1
|
Della Sala F, Ceresara E, Micheli F, Fontana S, Prins LJ, Scrimin P. Exploiting multivalency and cooperativity of gold nanoparticles for binding phosphatidylinositol (3,4,5)-trisphosphate at sub-nanomolar concentrations. Org Biomol Chem 2023; 21:743-747. [PMID: 36601663 DOI: 10.1039/d2ob02088b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Cationic, monolayer-protected gold nanoparticles provide a multivalent charged surface and a hydrophobic monolayer that synergistically contribute to the binding of phosphatidylinositol (3,4,5)-trisphosphate, a relevant biomarker. The observed dissociation constant is in the picomolar region, providing the possibility of using these gold nanoparticles for the selective extraction of this molecule from biological fluids.
Collapse
Affiliation(s)
- Flavio Della Sala
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy. .,Department of Chemistry, University of Manchester, M13 9LP, UK
| | - Elisa Ceresara
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy.
| | - Fabrizio Micheli
- Aptuit (Verona) Srl, an Evotec company, Campus Levi-Montalcini, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Stefano Fontana
- Aptuit (Verona) Srl, an Evotec company, Campus Levi-Montalcini, Via Alessandro Fleming 4, 37135 Verona, Italy
| | - Leonard J Prins
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy.
| | - Paolo Scrimin
- University of Padova, Department of Chemical Sciences, via Marzolo, 1 35131 Padova, Italy.
| |
Collapse
|
2
|
Abstract
Nanozyme is a collection of nanomaterials with enzyme-like activity but higher environmental tolerance and long-term stability than their natural counterparts. Improving the catalytic activity and expanding the category of nanozymes are prerequisites to complement or even supersede enzymes. However, the development of hydrolytic nanozymes is still challenged by diverse hydrolytic substrates and following complicated mechanisms. Here, two strategies are informed by data to screen and predict catalytic active sites of MOF (metal-organic framework) based hydrolytic nanozymes: (1) to increase the intrinsic activity by finely tuned Lewis acidity of the metal clusters; (2) to improve the density of active sites by shortening the length of ligands. Finally, as-obtained Ce-FMA-MOF-based hydrolytic nanozyme is capable of cleaving phosphate bonds, amide bonds, glycosidic bonds, and even their mixture, biofilms. This work provides a rational methodology to design hydrolytic nanozyme, enriches the diversity of nanozymes, and potentially sheds light on future evolution of enzyme engineering.
Collapse
|
3
|
Amourizi F, Dashtian K, Ghaedi M, Hosseinzadeh B. An asymmetric Schiff base-functionalized gold nanoparticle-based colorimetric sensor for Hg 2+ ion determination: experimental and DFT studies. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:2603-2611. [PMID: 34027952 DOI: 10.1039/d1ay00408e] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We report a colorimetric sensor for the detection of Hg2+ ions utilizing surface-modified gold nanoparticles. Gold nanoparticles (GNPs) were synthesized by direct reduction and were subsequently functionalized using Schiff base ligands. Schiff base ligands as electron transfer agents have been frequently used for the determination of heavy metal ions. From the spectroscopic analysis, it was found that the mechanism could be defined as coordination between azomethine nitrogen and the carbonyl oxygen of the ligand with Hg2+ ions. The affinity of Hg2+ ions towards the bidentate Schiff base on the GNPs result from their self-aggregation and investigated to be a powerful asset for the development of Hg2+ ion-selective sensors, which is accompanied by a visible color change from pink to purple or can be detect by UV-Vis spectroscopy. The optimized structures and binding mechanisms were supported with a high correlation and agreement via spectroscopy and DFT calculations. These simple colorimetric tests can be extended for the rapid pre-screening of a wide variety of heavy metal ions for onsite detection and mitigation.
Collapse
|
4
|
Mati IK, Edwards W, Marson D, Howe EJ, Stinson S, Posocco P, Kay ER. Probing Multiscale Factors Affecting the Reactivity of Nanoparticle-Bound Molecules. ACS NANO 2021; 15:8295-8305. [PMID: 33938222 DOI: 10.1021/acsnano.0c09190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The structures and physicochemical properties of surface-stabilizing molecules play a critical role in defining the properties, interactions, and functionality of hybrid nanomaterials such as monolayer-stabilized nanoparticles. Concurrently, the distinct surface-bound interfacial environment imposes very specific conditions on molecular reactivity and behavior in this setting. Our ability to probe hybrid nanoscale systems experimentally remains limited, yet understanding the consequences of surface confinement on molecular reactivity is crucial for enabling predictive nanoparticle synthon approaches for postsynthesis engineering of nanoparticle surface chemistry and construction of devices and materials from nanoparticle components. Here, we have undertaken an integrated experimental and computational study of the reaction kinetics for nanoparticle-bound hydrazones, which provide a prototypical platform for understanding chemical reactivity in a nanoconfined setting. Systematic variation of just one molecular-scale structural parameter-the distance between reactive site and nanoparticle surface-showed that the surface-bound reactivity is influenced by multiscale effects. Nanoparticle-bound reactions were tracked in situ using 19F NMR spectroscopy, allowing direct comparison to the reactions of analogous substrates in bulk solution. The surface-confined reactions proceed more slowly than their solution-phase counterparts, and kinetic inhibition becomes more significant for reactive sites positioned closer to the nanoparticle surface. Molecular dynamics simulations allowed us to identify distinct supramolecular architectures and unexpected dynamic features of the surface-bound molecules that underpin the experimentally observed trends in reactivity. This study allows us to draw general conclusions regarding interlinked structural and dynamical features across several length scales that influence interfacial reactivity in monolayer-confined environments.
Collapse
Affiliation(s)
- Ioulia K Mati
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - William Edwards
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Domenico Marson
- Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Edward J Howe
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Scott Stinson
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| | - Paola Posocco
- Department of Engineering and Architecture, University of Trieste, Piazzale Europa 1, 34127 Trieste, Italy
| | - Euan R Kay
- EaStCHEM School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, U.K
| |
Collapse
|
5
|
Adura C, Aliaga C, Silva F, Vera C, Pino E, Celis F, Aracena A, Tirapegui C. A simple method to estimate the mean number of lipophilic molecules on nanoparticle surfaces by fluorescence measurements. NANOTECHNOLOGY 2021; 32:315711. [PMID: 33906171 DOI: 10.1088/1361-6528/abfc0c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 04/27/2021] [Indexed: 06/12/2023]
Abstract
Measurements of fluorescence intensity of the hydrophobic pyridinium salt (DTPSH) remaining in the organic phase after partition experiments in the DCM/H2O system allowed an approximate method to be developed to estimate the mean number of molecules (N = 942) on the surface of 22.8 nm gold nanoparticles and the separation (1.89 nm) between these organic molecules. This protocol is based on the ability that the organic molecules possess to coat the surface of the nanoparticle, which can migrate from the organic to the aqueous phase as a result of the driving force of the strong binding of sulfur to gold. To validate our estimation, we used a projection of the results obtained by Wales and Ulker to solve the Thomson problem, a mathematicians' challenge, used as a model to calculate the mean distance (1.82 nm) separating particles on the surface, in excellent agreement with the results obtained by our method. The quality of results, the simplicity of calculations, the low fluorescence detection limit, and the inexpensive materials, recommend this procedure for rapid estimates of the mean number of molecules on the surface of nanoparticles.
Collapse
Affiliation(s)
- Carolina Adura
- High-Throughput and Spectroscopy Resource Center, The Rockefeller University, 1230 York Avenue, New York, NY 10065, United States of America
| | - Carolina Aliaga
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Bernardo O'Higgins 3363, Santiago, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Chile
| | - Francisco Silva
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Bernardo O'Higgins 3363, Santiago, Chile
| | - Cristian Vera
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Bernardo O'Higgins 3363, Santiago, Chile
| | - Eduardo Pino
- Facultad de Química y Biología, Universidad de Santiago de Chile, Av. Bernardo O'Higgins 3363, Santiago, Chile
| | - Freddy Celis
- Laboratorio de Procesos Fotónicos y Electroquímicos, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Subida Leopoldo Carvallo 270, Valparaíso, Chile
| | - Andrés Aracena
- Universidad de las Américas, Instituto de Ciencias Naturales, Manuel Montt 948, Santiago, Chile
| | - Cristian Tirapegui
- Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, El Llano Subercaseaux 2801, San Miguel, Santiago, Chile
| |
Collapse
|
6
|
Zhang X, Lin S, Liu S, Tan X, Dai Y, Xia F. Advances in organometallic/organic nanozymes and their applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213652] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
De Biasi F, Mancin F, Rastrelli F. Nanoparticle-assisted NMR spectroscopy: A chemosensing perspective. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2020; 117:70-88. [PMID: 32471535 DOI: 10.1016/j.pnmrs.2019.12.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/16/2019] [Accepted: 12/17/2019] [Indexed: 06/11/2023]
Abstract
Sensing methodologies for the detection of target compounds in mixtures are important in many different contexts, ranging from medical diagnosis to environmental analysis and quality assessment. Ideally, such detection methods should allow for both identification and quantification of the targets, minimizing the possibility of false positives. With very few exceptions, most of the available sensing techniques rely on the selective interaction of the analyte with some detector, which in turn produces a signal as a result of the interaction. This approach hence provides indirect information on the targets, whose identity is generally ensured by comparison with known standards, if available, or by the selectivity of the sensor system itself. Pursuing a different approach, NMR chemosensing aims at generating signals directly from the analytes, in the form of a (complete) NMR spectrum. In this way, not only are the targets unequivocally identified, but it also becomes possible to identify and assign the structures of unknown species. In this review we show how relaxation- and diffusion-based NMR techniques, assisted by appropriate nanoparticles, can be used to edit the 1H NMR spectrum of a mixture and extract the signals of specific target compounds. Monolayer-protected nanoparticles, in particular those made from gold, are well suited to this task because they provide a versatile, protein-size support to build or incorporate supramolecular receptors. Remarkably, the self-organized and multifunctional nature of the nanoparticle coating allows exploitation of different kinds of non-covalent interactions, to provide tailored binding sites for virtually any class of molecules. From the NMR standpoint, the reduced translational and rotational diffusion rates of bulky nanoparticles offer a way to manipulate the states of the monolayer spins and build a reservoir of magnetization that can be selectively transferred to the interacting analytes. In addition, the low correlation time and the enhanced rigidity of the coating molecules (due to their grafting and crowding on the particle surface) promote efficient spin diffusion, useful in saturation transfer experiments. The optimized combination of NMR experiments and nanoreceptors can ultimately allow the detection of relevant analytes in the micromolar concentration range, paving the way to applications in the diagnostic field and beyond.
Collapse
Affiliation(s)
- Federico De Biasi
- Department of Chemical Sciences, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Fabrizio Mancin
- Department of Chemical Sciences, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy
| | - Federico Rastrelli
- Department of Chemical Sciences, Università degli Studi di Padova, via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
8
|
|
9
|
Bhaumik SK, Patra YS, Banerjee S. High affinity heparin detection by multivalent supramolecular polymers through aggregation induced emission. Chem Commun (Camb) 2020; 56:9541-9544. [DOI: 10.1039/d0cc03644g] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Supramolecular polymers based on aggregation induced emission active cationic cyanostilbenes provide a highly sensitive “light-up” platform for heparin detection.
Collapse
Affiliation(s)
- Shubhra Kanti Bhaumik
- The Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
| | - Yoti Shankar Patra
- The Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
| | - Supratim Banerjee
- The Department of Chemical Sciences
- Indian Institute of Science Education and Research Kolkata
- Nadia
- India
| |
Collapse
|
10
|
Sun X, Riccardi L, De Biasi F, Rastrelli F, De Vivo M, Mancin F. Molecular‐Dynamics‐Simulation‐Directed Rational Design of Nanoreceptors with Targeted Affinity. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201902316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiaohuan Sun
- Dipartimento di Scienze ChimicheUniveristà di Padova Via Marzolo 1 35131 Padova Italy
| | - Laura Riccardi
- Laboratory of Molecular Modeling & Drug DiscoveryIstituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
| | - Federico De Biasi
- Dipartimento di Scienze ChimicheUniveristà di Padova Via Marzolo 1 35131 Padova Italy
| | - Federico Rastrelli
- Dipartimento di Scienze ChimicheUniveristà di Padova Via Marzolo 1 35131 Padova Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug DiscoveryIstituto Italiano di Tecnologia (IIT) Via Morego 30 16163 Genova Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze ChimicheUniveristà di Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
11
|
Sun X, Riccardi L, De Biasi F, Rastrelli F, De Vivo M, Mancin F. Molecular-Dynamics-Simulation-Directed Rational Design of Nanoreceptors with Targeted Affinity. Angew Chem Int Ed Engl 2019; 58:7702-7707. [PMID: 30964595 DOI: 10.1002/anie.201902316] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Indexed: 11/07/2022]
Abstract
Here, we demonstrate the possibility of rationally designing nanoparticle receptors with targeted affinity and selectivity for specific small molecules. We used atomistic molecular-dynamics (MD) simulations to gradually mutate and optimize the chemical structure of the molecules forming the coating monolayer of gold nanoparticles (1.7 nm gold-core size). The MD-directed design resulted in nanoreceptors with a 10-fold improvement in affinity for the target analyte (salicylate) and a 100-fold decrease of the detection limit by NMR-chemosensing from the millimolar to the micromolar range. We could define the exact binding mode, which features prolonged contacts and deep penetration of the guest into the monolayer, as well as a distinct shape of the effective binding pockets characterized by exposed interacting points.
Collapse
Affiliation(s)
- Xiaohuan Sun
- Dipartimento di Scienze Chimiche, Univeristà di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Laura Riccardi
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genova, Italy
| | - Federico De Biasi
- Dipartimento di Scienze Chimiche, Univeristà di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Federico Rastrelli
- Dipartimento di Scienze Chimiche, Univeristà di Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genova, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Univeristà di Padova, Via Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
12
|
Gabrielli L, Rosa-Gastaldo D, Salvia MV, Springhetti S, Rastrelli F, Mancin F. Detection and identification of designer drugs by nanoparticle-based NMR chemosensing. Chem Sci 2018; 9:4777-4784. [PMID: 29910928 PMCID: PMC5975544 DOI: 10.1039/c8sc01283k] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 04/22/2018] [Indexed: 12/21/2022] Open
Abstract
Properly designed monolayer-protected nanoparticles (2 nm core diameter) can be used as nanoreceptors for selective detection and identification of phenethylamine derivatives (designer drugs) in water. The molecular recognition mechanism is driven by the combination of electrostatic and hydrophobic interactions within the coating monolayer. Each nanoparticle can bind up to 30-40 analyte molecules. The affinity constants range from 105 to 106 M-1 and are modulated by the hydrophobicity of the aromatic moiety in the substrate. Detection of drug candidates (such as amphetamines and methamphetamines) is performed by using magnetization (NOE) or saturation (STD) transfer NMR experiments. In this way, the NMR spectrum of the drug is isolated from that of the mixture, allowing broad-class multianalyte detection and even identification of unknowns. The introduction of a dimethylsilane moiety in the coating monolayer allows performing STD experiments in complex mixtures. In this way, a detection limit of 30 μM is reached with standard instruments.
Collapse
Affiliation(s)
- Luca Gabrielli
- Dipartimento di Scienze Chimiche , Università di Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Daniele Rosa-Gastaldo
- Dipartimento di Scienze Chimiche , Università di Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Marie-Virginie Salvia
- Dipartimento di Scienze Chimiche , Università di Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Sara Springhetti
- Dipartimento di Scienze Chimiche , Università di Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Federico Rastrelli
- Dipartimento di Scienze Chimiche , Università di Padova , Via Marzolo 1 , 35131 Padova , Italy .
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche , Università di Padova , Via Marzolo 1 , 35131 Padova , Italy .
| |
Collapse
|
13
|
Pezzato C, Chen JLY, Galzerano P, Salvi M, Prins LJ. Catalytic signal amplification for the discrimination of ATP and ADP using functionalised gold nanoparticles. Org Biomol Chem 2018; 14:6811-20. [PMID: 27336846 DOI: 10.1039/c6ob00993j] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diagnostic assays that incorporate a signal amplification mechanism permit the detection of analytes with enhanced selectivity. Herein, we report a gold nanoparticle-based chemical system able to differentiate ATP from ADP by means of catalytic signal amplification. The discrimination between ATP and ADP is of relevance for the development of universal assays for the detection of enzymes which consume ATP. For example, protein kinases are a class of enzymes critical for the regulation of cellular functions, and act to modulate the activity of other proteins by transphosphorylation, transferring a phosphate group from ATP to give ADP as a byproduct. The system described here exploits the ability of cooperative catalytic head groups on gold nanoparticles to very efficiently catalyze chromogenic reactions such as the transphosphorylation of 2-hydroxypropyl-4-nitrophenyl phosphate (HPNPP). A series of chromogenic substrates have been synthesized and evaluated by means of Michaelis-Menten kinetics (compounds 2, 4-6). 2-Hydroxypropyl-(3-trifluoromethyl-4-nitro)phenyl phosphate (5) was found to display higher reactivity (kcat) and higher binding affinity (KM) when compared to HPNPP. This higher binding affinity allows phosphate 5 to compete with ATP and ADP to different extents for binding on the monolayer surface, thus enabling a catalytically amplified signal only when ATP is absent. Overall, this represents a viable new approach for monitoring the conversion of ATP into ADP with high sensitivity.
Collapse
Affiliation(s)
- Cristian Pezzato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Jack L-Y Chen
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Patrizia Galzerano
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Michela Salvi
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| |
Collapse
|
14
|
Sun X, Liu P, Mancin F. Sensor arrays made by self-organized nanoreceptors for detection and discrimination of carboxylate drugs. Analyst 2018; 143:5754-5763. [DOI: 10.1039/c8an01756e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An array of self-organized nanoreceptors based on monolayer-protected gold nanoparticles in combination with different commercially available fluorescent dyes can detect and discriminate nonsteroidal anti-inflammatory drugs.
Collapse
Affiliation(s)
- Xiaohuan Sun
- Dipartimento di Scienze Chimiche
- Università di Padova
- 35131 Padova
- Italy
| | - Ping Liu
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin
- China
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche
- Università di Padova
- 35131 Padova
- Italy
| |
Collapse
|
15
|
Chen JLY, Maiti S, Fortunati I, Ferrante C, Prins LJ. Temporal Control over Transient Chemical Systems using Structurally Diverse Chemical Fuels. Chemistry 2017; 23:11549-11559. [DOI: 10.1002/chem.201701533] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Indexed: 01/28/2023]
Affiliation(s)
- Jack L.-Y. Chen
- School of Science; Auckland University of Technology; 34 St Paul St Auckland 1010 New Zealand
| | - Subhabrata Maiti
- Department of Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Ilaria Fortunati
- Department of Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Camilla Ferrante
- Department of Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| | - Leonard J. Prins
- Department of Chemical Sciences; University of Padova; Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
16
|
Neri S, Garcia Martin S, Pezzato C, Prins LJ. Photoswitchable Catalysis by a Nanozyme Mediated by a Light-Sensitive Cofactor. J Am Chem Soc 2017; 139:1794-1797. [PMID: 28121141 DOI: 10.1021/jacs.6b12932] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The activity of a gold nanoparticle-based catalyst can be reversibly up- and down-regulated by light. Light is used to switch a small molecule between cis- and trans-isomers, which inhibits the catalytic activity of the nanoparticles to different extent. The system is functional in aqueous buffer, which paves the way for integrating the system in biological networks.
Collapse
Affiliation(s)
- Simona Neri
- Department of Chemical Sciences, University of Padova , 35122 Padova, Italy
| | | | - Cristian Pezzato
- Department of Chemical Sciences, University of Padova , 35122 Padova, Italy
| | - Leonard J Prins
- Department of Chemical Sciences, University of Padova , 35122 Padova, Italy
| |
Collapse
|
17
|
Maung MS, Dinh T, Salazar C, Shon YS. Unsupported Micellar Palladium Nanoparticles for Biphasic Hydrogenation and Isomerization of Hydrophobic Allylic Alcohols in Water. Colloids Surf A Physicochem Eng Asp 2017; 513:367-372. [PMID: 28579696 DOI: 10.1016/j.colsurfa.2016.10.067] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This article presents the evaluation of water-soluble palladium nanoparticles with hydrophobic active sites that are ideal for the biphasic colloidal catalysis of water-insoluble organic substrates in aqueous solution. Palladium nanoparticles stabilized with ω-carboxylate-functionalized alkanethiolate are first synthesized using ω-carboxylate-S-alkylthiosulfate as their ligand precursor. The biphasic catalysis is carried out for the reaction of hydrophobic allylic alcohols without using any additional mixing solvent or surfactant, which results in the complete consumption of substrates under the atmospheric pressure of H2 gas and at room temperature in less than 24 h. Systematic investigations on the influence of pH and substrate size are also performed to examine the utility of these thiolate-capped palladium nanoparticles as structurally stable and water-soluble micellar catalysts for the biphasic reaction.
Collapse
Affiliation(s)
- May S Maung
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250, Bellflower Blvd., Long Beach, California 90840, United States
| | - Tommy Dinh
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250, Bellflower Blvd., Long Beach, California 90840, United States
| | - Christian Salazar
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250, Bellflower Blvd., Long Beach, California 90840, United States
| | - Young-Seok Shon
- Department of Chemistry and Biochemistry, California State University, Long Beach, 1250, Bellflower Blvd., Long Beach, California 90840, United States
| |
Collapse
|
18
|
Diez-Castellnou M, Salvia MV, Springhetti S, Rastrelli F, Mancin F. Nanoparticle-Assisted Affinity NMR Spectroscopy: High Sensitivity Detection and Identification of Organic Molecules. Chemistry 2016; 22:16957-16963. [DOI: 10.1002/chem.201603578] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Marta Diez-Castellnou
- Dipartimento di Scienze Chimiche; Università degli Studi di Padova; via Marzolo 1 35131 Padova Italy
| | - Marie-Virginie Salvia
- Dipartimento di Scienze Chimiche; Università degli Studi di Padova; via Marzolo 1 35131 Padova Italy
- Laboratoire d'Excellence “CORAIL”; Université de Perpignan; 58 Avenue Paul Alduy 66860 Perpignan Cedex France
| | - Sara Springhetti
- Dipartimento di Scienze Chimiche; Università degli Studi di Padova; via Marzolo 1 35131 Padova Italy
| | - Federico Rastrelli
- Dipartimento di Scienze Chimiche; Università degli Studi di Padova; via Marzolo 1 35131 Padova Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche; Università degli Studi di Padova; via Marzolo 1 35131 Padova Italy
| |
Collapse
|
19
|
|
20
|
Garcia Martin S, Prins LJ. Dynamic nanoproteins: self-assembled peptide surfaces on monolayer protected gold nanoparticles. Chem Commun (Camb) 2016; 52:9387-90. [DOI: 10.1039/c6cc04786f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Small peptides self-assemble on gold nanoparticles to form a dynamic multivalent peptide surface.
Collapse
Affiliation(s)
| | - Leonard J. Prins
- Department of Chemical Sciences
- University of Padova
- 35131 Padova
- Italy
| |
Collapse
|
21
|
Abstract
A fundamental difference exists in the way signal generation is dealt with in natural and synthetic systems. While nature uses the transient activation of signalling pathways to regulate all cellular functions, chemists rely on sensory devices that convert the presence of an analyte into a steady output signal. The development of chemical systems that bear a closer analogy to living ones (that is, require energy for functioning, are transient in nature and operate out-of-equilibrium) requires a paradigm shift in the design of such systems. Here we report a straightforward strategy that enables transient signal generation in a self-assembled system and show that it can be used to mimic key features of natural signalling pathways, which are control over the output signal intensity and decay rate, the concentration-dependent activation of different signalling pathways and the transient downregulation of catalytic activity. Overall, the reported methodology provides temporal control over supramolecular processes. Natural and synthetic systems have fundamentally different approaches to signal generation. Here, the authors report a strategy that enables transient signal generation in a self-assembled system and show that it can be used to mimic several key features of natural signalling pathways.
Collapse
|
22
|
Abstract
In many origin-of-life scenarios, inorganic materials, such as FeS or mineral clays, play an important role owing to their ability to concentrate and select small organic molecules on their surface and facilitate their chemical transformations into new molecules. However, considering that life is made up of organic matter, at a certain stage during the evolution the role of the inorganic material must have been taken over by organic molecules. How this exactly happened is unclear, and, indeed, a big gap separates the rudimentary level of organization involving inorganic materials and the complex organization of cells, which are the building blocks of life. Over the past years, we have extensively studied the interaction of small molecules with monolayer-protected gold nanoparticles (Au NPs) for the purpose of developing innovative sensing and catalytic systems. During the course of these studies, we realized that the functional role of this system is very similar to that typically attributed to inorganic surfaces in the early stages of life, with the important being difference that the functional properties (molecular recognition, catalysis, signaling, adaptation) originate entirely from the organic monolayer rather than the inorganic support. This led us to the proposition that this system may serve as a model that illustrates how the important role of inorganic surfaces in dictating chemical processes in the early stages of life may have been taken over by organic matter. Here, we reframe our previously obtained results in the context of the origin-of-life question. The following functional roles of Au NPs will be discussed: the ability to concentrate small molecules and create different local populations, the ability to catalyze the chemical transformation of bound molecules, and, finally, the ability to install rudimentary signaling pathways and display primitive adaptive behavior. In particular, we will show that many of the functional properties of the system originate from two features: the presence of metal ions that are complexed in the organic monolayer and the multivalent nature of the system. Complexed metal ions play an important role in determining the affinity and selectivity of the interaction with small molecules, but serve also as regulatory elements for determining how many molecules are bound simultaneously. Importantly, neighboring metal ion complexes also create catalytic pockets in which two metal ions cooperatively catalyze the cleavage of an RNA-model compound. The multivalent nature of the system permits multiple noncovalent interactions with small molecules that enhances the affinity, but is also at the basis of simple signal transduction pathways and adaptive behavior.
Collapse
Affiliation(s)
- Leonard J. Prins
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
23
|
Maiti S, Prins LJ. Dynamic combinatorial chemistry on a monolayer protected gold nanoparticle. Chem Commun (Camb) 2015; 51:5714-6. [PMID: 25715706 DOI: 10.1039/c5cc01127b] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Here, we show that the addition of Hg(2+) or Ag(+) metal ions to a dynamic system composed of monolayer protected gold nanoparticles (Au NPs) and a mixture of four nucleotides (dGMP, dAMP, TMP, and dCMP) leads to the self-selection of TMP or dGMP, respectively, on the monolayer surface.
Collapse
Affiliation(s)
- Subhabrata Maiti
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | | |
Collapse
|
24
|
Salvia MV, Ramadori F, Springhetti S, Diez-Castellnou M, Perrone B, Rastrelli F, Mancin F. Nanoparticle-Assisted NMR Detection of Organic Anions: From Chemosensing to Chromatography. J Am Chem Soc 2015; 137:886-92. [DOI: 10.1021/ja511205e] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marie-Virginie Salvia
- Università di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, Padova, Italy
| | - Federico Ramadori
- Università di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, Padova, Italy
| | - Sara Springhetti
- Università di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, Padova, Italy
| | - Marta Diez-Castellnou
- Università di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, Padova, Italy
| | - Barbara Perrone
- Università di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, Padova, Italy
| | - Federico Rastrelli
- Università di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, Padova, Italy
| | - Fabrizio Mancin
- Università di Padova, Dipartimento di Scienze Chimiche, via Marzolo 1, Padova, Italy
| |
Collapse
|
25
|
Yapar S, Oikonomou M, Velders AH, Kubik S. Dipeptide recognition in water mediated by mixed monolayer protected gold nanoparticles. Chem Commun (Camb) 2015; 51:14247-50. [DOI: 10.1039/c5cc05909g] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Mixed monolayer protected gold nanoparticles with three orthogonal binding sites on their surface were shown to bind dipeptides in water better than analogues containing only one binding site or a combination of two.
Collapse
Affiliation(s)
- Serap Yapar
- Technische Universität Kaiserslautern
- Fachbereich Chemie - Organische Chemie
- D-67663 Kaiserslautern
- Germany
| | - Maria Oikonomou
- Laboratory of BioNanoTechnology
- Wageningen University
- 6703 HB Wageningen
- The Netherlands
| | - Aldrik H. Velders
- Laboratory of BioNanoTechnology
- Wageningen University
- 6703 HB Wageningen
- The Netherlands
| | - Stefan Kubik
- Technische Universität Kaiserslautern
- Fachbereich Chemie - Organische Chemie
- D-67663 Kaiserslautern
- Germany
| |
Collapse
|
26
|
Pezzato C, Zaramella D, Martinelli M, Pieters G, Pagano MA, Prins LJ. Label-free fluorescence detection of kinase activity using a gold nanoparticle based indicator displacement assay. Org Biomol Chem 2014; 13:1198-203. [PMID: 25427977 DOI: 10.1039/c4ob02052a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A straightforward indicator-displacement assay (IDA) has been developed for the quantitative analysis of ATP→ADP conversion. The IDA relies on the use of gold nanoparticles passivated with a monolayer of thiols terminating with a 1,4,7-triazacyclononane (TACN)·Zn(2+) head group. The analytes ATP and ADP compete to a different extent with a fluorescent probe for binding to the monolayer surface. In the presence of ATP the fluorescent probe is free in solution, whereas in the presence of ADP the fluorescent probe is captured by the nanoparticles and its fluorescence is quenched. The linear response of the fluorescence signal towards different ratios of ATP : ADP permitted the detection of protein kinase activity simply by adding aliquots of the enzyme solution to the assay solution followed by measurement of the fluorescent intensity. The assay poses no restrictions on the target kinase nor does it require labeling of the kinase substrate. The assay was tested on the protein kinases PIM-1 and Src and validated through a direct comparison with the classical radiometric assay using the [γ-(32)P]-labeled ATP.
Collapse
Affiliation(s)
- Cristian Pezzato
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy.
| | | | | | | | | | | |
Collapse
|
27
|
Franceschini C, Scrimin P, Prins LJ. Light-triggered thiol-exchange on gold nanoparticles at low micromolar concentrations in water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13831-13836. [PMID: 25354499 DOI: 10.1021/la5034965] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The place-exchange reaction of thiol-containing peptides in a cationic monolayer on gold nanoparticles occurs very rapidly at low micromolar concentrations in water with excellent control over the degree of substitution. The driving force for this process is the binding of anionic peptides to a cationic monolayer surface which causes a strong increase in the local concentration of thiols. The place-exchange reaction can be triggered by light using a photolabile protecting group on the thiol moiety.
Collapse
|
28
|
Maiti S, Pezzato C, Garcia Martin S, Prins LJ. Multivalent Interactions Regulate Signal Transduction in a Self-Assembled Hg2+ Sensor. J Am Chem Soc 2014; 136:11288-91. [DOI: 10.1021/ja506325e] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Subhabrata Maiti
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Cristian Pezzato
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Sergio Garcia Martin
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| | - Leonard J. Prins
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
29
|
Pezzato C, Scrimin P, Prins LJ. Zn2+-Regulated Self-Sorting and Mixing of Phosphates and Carboxylates on the Surface of Functionalized Gold Nanoparticles. Angew Chem Int Ed Engl 2014; 53:2104-9. [DOI: 10.1002/anie.201309747] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2013] [Indexed: 01/23/2023]
|
30
|
Pezzato C, Scrimin P, Prins LJ. Zn2+-Regulated Self-Sorting and Mixing of Phosphates and Carboxylates on the Surface of Functionalized Gold Nanoparticles. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201309747] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
31
|
Catalysis of transesterification reactions by a self-assembled nanosystem. Int J Mol Sci 2013; 14:2011-21. [PMID: 23337201 PMCID: PMC3565362 DOI: 10.3390/ijms14012011] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/14/2013] [Indexed: 11/17/2022] Open
Abstract
Histidine-containing peptides self-assemble on the surface of monolayer protected gold nanoparticles to form a catalytic system for transesterification reactions. Self-assembly is a prerequisite for catalysis, since the isolated peptides do not display catalytic activity by themselves. A series of catalytic peptides and substrates are studied in order to understand the structural parameters that are of relevance to the catalytic efficiency of the system. It is shown that the distance between the His-residue and the anionic tail does not affect the catalytic activity. On the other hand, the catalytic His-residue is sensitive to the chemical nature of the flanking amino acid residues. In particular, the presence of polar Ser-residues causes a significant increase in activity. Finally, kinetic studies of a series of substrates reveal that substrates with a hydrophobic component are very suitable for this catalytic system.
Collapse
|