1
|
Zbonikowski R, Mente P, Bończak B, Paczesny J. Adaptive 2D and Pseudo-2D Systems: Molecular, Polymeric, and Colloidal Building Blocks for Tailored Complexity. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:855. [PMID: 36903733 PMCID: PMC10005801 DOI: 10.3390/nano13050855] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Two-dimensional and pseudo-2D systems come in various forms. Membranes separating protocells from the environment were necessary for life to occur. Later, compartmentalization allowed for the development of more complex cellular structures. Nowadays, 2D materials (e.g., graphene, molybdenum disulfide) are revolutionizing the smart materials industry. Surface engineering allows for novel functionalities, as only a limited number of bulk materials have the desired surface properties. This is realized via physical treatment (e.g., plasma treatment, rubbing), chemical modifications, thin film deposition (using both chemical and physical methods), doping and formulation of composites, or coating. However, artificial systems are usually static. Nature creates dynamic and responsive structures, which facilitates the formation of complex systems. The challenge of nanotechnology, physical chemistry, and materials science is to develop artificial adaptive systems. Dynamic 2D and pseudo-2D designs are needed for future developments of life-like materials and networked chemical systems in which the sequences of the stimuli would control the consecutive stages of the given process. This is crucial to achieving versatility, improved performance, energy efficiency, and sustainability. Here, we review the advancements in studies on adaptive, responsive, dynamic, and out-of-equilibrium 2D and pseudo-2D systems composed of molecules, polymers, and nano/microparticles.
Collapse
Affiliation(s)
| | | | | | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
2
|
Nanocellulose-based nanogels for sustained drug delivery: Preparation, characterization and in vitro evaluation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
3
|
Ma Y, Nagy G, Siebenbürger M, Kaur R, Dooley KM, Bharti B. Adsorption and Catalytic Activity of Gold Nanoparticles in Mesoporous Silica: Effect of Pore Size and Dispersion Salinity. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2022; 126:2531-2541. [PMID: 35178138 PMCID: PMC8842498 DOI: 10.1021/acs.jpcc.1c09573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/12/2022] [Indexed: 05/25/2023]
Abstract
The assembled state of nanoparticles (NPs) within porous matrices plays a governing role in directing their biological, electronic, and catalytic properties. However, the effects of the spatial confinement and environmental factors, such as salinity, on the NP assemblies within the pores are poorly understood. In this study, we use adsorption isotherms, spectrophotometry, and small-angle neutron scattering to develop a better understanding of the effect of spatial confinement on the assembled state and catalytic performance of gold (Au) NPs in propylamine-functionalized SBA-15 and MCM-41 mesoporous silica materials (mSiO2). We carry out a detailed investigation of the effect of pore diameter and ionic strength on the packing and spatial distribution of AuNPs within mSiO2 to get a comprehensive insight into the structure, functioning, and activity of these NPs. We demonstrate the ability of the adsorbed AuNPs to withstand aggregation under high salinity conditions. We attribute the observed preservation of the adsorbed state of AuNPs to the strong electrostatic attraction between oppositely charged pore walls and AuNPs. The preservation of the structure allows the AuNPs to retain their catalytic activity for a model reaction in high salinity aqueous solution, here, the reduction of p-nitrophenol to p-aminophenol, which otherwise is significantly diminished due to bulk aggregation of the AuNPs. This fundamental study demonstrates the critical role of confinement and dispersion salinity on the adsorption and catalytic performance of NPs.
Collapse
Affiliation(s)
- Yingzhen Ma
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Gergely Nagy
- Neutron
Scattering Division, Oak Ridge National
Laboratory, Oak Ridge, Tennessee 37831, United States
| | - Miriam Siebenbürger
- Center
for Advanced Microstructures and Devices, Louisiana State University, Baton
Rouge, Louisiana 70806, United States
| | - Ravneet Kaur
- Life
and Physical Science Department, Ivy Tech
Community College of Indiana, Valparaiso, Indiana 46360, United States
| | - Kerry M. Dooley
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| | - Bhuvnesh Bharti
- Cain
Department of Chemical Engineering, Louisiana
State University, Baton
Rouge, Louisiana 70803, United States
| |
Collapse
|
4
|
Schoen M, Evans R, Gubbins KE, Rabe JP, Thommes M, Jackson G. Gerhard Findenegg (1938–2019). Mol Phys 2021. [DOI: 10.1080/00268976.2021.1953272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Martin Schoen
- Technische Universität Berlin, Fakultät für Mathematik und Naturwissenschaften, Berlin, Germany
| | - Robert Evans
- H. H. Wills Physics Laboratory, University of Bristol, Bristol, UK
| | - Keith E. Gubbins
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Jürgen P. Rabe
- Department of Physics & IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Matthias Thommes
- Department of Chemical and Bioeengineering, Institute of Separation Science and Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Germany
| | - George Jackson
- Department of Chemical Engineering, Imperial College London, London, UK
| |
Collapse
|
5
|
Hirayama H, Amolegbe SA, Islam MS, Rahman MA, Goto N, Sekine Y, Hayami S. Encapsulation and controlled release of an antimalarial drug using surface functionalized mesoporous silica nanocarriers. J Mater Chem B 2021; 9:5043-5046. [PMID: 34151333 DOI: 10.1039/d1tb00954k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we report the encapsulation and release of antimalarial drug quinine (QN) using three nanocarriers, including MCM-41 (1), and its 3-aminopropyl silane (aMCM-41 (2)) and 3-phenylpropyl silane (pMCM-41 (3)) surface functionalized derivatives. The pH and thermal optimization effects on QN adsorption and release from 1, 2 and 3 were investigated.
Collapse
Affiliation(s)
- Haruka Hirayama
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Saliu Alao Amolegbe
- Department of Chemistry, College of Physical Sciences, Federal University of Agriculture, Abeokuta (FUNAAB), PMB, Abeokuta, 2240, Nigeria
| | - Md Saidul Islam
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan. and Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Mohammad Atiqur Rahman
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Nonoka Goto
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| | - Yoshihiro Sekine
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan. and Priority Organization for Innovation and Excellence, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Shinya Hayami
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan. and Institute of Industrial Nanomaterials (IINa), Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| |
Collapse
|
6
|
Giri K, Lau M, Kuschnerus I, Moroni I, Garcia-Bennett AE. A lysozyme corona complex for the controlled pharmacokinetic release of probucol from mesoporous silica particles. Biomater Sci 2020; 8:3800-3803. [PMID: 32555808 DOI: 10.1039/d0bm00445f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Mesoporous silica particles (MSPs) enhance the release kinetics of poorly soluble compound probucol (PB) under the influence of a pore-blocking protein corona, prepared with lysozyme protein adsorption. In vivo oral administration experiments show a prolongation in the time to reach maximum systemic concentration and half-life of PB released from the lysozyme-MSP complex in comparison to the MSP alone. Specific hard protein corona complexes can act as functional diffusion barriers for the controlled release of drugs from MSP based formulations.
Collapse
Affiliation(s)
- Kalpeshkumar Giri
- Dpt. Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
7
|
Gisbert-Garzarán M, Vallet-Regí M. Influence of the Surface Functionalization on the Fate and Performance of Mesoporous Silica Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E916. [PMID: 32397449 PMCID: PMC7279540 DOI: 10.3390/nano10050916] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 04/21/2020] [Accepted: 04/24/2020] [Indexed: 02/06/2023]
Abstract
Mesoporous silica nanoparticles have been broadly applied as drug delivery systems owing to their exquisite features, such as excellent textural properties or biocompatibility. However, there are various biological barriers that prevent their proper translation into the clinic, including: (1) lack of selectivity toward tumor tissues, (2) lack of selectivity for tumoral cells and (3) endosomal sequestration of the particles upon internalization. In addition, their open porous structure may lead to premature drug release, consequently affecting healthy tissues and decreasing the efficacy of the treatment. First, this review will provide a comprehensive and systematic overview of the different approximations that have been implemented into mesoporous silica nanoparticles to overcome each of such biological barriers. Afterward, the potential premature and non-specific drug release from these mesoporous nanocarriers will be addressed by introducing the concept of stimuli-responsive gatekeepers, which endow the particles with on-demand and localized drug delivery.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i + 12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
8
|
Sarode A, Annapragada A, Guo J, Mitragotri S. Layered self-assemblies for controlled drug delivery: A translational overview. Biomaterials 2020; 242:119929. [PMID: 32163750 DOI: 10.1016/j.biomaterials.2020.119929] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 02/23/2020] [Accepted: 02/26/2020] [Indexed: 12/15/2022]
Abstract
Self-assembly is a prominent phenomenon observed in nature. Inspired by this thermodynamically favorable approach, several natural and synthetic materials have been investigated to develop functional systems for various biomedical applications, including drug delivery. Furthermore, layered self-assembled systems provide added advantages of tunability and multifunctionality which are crucial for controlled and targeted drug release. Layer-by-layer (LbL) deposition has emerged as one of the most popular, well-established techniques for tailoring such layered self-assemblies. This review aims to provide a brief overview of drug delivery applications using LbL deposition, along with a discussion of associated scalability challenges, technological innovations to overcome them, and prospects for commercial translation of this versatile technique. Additionally, alternative self-assembly techniques such as metal-phenolic networks (MPNs) and Liesegang rings are also reviewed in the context of their recent utilization for controlled drug delivery. Blending the sophistication of these self-assembly phenomena with material science and technological advances can provide a powerful tool to develop smart drug carriers in a scalable manner.
Collapse
Affiliation(s)
- Apoorva Sarode
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Akshaya Annapragada
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Junling Guo
- Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute of Biologically Inspired Engineering at Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
9
|
A pH-sensitive carrier based-on modified hollow mesoporous carbon nanospheres with calcium-latched gate for drug delivery. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110517. [PMID: 32228977 DOI: 10.1016/j.msec.2019.110517] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/12/2019] [Accepted: 12/01/2019] [Indexed: 01/22/2023]
Abstract
A novel nanocarrier based-on hollow mesoporous carbon nanospheres (HMCNs) with primary amines on its surface, a large cavity, and good hydrophilicity was synthesized by a hydrothermal reaction. The primary amine functionalities on the mesoporous carbon were used as the initiation sites for growing poly (epichlorohydrin) (PCH) chains. The chlorine groups in the side chain of PCH were replaced with imidazole as the pendant groups. Calcium chloride (CaCl2) was applied as a capping agent. The coordination bonding was formed between pendant imidazole groups and calcium ions. Doxorubicin (DOX) was selected as a model of hydrophilic anticancer drug and was loaded onto the nanocarrier and released through the cleavage of the pH-sensitive coordination bonding. The gating mechanism enables the nanocarrier to store and release the calcium ions and the DOX molecules trapped in the pores. MTT assay toward HeLa cells indicated that the nanocarrier had low toxicity because of the surface modification with the oxygen-rich polymer. The cellular uptake of the pH-sensitive nanocarrier for HeLa cancer cell lines was confirmed by CLSM images and flow cytometry. So, the novel pH-sensitive nanocarrier can be applicable to carry and release both DOX drug and calcium ions for cancer treatment.
Collapse
|
10
|
|
11
|
Sha L, Zhao Q, Wang D, Li X, Wang X, Guan X, Wang S. "Gate" engineered mesoporous silica nanoparticles for a double inhibition of drug efflux and particle exocytosis to enhance antitumor activity. J Colloid Interface Sci 2018; 535:380-391. [PMID: 30316125 DOI: 10.1016/j.jcis.2018.09.089] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/25/2018] [Accepted: 09/26/2018] [Indexed: 02/07/2023]
Abstract
"Gate" engineered mesoporous silica nanoparticles (MSN) have been extensively applied in cancer theranostics. Due to the complexity of tumor development and progression, with chemotherapy alone, it has often been difficult to achieve a good therapeutic effect. Currently, it has been shown that the combination with photothermal therapy overcomes the shortcoming of chemotherapy. In most studies, the photothermal effect has proven to accelerate drug release from nanocarriers and ablate malignant cells directly, but the influence on the intracellular fate of nanocarriers remains unknown. Herein, a lipophilic cyanine dye Cypate acting as a photothermal converting agent was conjugated on the external surface of MSN through a disulfide bond (MSN-Cy) and d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) was coated on the outside of the MSN-Cy via a hydrophobic interaction (TCMSN) to cover the pores, preventing drug preleakage in the circulation. The TCMSN underwent exocytosis through the lysosome-mediated pathway. Moderate heat induced by near-infrared light promoted lysosome disruption, which thus partly inhibited lysosome-mediated particle exocytosis. In the meantime, TPGS, as a P-glycoprotein inhibitor, blocked the drug efflux. This research elaborated the photothermal effect from a new perspective-inhibiting particle exocytosis. The as-designed "gate" engineered MSN realized a double inhibition of drug efflux and particle exocytosis from cancer cells, thus sustaining the drug action time and enhancing the antitumor activity.
Collapse
Affiliation(s)
- Luping Sha
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Qinfu Zhao
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Da Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xian Li
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xiudan Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Xinyao Guan
- Experimental Teaching Center, Faculty of Functional Food and Wine, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China
| | - Siling Wang
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, PR China.
| |
Collapse
|
12
|
Vashist A, Kaushik A, Ghosal A, Bala J, Nikkhah-Moshaie R, A Wani W, Manickam P, Nair M. Nanocomposite Hydrogels: Advances in Nanofillers Used for Nanomedicine. Gels 2018; 4:E75. [PMID: 30674851 PMCID: PMC6209277 DOI: 10.3390/gels4030075] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Revised: 08/08/2018] [Accepted: 08/23/2018] [Indexed: 12/20/2022] Open
Abstract
The ongoing progress in the development of hydrogel technology has led to the emergence of materials with unique features and applications in medicine. The innovations behind the invention of nanocomposite hydrogels include new approaches towards synthesizing and modifying the hydrogels using diverse nanofillers synergistically with conventional polymeric hydrogel matrices. The present review focuses on the unique features of various important nanofillers used to develop nanocomposite hydrogels and the ongoing development of newly hydrogel systems designed using these nanofillers. This article gives an insight in the advancement of nanocomposite hydrogels for nanomedicine.
Collapse
Affiliation(s)
- Arti Vashist
- Department of Immunology & Nano-Medicine, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Ajeet Kaushik
- Department of Immunology & Nano-Medicine, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Anujit Ghosal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi 110067, India.
| | - Jyoti Bala
- Department of Immunology & Nano-Medicine, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Roozbeh Nikkhah-Moshaie
- Department of Immunology & Nano-Medicine, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| | - Waseem A Wani
- Department of Chemistry, Govt. Degree College Tral, Kashmir, J&K 192123, India.
| | - Pandiaraj Manickam
- Electrodics and Electrocatalysis Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630006, Tamil Nadu, India.
| | - Madhavan Nair
- Department of Immunology & Nano-Medicine, Institute of NeuroImmune Pharmacology, Centre for Personalized Nanomedicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA.
| |
Collapse
|
13
|
Sha L, Wang D, Mao Y, Shi W, Gao T, Zhao Q, Wang S. Hydrophobic interaction mediated coating of pluronics on mesoporous silica nanoparticle with stimuli responsiveness for cancer therapy. NANOTECHNOLOGY 2018; 29:345101. [PMID: 29786605 DOI: 10.1088/1361-6528/aac6b1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this research, a novel method was used to successfully stably coat Pluronic P123 on mesoporous silica nanoparticles (MSNs). Co-constructing a drug delivery system (DDS) with P123 and MSNs has not been previously reported. In this DDS, the coating of P123 was realized through a hydrophobic interaction with octadecyl chain-modified MSNs. The experiments found only Pluronic with an appropriate ratio of hydrophilic and lipophilic segments could keep the nanoassemblies stable. For comparison, nanoassemblies consisting of P123 and octadecyl chain-modified MSNs with or without a disulfide bond were prepared, which were denoted as PSMSNs and PMSNs, respectively. The disulfide bond was expected to endow the system with redox-responsiveness to enhance the therapeutic effect meanwhile decreasing the toxicity. A series of experiments including characterization of the nanoparticles, in vitro drug release, cell uptake and cellular drug release, in vitro cytotoxicity, cell migration and biodistribution of the nanoparticles were carried out. Compared with the PMSNs, PSMSNs displayed a redox-responsive drug release property not only in in vitro release text, but also on the cellular level. In addition, the cell migration experiments proved that the coating of P123 endowed the system with the ability of anti-metastasis. The accumulation of P123 in the tumor was enhanced after coating the MSNs by virtue of the 'EPR' effect of nanoparticles compared with the solution form.
Collapse
Affiliation(s)
- Luping Sha
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning Province 110016, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
14
|
Chowdhury MA. Silica Materials for Biomedical Applications in Drug Delivery, Bone Treatment or Regeneration, and MRI Contrast Agent. ACTA ACUST UNITED AC 2018. [DOI: 10.1134/s2079978018020024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Bugatti V, Viscusi G, Naddeo C, Gorrasi G. Nanocomposites Based on PCL and Halloysite Nanotubes Filled with Lysozyme: Effect of Draw Ratio on the Physical Properties and Release Analysis. NANOMATERIALS 2017; 7:nano7080213. [PMID: 28777354 PMCID: PMC5575695 DOI: 10.3390/nano7080213] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2017] [Revised: 07/21/2017] [Accepted: 08/01/2017] [Indexed: 11/29/2022]
Abstract
Halloysite nanotubes (HNTs) were loaded with lsozyme, as antimicrobial molecule, at a HNTs/lysozyme ratio of 1:1. Such a nano-hybrid was incorporated into a poly (ε-caprolactone) (PCL) matrix at 10 wt % and films were obtained. The nano-composites were submitted to a cold drawn process at three different draw ratios, λ = 3, 4, and 5, where λ is l(final length)/l0(initial length). Morphology, physical, and barrier properties of the starting nanocomposite and drawn samples were studied, and correlated to the release of the lysozyme molecule. It was demonstrated that with a simple mechanical treatment it is possible to obtain controlled release systems for specific active packaging requirements.
Collapse
Affiliation(s)
- Valeria Bugatti
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy.
| | - Gianluca Viscusi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy.
| | - Carlo Naddeo
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy.
| | - Giuliana Gorrasi
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II, 132, 84084 Fisciano (Salerno), Italy.
| |
Collapse
|
16
|
Chowdhury MA. The applications of metal-organic-frameworks in controlled release of drugs. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079978017010022] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
17
|
Gisbert-Garzarán M, Manzano M, Vallet-Regí M. pH-Responsive Mesoporous Silica and Carbon Nanoparticles for Drug Delivery. Bioengineering (Basel) 2017; 4:E3. [PMID: 28952481 PMCID: PMC5590444 DOI: 10.3390/bioengineering4010003] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Revised: 01/12/2017] [Accepted: 01/16/2017] [Indexed: 01/09/2023] Open
Abstract
The application of nanotechnology to medicine constitutes a major field of research nowadays. In particular, the use of mesoporous silica and carbon nanoparticles has attracted the attention of numerous researchers due to their unique properties, especially when applied to cancer treatment. Many strategies based on stimuli-responsive nanocarriers have been developed to control the drug release and avoid premature release. Here, we focus on the use of the subtle changes of pH between healthy and diseased areas along the body to trigger the release of the cargo. In this review, different approximations of pH-responsive systems are considered: those based on the use of the host-guest interactions between the nanocarriers and the drugs, those based on the hydrolysis of acid-labile bonds and those based on supramolecular structures acting as pore capping agents.
Collapse
Affiliation(s)
- Miguel Gisbert-Garzarán
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - Miguel Manzano
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| | - María Vallet-Regí
- Departamento de Química Inorgánica y Bioinorgánica, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, E-28040 Madrid, Spain.
- Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Madrid 28029, Spain.
| |
Collapse
|
18
|
Wen J, Yang K, Liu F, Li H, Xu Y, Sun S. Diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems. Chem Soc Rev 2017; 46:6024-6045. [DOI: 10.1039/c7cs00219j] [Citation(s) in RCA: 312] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Progress on the design of diverse gatekeepers for mesoporous silica nanoparticle based drug delivery systems is summarized.
Collapse
Affiliation(s)
- Jia Wen
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Kui Yang
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Fengyu Liu
- State Key Laboratory of Fine Chemicals
- School of Chemistry
- Dalian University of Technology
- Dalian 116023
- China
| | - Hongjuan Li
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Yongqian Xu
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| | - Shiguo Sun
- Shaanxi Key Laboratory of Natural Products & Chemical Biology
- College of Chemistry & Pharmacy
- Northwest A&F University
- Yangling
- P. R. China
| |
Collapse
|
19
|
Patel A, Sant S. Hypoxic tumor microenvironment: Opportunities to develop targeted therapies. Biotechnol Adv 2016; 34:803-812. [PMID: 27143654 PMCID: PMC4947437 DOI: 10.1016/j.biotechadv.2016.04.005] [Citation(s) in RCA: 148] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 04/13/2016] [Accepted: 04/28/2016] [Indexed: 01/18/2023]
Abstract
In recent years, there has been great progress in the understanding of tumor biology and its surrounding microenvironment. Solid tumors create regions with low oxygen levels, generally termed as hypoxic regions. These hypoxic areas offer a tremendous opportunity to develop targeted therapies. Hypoxia is not a random by-product of the cellular milieu due to uncontrolled tumor growth; rather it is a constantly evolving participant in overall tumor growth and fate. This article reviews current trends and recent advances in drug therapies and delivery systems targeting hypoxia in the tumor microenvironment. In the first part, we give an account of important physicochemical changes and signaling pathways activated in the hypoxic microenvironment. This is then followed by various treatment strategies including hypoxia-sensitive signaling pathways and approaches to develop hypoxia-targeted drug delivery systems.
Collapse
Affiliation(s)
- Akhil Patel
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, United States
| | - Shilpa Sant
- Department of Pharmaceutical Sciences, University of Pittsburgh School of Pharmacy, United States; Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA 15261, United States; McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15261, United States.
| |
Collapse
|
20
|
Zheng K, Lu M, Liu Y, Chen Q, Taccardi N, Hüser N, Boccaccini AR. Monodispersed lysozyme-functionalized bioactive glass nanoparticles with antibacterial and anticancer activities. Biomed Mater 2016; 11:035012. [DOI: 10.1088/1748-6041/11/3/035012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
21
|
Wang Y, Hao H, Zhang S. Lysozyme loading and release from Se doped hydroxyapatite nanoparticles. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:545-52. [DOI: 10.1016/j.msec.2015.12.060] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Revised: 11/14/2015] [Accepted: 12/28/2015] [Indexed: 12/15/2022]
|
22
|
Aznar E, Oroval M, Pascual L, Murguía JR, Martínez-Máñez R, Sancenón F. Gated Materials for On-Command Release of Guest Molecules. Chem Rev 2016; 116:561-718. [DOI: 10.1021/acs.chemrev.5b00456] [Citation(s) in RCA: 381] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elena Aznar
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Mar Oroval
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Lluís Pascual
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Jose Ramón Murguía
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- Departamento
de Biotecnología, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Ramón Martínez-Máñez
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| | - Félix Sancenón
- Instituto
Interuniversitario de Investigación de Reconocimiento Molecular
y Desarrollo Tecnológico (IDM), Unidad mixta Universitat Politècnica de València-Universitat de València, Camino
de Vera s/n, 46022 València, Spain
- Departamento
de Química, Universitat Politècnica de València, Camino
de Vera s/n, 46022 València, Spain
- CIBER
de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN)
| |
Collapse
|
23
|
Pérez-Esteve É, Ruiz-Rico M, Martínez-Máñez R, Barat JM. Mesoporous Silica-Based Supports for the Controlled and Targeted Release of Bioactive Molecules in the Gastrointestinal Tract. J Food Sci 2015; 80:E2504-16. [DOI: 10.1111/1750-3841.13095] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 09/01/2015] [Indexed: 02/03/2023]
Affiliation(s)
- Édgar Pérez-Esteve
- Grupo de Investigación e Innovación Alimentaria; Univ. Politécnica de Valencia; Camino de Vera s/n 46022 Spain
| | - María Ruiz-Rico
- Grupo de Investigación e Innovación Alimentaria; Univ. Politécnica de Valencia; Camino de Vera s/n 46022 Spain
| | - Ramón Martínez-Máñez
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN); Centro de Reconocimiento Molecular y Desarrollo Tecnológico (IDM). Depto. de Química Univ. Politécnica de Valencia, Camino de Vera s/n; 46022 Valencia Spain
| | - José Manuel Barat
- Grupo de Investigación e Innovación Alimentaria; Univ. Politécnica de Valencia; Camino de Vera s/n 46022 Spain
| |
Collapse
|
24
|
Wu Y, Long Y, Li QL, Han S, Ma J, Yang YW, Gao H. Layer-by-Layer (LBL) Self-Assembled Biohybrid Nanomaterials for Efficient Antibacterial Applications. ACS APPLIED MATERIALS & INTERFACES 2015; 7:17255-63. [PMID: 26192024 DOI: 10.1021/acsami.5b04216] [Citation(s) in RCA: 91] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Although antibiotics have been widely used in clinical applications to treat pathogenic infections at present, the problem of drug-resistance associated with abuse of antibiotics is becoming a potential threat to human beings. We report a biohybrid nanomaterial consisting of antibiotics, enzyme, polymers, hyaluronic acid (HA), and mesoporous silica nanoparticles (MSNs), which exhibits efficient in vitro and in vivo antibacterial activity with good biocompatibility and negligible hemolytic side effect. Herein, biocompatible layer-by-layer (LBL) coated MSNs are designed and crafted to release encapsulated antibiotics, e.g., amoxicillin (AMO), upon triggering with hyaluronidase, produced by various pathogenic Staphylococcus aureus (S. aureus). The LBL coating process comprises lysozyme (Lys), HA, and 1,2-ethanediamine (EDA)-modified polyglycerol methacrylate (PGMA). The Lys and cationic polymers provided multivalent interactions between MSN-Lys-HA-PGMA and bacterial membrane and accordingly immobilized the nanoparticles to facilitate the synergistic effect of these antibacterial agents. Loading process was characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), thermogravimetric analysis (TGA), and X-ray diffraction spectroscopy (XRD). The minimal inhibition concentration (MIC) of MSN-Lys-HA-PGMA treated to antibiotic resistant bacteria is much lower than that of isodose Lys and AMO. Especially, MSN-Lys-HA-PGMA exhibited good inhibition for pathogens in bacteria-infected wounds in vivo. Therefore, this type of new biohybrid nanomaterials showed great potential as novel antibacterial agents.
Collapse
Affiliation(s)
- Yuanhao Wu
- †School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, China
| | - Yubo Long
- †School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, China
| | - Qing-Lan Li
- ‡State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Shuying Han
- §Department of Pharmacology, School of Basic Medical Sciences, North China University of Science and Technology, Tangshan 063000, People's Republic of China
| | - Jianbiao Ma
- †School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, China
| | - Ying-Wei Yang
- ‡State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, International Joint Research Laboratory of Nano-Micro Architecture Chemistry (NMAC), Jilin University, 2699 Qianjin Street, Changchun 130012, People's Republic of China
| | - Hui Gao
- †School of Chemistry and Chemical Engineering, School of Material Science and Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
25
|
Bai L, Zhao Q, Wang J, Gao Y, Sha Z, Di D, Han N, Wang Y, Zhang J, Wang S. Mechanism study on pH-responsive cyclodextrin capped mesoporous silica: effect of different stalk densities and the type of cyclodextrin. NANOTECHNOLOGY 2015; 26:165704. [PMID: 25827241 DOI: 10.1088/0957-4484/26/16/165704] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Cyclodextrin (CD)-capped mesoporous silica nanoparticles (MSN) with pH-responsive properties were synthesized, but little research has been carried out to evaluate the impact of critical factors such as the stalk density and the type of CD on the pH-responsive release behavior. Here, the effect of different stalk densities on the pH-responsive release behavior was investigated. Either too low or too high density of the grafted p-anisidine stalk could result in poor cargo release, and the optimum stalk density for MSN was measured by thermal analysis, and found to be approximately 8.7 stalks nm(-2). To achieve effective release control, the CD capes, α-CD and β-CD, were also investigated. Isothermal titration calorimetry (ITC) analysis was employed to determine the formation constants (Kf) of the two CD with p-anisidine at different pH values. The results obtained showed that the complex of β-CD with p-anisidine had excellent pH-responsive behavior as it exhibited the largest changed formation constant (ΔKf) in different pH media. Furthermore, the pH-responsive mechanism between CD and p-anisidine molecules was investigated through ITC and a molecular modeling study. The release of antitumor drug DOX presents a significant prospect toward the development of pH-responsive nanoparticles as a drug delivery vehicle.
Collapse
Affiliation(s)
- Ling Bai
- Liaoning Provincial Key Laboratory of Studying the Modern Drug preparations, Shenyang Pharmaceutical University, No.103 Wenhua Road, Shenyang 110016, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Han N, Zhao Q, Wan L, Wang Y, Gao Y, Wang P, Wang Z, Zhang J, Jiang T, Wang S. Hybrid lipid-capped mesoporous silica for stimuli-responsive drug release and overcoming multidrug resistance. ACS APPLIED MATERIALS & INTERFACES 2015; 7:3342-51. [PMID: 25584634 DOI: 10.1021/am5082793] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Multidrug resistance (MDR) is known to be a great obstruction to successful chemotherapy, and considerable efforts have been devoted to reverse MDR including designing various functional drug delivery systems. In this study, hybrid lipid-capped mesoporous silica nanoparticles (LTMSNs), aimed toward achieving stimuli-responsive drug release to circumvent MDR, were specially designated for drug delivery. After modifying MSNs with hydrophobic chains through disulfide bond on the surface, lipid molecules composing polymer d-α-tocopherol polyethylene glycol 1000 succinate (TPGS) with molar ratio of 5:1 were subsequently added to self-assemble into a surrounded lipid layer via hydrophobic interaction acting as smart valves to block the pore channels of carrier. The obtained LTMSNs had a narrow size distribution of ca. 190 nm and can be stably dispersed in body fluids, which may ensure a long circulating time and ideal enhanced permeability and retention effect. Doxorubicin (DOX) was chosen as a model drug to be encapsulated into LTMSNs. Results showed that this hybrid lipid-capped mesoporous silica drug delivery system can achieve redox and pH-responsive release of DOX, thereby avoiding the premature leakage of drug before reaching the specific site and releasing DOX within the cancerous cells. Owing to the presence of TPGS-containing lipid layer, LTMSNs-DOX exhibited higher uptake efficiency, cytotoxicity, and increased intracellular accumulation in resistant MCF-7/Adr cells compared with DOX solution, proving to be a promising vehicle to realize intracellular drug release and inhibit drug efflux.
Collapse
Affiliation(s)
- Ning Han
- Department of Pharmaceutics, School of Pharmacy, Shenyang Pharmaceutical University , 103 Wenhua Road, Shenyang, Liaoning Province 110016, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Lin Z, Li J, He H, Kuang H, Chen X, Xie Z, Jing X, Huang Y. Acetalated-dextran as valves of mesoporous silica particles for pH responsive intracellular drug delivery. RSC Adv 2015. [DOI: 10.1039/c4ra15663c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A pH-sensitive drug release system using acetalated-dextran as valves was designed to manipulate smart intracellular release of anticancer drugs.
Collapse
Affiliation(s)
- Zhe Lin
- Research and Development Center
- Changchun University of Chinese Medicine
- Changchun 130117
- P. R. China
| | - Jizhen Li
- Department of Organic Chemistry
- College of Chemistry
- Jilin University
- Changchun 130023
- P. R. China
| | - Hongyan He
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Huihui Kuang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Zhigang Xie
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Xiabin Jing
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| | - Yubin Huang
- State Key Laboratory of Polymer Physics and Chemistry
- Changchun Institute of Applied Chemistry
- Chinese Academy of Sciences
- Changchun 130022
- P. R. China
| |
Collapse
|
28
|
Liu F, Wang J, Huang P, Zhang Q, Deng J, Cao Q, Jia J, Cheng J, Fang Y, Deng DYB, Zhou W. Outside-in stepwise functionalization of mesoporous silica nanocarriers for matrix type sustained release of fluoroquinolone drugs. J Mater Chem B 2015; 3:2206-2214. [DOI: 10.1039/c4tb02073a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this study, we propose outside-in stepwise functionalization of MCM-41-type mesoporous silica for use as a high-efficiency matrix drug delivery nanosystem aimed at the insoluble antibacterial agent fluoroquinolone.
Collapse
|
29
|
Gui W, Wang W, Jiao X, Chen L, Wen Y, Zhang X. Dual-cargo selectively controlled release based on a pH-responsive mesoporous silica system. Chemphyschem 2014; 16:607-13. [PMID: 25492672 DOI: 10.1002/cphc.201402732] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2014] [Indexed: 11/11/2022]
Abstract
A pH-controlled delivery system based on mesoporous silica nanoparticles (MSNs) was constructed for dual-cargo selective release. To achieve a better controlled-release effect, a modified sol-gel method was employed to obtain MSNs with tunable particle and pore sizes. The systems selectively released different kinds of cargo when stimulated by different pH values. At the lower pH value (pH 2.0) only one kind of cargo was released from the MSNs, whereas at a higher pH value (pH 7.0) only the other kind of cargo was released from the MSNs. The multi-cargo delivery system has brought the concept of selective release to new advances in the field of functional nanodevices and allows more accurate and controllable delivery of specific cargoes, which is expected to have promising applications in nanomedicine.
Collapse
Affiliation(s)
- Wanyuan Gui
- Department of Chemistry & Biological Engineering, University of Science and Technology Beijing, 100083 Beijing, (China)
| | | | | | | | | | | |
Collapse
|
30
|
Siefker J, Karande P, Coppens MO. Packaging biological cargoes in mesoporous materials: opportunities for drug delivery. Expert Opin Drug Deliv 2014; 11:1781-93. [PMID: 25016923 PMCID: PMC4245185 DOI: 10.1517/17425247.2014.938636] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Confinement of biomolecules in structured nanoporous materials offers several desirable features ranging from chemical and thermal stability, to resistance to degradation from the external environment. A new generation of mesoporous materials presents exciting new possibilities for the formulation and controlled release of biological agents. Such materials address niche applications in enteral and parenteral delivery of biologics, such as peptides, polypeptides, enzymes and proteins for use as therapeutics, imaging agents, biosensors, and adjuvants. AREAS COVERED Mesoporous silica Santa Barbara Amorphous-15 (SBA-15), with its unique, tunable pore diameter, and easily functionalized surface, provides a representative example of this new generation of materials. Here, we review recent advances in the design and synthesis of nanostructured mesoporous materials, focusing on SBA-15, and highlight opportunities for the delivery of biological agents to various organ and tissue compartments. EXPERT OPINION The SBA-15 platform provides a delivery carrier that is inherently separated from the active biologic due to distinct intra and extra-particle environments. This permits the SBA-15 platform to not require direct modification of the active biological therapeutic. Additionally, this makes the platform universal and allows for its application independent of the desired methods of discovery and development. The SBA-15 platform also directly addresses issues of targeted delivery and controlled release, although future challenges in the implementation of this platform reside in particle design, biocompatibility, and the tunability of the internal and external material properties. Examples illustrating the flexibility in the application of the SBA-15 platform are also discussed.
Collapse
Affiliation(s)
- Justin Siefker
- University College London, Department of Chemical Engineering and EPSRC Frontier Engineering Centre for Nature Inspired Engineering,
Torrington Place, London, WC1E 7JE, UK
| | - Pankaj Karande
- Rensselaer Polytechnic Institute, Department of Chemical and Biological Engineering and Center for Biotechnology and Interdisciplinary Studies,
110 Eighth Street, Troy, NY 12180, USA+1 518 276 4459;
| | - Marc-Olivier Coppens
- University College London, Department of Chemical Engineering and EPSRC Frontier Engineering Centre for Nature Inspired Engineering,
Torrington Place, London, WC1E 7JE, UK+44 20 7679 7369; +44 20 7383 2348;
| |
Collapse
|
31
|
Capeletti LB, de Oliveira LF, Gonçalves KDA, de Oliveira JFA, Saito Â, Kobarg J, dos Santos JHZ, Cardoso MB. Tailored silica-antibiotic nanoparticles: overcoming bacterial resistance with low cytotoxicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:7456-64. [PMID: 24902085 DOI: 10.1021/la4046435] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
New and more aggressive antibiotic resistant bacteria arise at an alarming rate and represent an ever-growing challenge to global health care systems. Consequently, the development of new antimicrobial agents is required to overcome the inefficiency of conventional antibiotics and bypass treatment limitations related to these pathologies. In this study, we present a synthesis protocol, which was able to entrap tetracycline antibiotic into silica nanospheres. Bactericidal efficacy of these structures was tested against bacteria that were susceptible and resistant to antibiotics. For nonresistant bacteria, our composite had bactericidal efficiency comparable to that of free-tetracycline. On the other hand, the synthesized composites were able to avoid bacterial growth of resistant bacteria while free-tetracycline has shown no significant bactericidal effect. Finally, we have investigated the cytotoxicity of these nanoparticles against mammalian cells to check any possible poisoning effect. It was found that these nanospheres are not apoptosis-inducers and only a reduction on the cell replication rate was seen when compared to the control without nanoparticles.
Collapse
|
32
|
pH-controllable drug carrier with SERS activity for targeting cancer cells. Biosens Bioelectron 2014; 57:10-5. [DOI: 10.1016/j.bios.2014.01.042] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/21/2014] [Accepted: 01/23/2014] [Indexed: 12/22/2022]
|
33
|
Zhang L, Li Y, Yu JC. Chemical modification of inorganic nanostructures for targeted and controlled drug delivery in cancer treatment. J Mater Chem B 2014; 2:452-470. [DOI: 10.1039/c3tb21196g] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
34
|
Iyer AK, Singh A, Ganta S, Amiji MM. Role of integrated cancer nanomedicine in overcoming drug resistance. Adv Drug Deliv Rev 2013; 65:1784-802. [PMID: 23880506 DOI: 10.1016/j.addr.2013.07.012] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/19/2013] [Accepted: 07/15/2013] [Indexed: 12/18/2022]
Abstract
Cancer remains a major killer of mankind. Failure of conventional chemotherapy has resulted in recurrence and development of virulent multi drug resistant (MDR) phenotypes adding to the complexity and diversity of this deadly disease. Apart from displaying classical physiological abnormalities and aberrant blood flow behavior, MDR cancers exhibit several distinctive features such as higher apoptotic threshold, aerobic glycolysis, regions of hypoxia, and elevated activity of drug-efflux transporters. MDR transporters play a pivotal role in protecting the cancer stem cells (CSCs) from chemotherapy. It is speculated that CSCs are instrumental in reviving tumors after the chemo and radiotherapy. In this regard, multifunctional nanoparticles that can integrate various key components such as drugs, genes, imaging agents and targeting ligands using unique delivery platforms would be more efficient in treating MDR cancers. This review presents some of the important principles involved in development of MDR and novel methods of treating cancers using multifunctional-targeted nanoparticles. Illustrative examples of nanoparticles engineered for drug/gene combination delivery and stimuli responsive nanoparticle systems for cancer therapy are also discussed.
Collapse
|
35
|
Zou Z, He D, He X, Wang K, Yang X, Qing Z, Zhou Q. Natural gelatin capped mesoporous silica nanoparticles for intracellular acid-triggered drug delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:12804-12810. [PMID: 24073830 DOI: 10.1021/la4022646] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This paper proposed a natural gelatin capped mesoporous silica nanoparticles (MSN@Gelatin) based pH-responsive delivery system for intracellular anticancer drug controlled release. In this system, the gelatin, a proteinaceous biopolymer derived from the processing of animal collagen, was grafted onto the MSN to form a capping layer via temperature-induced gelation and subsequent glutaraldehyde mediated cross-linking, resulting in gelatin coated MSN. At neutral pH, the gelatin capping layer could effectively prohibit the release of loaded drug molecules. However, the slightly acidic environment would lead to enhanced electrostatic repulsion between the gelatin and MSN, giving rise to uncapping and the subsequent controlled release of the entrapped drug. As a proof-of-concept, doxorubicin (DOX) was selected as the model anticancer drug. The loading and pH-responsive release experiments demonstrated that the system had excellent loading efficiency (47.3 mmol g(-1) SiO2), and almost no DOX was leaked at neutral. After being in the slightly acidic condition, the DOX release from the DOX-loaded MSN@Gelatin (DOX/MSN@Gelatin) occurred immediately. The cellular uptake and release studies using Hep-G2 hepatoma cells indicated that the DOX/MSN@Gelatin could be endocytosed and accumulated within lysosomes. Triggered by acidic endosomal pH, the intracellular release of the loaded DOX was obviously eventuated. Further cell viability results demonstrated that DOX/MSN@Gelatin exhibited dose-dependent toxicity and high killing efficacy (IC50 = 17.27 ± 0.63 μg mL(-1)), whereas the MSN@Gelatin showed negligible cytotoxicity (IC50 > 100 μg mL(-1)). This biocompatible and effective delivery system will provide great potential for developing delivery of cancer therapeutic agents.
Collapse
Affiliation(s)
- Zhen Zou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University , Changsha, Hunan 410082, P. R. China
| | | | | | | | | | | | | |
Collapse
|
36
|
Inorganic nanomaterials as delivery systems for proteins, peptides, DNA, and siRNA. Curr Opin Colloid Interface Sci 2013. [DOI: 10.1016/j.cocis.2013.06.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|