMID: 27646690 PMCID: PMC5429339 DOI: 10.1111/bph.13630] [Citation(s) in RCA: 336] [Impact Index Per Article: 42.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Revised: 09/07/2016] [Accepted: 09/14/2016] [Indexed: 12/14/2022] Open
Abstract
Tannins are a heterogeneous group of high MW, water-soluble, polyphenolic compounds, naturally present in cereals, leguminous seeds and, predominantly, in many fruits and vegetables, where they provide protection against a wide range of biotic and abiotic stressors. Tannins exert several pharmacological effects, including antioxidant and free radical scavenging activity as well as antimicrobial, anti-cancer, anti-nutritional and cardio-protective properties. They also seem to exert beneficial effects on metabolic disorders and prevent the onset of several oxidative stress-related diseases. Although the bioavailability and pharmacokinetic data for these phytochemicals are still sparse, gut absorption of these compounds seems to be inversely correlated with the degree of polymerization. Further studies are mandatory to better clarify how these molecules and their metabolites are able to cross the intestinal barrier in order to exert their biological properties. This review summarizes the current literature on tannins, focusing on the main, recently proposed mechanisms of action that underlie their pharmacological and disease-prevention properties, as well as their bioavailability, safety and toxicology. LINKED ARTICLES This article is part of a themed section on Principles of Pharmacological Research of Nutraceuticals. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.11/issuetoc.
Collapse
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Ersilia Bellocco
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of MessinaMessinaItaly
| |
Collapse
|
37
|
Soares S, Brandão E, Mateus N, de Freitas V. Sensorial properties of red wine polyphenols: Astringency and bitterness. Crit Rev Food Sci Nutr 2017; 57:937-948. [PMID: 25897713 DOI: 10.1080/10408398.2014.946468] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Polyphenols have been the subject of numerous research over the past years, being referred as the nutraceuticals of modern life. The healthy properties of these compounds have been associated to a natural chemoprevention of 21st century major diseases such as cancer and neurodegenerative diseases (e.g. Parkinson's and Alzheimer's). This association led to an increased consumption of foodstuffs rich in these compounds such as red wine. Related to the ingestion of polyphenols are the herein revised sensorial properties (astringency and bitterness) which are not still pleasant. This review intends to be an outline both at a sensory as a molecular level of the mechanisms underlying astringency and bitterness of polyphenols. Up-to-date knowledge of this matter is discussed in detail.
Collapse
Affiliation(s)
- Susana Soares
- a Centro de Investigação em Química, Faculdade de Ciências da Universidade do Porto , Departamento de Química e Bioquímica , Porto , Portugal
| | - Elsa Brandão
- a Centro de Investigação em Química, Faculdade de Ciências da Universidade do Porto , Departamento de Química e Bioquímica , Porto , Portugal
| | - Nuno Mateus
- a Centro de Investigação em Química, Faculdade de Ciências da Universidade do Porto , Departamento de Química e Bioquímica , Porto , Portugal
| | - Victor de Freitas
- a Centro de Investigação em Química, Faculdade de Ciências da Universidade do Porto , Departamento de Química e Bioquímica , Porto , Portugal
| |
Collapse
|
38
|
Mouthfeel perception of wine: Oral physiology, components and instrumental characterization. Trends Food Sci Technol 2017. [DOI: 10.1016/j.tifs.2016.10.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Faurie B, Dufourc EJ, Laguerre M, Pianet I. Monitoring the Interactions of a Ternary Complex Using NMR Spectroscopy: The Case of Sugars, Polyphenols, and Proteins. Anal Chem 2016; 88:12470-12478. [DOI: 10.1021/acs.analchem.6b03911] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Benoit Faurie
- CESAMO-Institut
des Sciences Moléculaires-UMR 5255, Université de Bordeaux, CNRS, 351 cours de la Libération, 33405 Talence, France
- Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN-UMR 5248), Université de Bordeaux, CNRS, INP Bordeaux, Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Erick J. Dufourc
- Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN-UMR 5248), Université de Bordeaux, CNRS, INP Bordeaux, Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Michel Laguerre
- Institute of Chemistry & Biology of Membranes & Nanoobjects (CBMN-UMR 5248), Université de Bordeaux, CNRS, INP Bordeaux, Allée Geoffroy Saint-Hilaire, 33600 Pessac, France
| | - Isabelle Pianet
- CESAMO-Institut
des Sciences Moléculaires-UMR 5255, Université de Bordeaux, CNRS, 351 cours de la Libération, 33405 Talence, France
| |
Collapse
|
40
|
Smeriglio A, Barreca D, Bellocco E, Trombetta D. Proanthocyanidins and hydrolysable tannins: occurrence, dietary intake and pharmacological effects. Br J Pharmacol 2016. [DOI: 10.1111/bph.13630 pmid: 27646690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Affiliation(s)
- Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Ersilia Bellocco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences; University of Messina; Messina Italy
| |
Collapse
|
41
|
Ferrer-Gallego R, Brás NF, García-Estévez I, Mateus N, Rivas-Gonzalo JC, de Freitas V, Escribano-Bailón MT. Effect of flavonols on wine astringency and their interaction with human saliva. Food Chem 2016; 209:358-64. [DOI: 10.1016/j.foodchem.2016.04.091] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 04/12/2016] [Accepted: 04/20/2016] [Indexed: 12/20/2022]
|
42
|
Liu Y, Perez L, Mettry M, Easley CJ, Hooley RJ, Zhong W. Self-Aggregating Deep Cavitand Acts as a Fluorescence Displacement Sensor for Lysine Methylation. J Am Chem Soc 2016; 138:10746-9. [DOI: 10.1021/jacs.6b05897] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Yang Liu
- Department of Chemistry and ‡Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
| | - Lizeth Perez
- Department of Chemistry and ‡Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
| | - Magi Mettry
- Department of Chemistry and ‡Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
| | - Connor J. Easley
- Department of Chemistry and ‡Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
| | - Richard J. Hooley
- Department of Chemistry and ‡Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
| | - Wenwan Zhong
- Department of Chemistry and ‡Environmental Toxicology Program, University of California-Riverside, Riverside, California 92521, United States
| |
Collapse
|
43
|
Furlan AL, Saad A, Dufourc EJ, Géan J. Grape tannin catechin and ethanol fluidify oral membrane mimics containing moderate amounts of cholesterol: Implications on wine tasting? Biochimie 2016; 130:41-48. [PMID: 27402289 DOI: 10.1016/j.biochi.2016.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 07/06/2016] [Indexed: 11/17/2022]
Abstract
Wine tasting results in interactions of tannin-ethanol solutions with proteins and lipids of the oral cavity. Among the various feelings perceived during tasting, astringency and bitterness most probably result in binding events with saliva proteins, lipids and receptors. In this work, we monitored the conjugated effect of the grape polyphenol catechin and ethanol on lipid membranes mimicking the different degrees of keratinization of oral cavity surfaces by varying the amount of cholesterol present in membranes. Both catechin and ethanol fluidify the membranes as evidenced by solid-state 2H NMR of perdeuterated lipids. The effect is however depending on the cholesterol proportion and may be very important and cumulative in the absence of cholesterol or presence of 18 mol % cholesterol. For 40 mol % cholesterol, mimicking highly keratinized membranes, both ethanol and catechin can no longer affect membrane dynamics. These observations can be accounted for by phase diagrams of lipid-cholesterol mixtures and the role played by membrane defects for insertion of tannins and ethanol when several phases coexist. These findings suggest that the behavior of oral membranes in contact with wine should be different depending of their cholesterol content. Astringency and bitterness could be then affected; the former because of a potential competition between the tannin-lipid and the tannin-saliva protein interaction, and the latter because of a possible fluidity modification of membranes containing taste receptors. The lipids that have been up to now weakly considered in oenology may be become a new actor in the issue of wine tasting.
Collapse
Affiliation(s)
- Aurélien L Furlan
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Univ. Bordeaux, CNRS, Bordeaux INP, F-33600, Pessac, France
| | - Ahmad Saad
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Univ. Bordeaux, CNRS, Bordeaux INP, F-33600, Pessac, France
| | - Erick J Dufourc
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Univ. Bordeaux, CNRS, Bordeaux INP, F-33600, Pessac, France
| | - Julie Géan
- Institute of Chemistry and Biology of Membranes and Nano-objects, UMR 5248, Univ. Bordeaux, CNRS, Bordeaux INP, F-33600, Pessac, France.
| |
Collapse
|
44
|
Quijada-Morín N, Crespo-Expósito C, Rivas-Gonzalo JC, García-Estévez I, Escribano-Bailón MT. Effect of the addition of flavan-3-ols on the HPLC-DAD salivary-protein profile. Food Chem 2016; 207:272-8. [PMID: 27080905 DOI: 10.1016/j.foodchem.2016.03.118] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 03/28/2016] [Accepted: 03/30/2016] [Indexed: 12/29/2022]
Abstract
The interaction between monomeric flavan-3-ols and salivary proteins has been studied using HPLC-DAD. A chromatographic method has been described and seven protein fractions were collected. The peptides and proteins present in each fraction have been identified using nLC-MS-MS analysis. The interaction between saliva and catechin, epicatechin and gallocatechin has been studied. These compounds interact in a discriminated way with salivary proteins: catechin causes a decrease of some fractions, epicatechin causes the decrease or increase of fractions while gallocatechin seems to cause an increase of two fractions. This variable behavior is explained, for the decrease in the chromatographic area, by the precipitation of salivary proteins and, for the increase of the area, by the formation of soluble complexes and/or for the formation of new peaks.
Collapse
Affiliation(s)
- Natalia Quijada-Morín
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, University of Salamanca, Campus Miguel de Unamuno, E 37007 Salamanca, Spain.
| | - Carlos Crespo-Expósito
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, University of Salamanca, Campus Miguel de Unamuno, E 37007 Salamanca, Spain.
| | - Julián C Rivas-Gonzalo
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, University of Salamanca, Campus Miguel de Unamuno, E 37007 Salamanca, Spain.
| | - Ignacio García-Estévez
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, University of Salamanca, Campus Miguel de Unamuno, E 37007 Salamanca, Spain.
| | - María Teresa Escribano-Bailón
- Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, University of Salamanca, Campus Miguel de Unamuno, E 37007 Salamanca, Spain.
| |
Collapse
|
45
|
Wang YH, Wan ZL, Yang XQ, Wang JM, Guo J, Lin Y. Colloidal complexation of zein hydrolysate with tannic acid: Constructing peptides-based nanoemulsions for alga oil delivery. Food Hydrocoll 2016. [DOI: 10.1016/j.foodhyd.2015.09.020] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Zou Y, Guo J, Yin SW, Wang JM, Yang XQ. Pickering Emulsion Gels Prepared by Hydrogen-Bonded Zein/Tannic Acid Complex Colloidal Particles. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2015; 63:7405-7414. [PMID: 26226053 DOI: 10.1021/acs.jafc.5b03113] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Food-grade colloidal particles and complexes, which are formed via modulation of the noncovalent interactions between macromolecules and natural small molecules, can be developed as novel functional ingredients in a safe and sustainable way. For this study was prepared a novel zein/tannic acid (TA) complex colloidal particle (ZTP) based on the hydrogen-bonding interaction between zein and TA in aqueous ethanol solution by using a simple antisolvent approach. Pickering emulsion gels with high oil volume fraction (φ(oil) > 50%) were successfully fabricated via one-step homogenization. Circular dichroism (CD) and small-angle X-ray scattering (SAXS) measurements, which were used to characterize the structure of zein/TA complexes in ethanol solution, clearly showed that TA binding generated a conformational change of zein without altering their supramolecular structure at pH 5.0 and intermediate TA concentrations. Consequently, the resultant ZTP had tuned near neutral wettability (θ(ow) ∼ 86°) and enhanced interfacial reactivity, but without significantly decreased surface charge. These allowed the ZTP to stabilize the oil droplets and further triggered cross-linking to form a continuous network among and around the oil droplets and protein particles, leading to the formation of stable Pickering emulsion gels. Layer-by-layer (LbL) interfacial architecture on the oil-water surface of the droplets was observed, which implied a possibility to fabricate hierarchical interface microstructure via modulation of the noncovalent interaction between hydrophobic protein and natural polyphenol.
Collapse
Affiliation(s)
- Yuan Zou
- Food Protein Research and Development Center, Department of Food Science and Technology, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Jian Guo
- Food Protein Research and Development Center, Department of Food Science and Technology, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Shou-Wei Yin
- Food Protein Research and Development Center, Department of Food Science and Technology, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Jin-Mei Wang
- Food Protein Research and Development Center, Department of Food Science and Technology, South China University of Technology , Guangzhou 510640, People's Republic of China
| | - Xiao-Quan Yang
- Food Protein Research and Development Center, Department of Food Science and Technology, South China University of Technology , Guangzhou 510640, People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology , Guangzhou 510640, People's Republic of China
| |
Collapse
|
47
|
Ferrer-Gallego R, Soares S, Mateus N, Rivas-Gonzalo J, Escribano-Bailón MT, de Freitas V. New Anthocyanin-Human Salivary Protein Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:8392-8401. [PMID: 26162056 DOI: 10.1021/acs.langmuir.5b01122] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The interaction between phenolic compounds and salivary proteins is considered the basis of the poorly understood phenomenon of astringency. Furthermore, this interaction is an important factor in relation to their bioavailability. In this work, interactions between anthocyanin and human salivary protein fraction were studied by mass spectrometry (MALDI-TOF-MS and FIA-ESI-MS) and saturation-transfer difference (STD) NMR spectroscopy. Anthocyanins were able to interact with saliva proteins. The dissociation constant (KD) between malvidin 3-glucoside and salivary proline-rich proteins was 1.92 mM for the hemiketal form (pH 3.4) and 1.83 mM for the flavylium cation (pH 1.0). New soluble complexes between these salivary proteins and malvidin 3-glucoside were identified for the first time.
Collapse
Affiliation(s)
- Raúl Ferrer-Gallego
- †REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
- ‡Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E 37007 Salamanca, Spain
| | - Susana Soares
- †REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Nuno Mateus
- †REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| | - Julián Rivas-Gonzalo
- ‡Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E 37007 Salamanca, Spain
| | - M Teresa Escribano-Bailón
- ‡Grupo de Investigación en Polifenoles, Unidad de Nutrición y Bromatología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno, E 37007 Salamanca, Spain
| | - Victor de Freitas
- †REQUIMTE/LAQV, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre, 687, 4169-007 Porto, Portugal
| |
Collapse
|
48
|
Liu Y, Bai X, Li S, Liu Y, Keightley A, Wang Y. Molecular weight and galloylation affect grape seed extract constituents' ability to cross-link dentin collagen in clinically relevant time. Dent Mater 2015; 31:814-21. [PMID: 25958268 DOI: 10.1016/j.dental.2015.04.006] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Revised: 03/04/2015] [Accepted: 04/13/2015] [Indexed: 12/26/2022]
Abstract
OBJECTIVE To investigate the relationship between the structures of polyphenolic compounds found in grape seed extract (GSE) and their activity in cross-linking dentin collagen in clinically relevant settings. METHODS Representative monomeric and dimeric GSE constituents including (+)-catechin (pCT), (-)-catechin (CT), (-)-epicatechin (EC), (-)-epigallocatechin (EGC), (-)-epicatechin gallate (ECG), (-)-epigallocatechin gallate (EGCG), procyanidin B2 and a pCT-pCT dimer were purchased or synthesized. GSE was separated into low (PALM) and high molecular weight (PAHM) fractions. Human molars were processed into dentin films and beams. After demineralization, 11 groups of films (n=5) were treated for 1min with the aforementioned reagents (1wt% in 50/50 ethanol/water) and 1 group remained untreated. The films were studied by Fourier transform infrared spectroscopy (FTIR) followed by a quantitative mass spectroscopy-based digestion assay. Tensile properties of demineralized dentin beams were evaluated (n=7) after treatments (2h and 24h) with selective GSE species that were found to protect dentin collagen from collagenase. RESULTS Efficacy of GSE constituents in cross-linking dentin collagen was dependent on molecular size and galloylation. Non-galloylated species with degree of polymerization up to two, including pCT, CT, EC, EGC, procyanidin B2 and pCT-pCT dimer were not active. Galloylated species were active starting from monomeric form, including ECG, EGCG, PALM, GSE and PAHM. PALM induced the best overall improvement in tensile properties of dentin collagen. SIGNIFICANCE Identification under clinically relevant settings of structural features that contribute to GSE constituents' efficacy in stabilizing demineralized dentin matrix has immediate impact on optimizing GSE's use in dentin bonding.
Collapse
Affiliation(s)
- Yi Liu
- School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Xinyan Bai
- School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Shaohua Li
- School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Ying Liu
- School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA
| | - Andrew Keightley
- School of Biological Sciences, University of Missouri-Kansas City, Kansas City, MO 64110, USA
| | - Yong Wang
- School of Dentistry, University of Missouri-Kansas City, Kansas City, MO 64108, USA.
| |
Collapse
|
49
|
Guéroux M, Pinaud-Szlosek M, Fouquet E, De Freitas V, Laguerre M, Pianet I. How wine polyphenols can fight Alzheimer disease progression: towards a molecular explanation. Tetrahedron 2015. [DOI: 10.1016/j.tet.2014.06.091] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
50
|
Ferrer-Gallego R, Quijada-Morin N, Bras NF, Gomes P, de Freitas V, Rivas-Gonzalo JC, Escribano-Bailon MT. Characterization of Sensory Properties of Flavanols--A Molecular Dynamic Approach. Chem Senses 2015; 40:381-90. [DOI: 10.1093/chemse/bjv018] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|