1
|
Birajdar MS, Kim BH, Sutthiwanjampa C, Kang SH, Heo CY, Park H. Inhibition of Capsular Contracture of Poly (Dimethyl Siloxane) Medical Implants by Surface Modification with Itaconic Acid Conjugated Gelatin. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.03.036] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
2
|
Narayanamurthy V, Samsuri F, Firus Khan AY, Hamzah HA, Baharom MB, Kumary TV, Anil Kumar PR, Raj DK. Direct cell imprint lithography in superconductive carbon black polymer composites: process optimization, characterization and in vitro toxicity analysis. BIOINSPIRATION & BIOMIMETICS 2019; 15:016002. [PMID: 30897554 DOI: 10.1088/1748-3190/ab1243] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Cell imprint lithography (CIL) or cell replication plays a vital role in fields like biomimetic smart culture substrates, bone tissue engineering, cell guiding, cell adhesion, tissue engineering, cell microenvironments, tissue microenvironments, cell research, drug delivery, diagnostics, therapeutics and many other applications. Herein we report a new formulation of superconductive carbon black photopolymer composite and its characterization towards a CIL process technique. In this article, we demonstrated an approach of using a carbon nanoparticle-polymer composite (CPC) for patterning cells. It is observed that a 0.3 wt % load of carbon nanoparticles (CNPs) in a carbon polymer mixture (CPM) was optimal for cell-imprint replica fabrication. The electrical resistance of the 3-CPC (0.3 wt %) was reduced by 68% when compared to N-CPC (0 wt %). This method successfully replicated the single cell with sub-organelle scale. The shape of microvesicles, grooves, pores, blebs or microvilli on the cellular surface was patterned clearly. This technique delivers a free-standing cell feature substrate. In vitro evaluation of the polymer demonstrated it as an ideal candidate for biomimetic biomaterial applications. This approach also finds its application in study based on morphology, especially for drug delivery applications and for investigations based on molecular pathways.
Collapse
Affiliation(s)
- Vigneswaran Narayanamurthy
- Faculty of Electrical and Electronics Engineering, University Malaysia Pahang, Pekan 26600, Malaysia. Faculty of Medicine, International Islamic University Malaysia, Kuantan, Pahang 25200, Malaysia
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Begum HM, Ta HP, Zhou H, Ando Y, Kang D, Nemes K, Mariano CF, Hao J, Yu M, Shen K. Spatial Regulation of Mitochondrial Heterogeneity by Stromal Confinement in Micropatterned Tumor Models. Sci Rep 2019; 9:11187. [PMID: 31371796 PMCID: PMC6671984 DOI: 10.1038/s41598-019-47593-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Accepted: 07/19/2019] [Indexed: 01/16/2023] Open
Abstract
Heterogeneity of mitochondrial activities in cancer cells exists across different disease stages and even in the same patient, with increased mitochondrial activities associated with invasive cancer phenotypes and circulating tumor cells. Here, we use a micropatterned tumor-stromal assay (μTSA) comprised of MCF-7 breast cancer cells and bone marrow stromal cells (BMSCs) as a model to investigate the role of stromal constraints in altering the mitochondrial activities of cancer cells within the tumor microenvironment (TME). Using microdissection and RNA sequencing, we revealed a differentially regulated pattern of gene expression related to mitochondrial activities and metastatic potential at the tumor-stromal interface. Gene expression was confirmed by immunostaining of mitochondrial mass, and live microscopic imaging of mitochondrial membrane potential (ΔΨm) and optical redox ratio. We demonstrated that physical constraints by the stromal cells play a major role in ΔΨm heterogeneity, which was positively associated with nuclear translocation of the YAP/TAZ transcriptional co-activators. Importantly, inhibiting actin polymerization and Rho-associated protein kinase disrupted the differential ΔΨm pattern. In addition, we showed a positive correlation between ΔΨm level and metastatic burden in vivo in mice injected with MDA-MB-231 breast cancer cells. This study supports a new regulatory role for the TME in mitochondrial heterogeneity and metastatic potential.
Collapse
Affiliation(s)
- Hydari Masuma Begum
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hoang P Ta
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Hao Zhou
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Yuta Ando
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Diane Kang
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Kristen Nemes
- Mork Family Department of Chemical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Chelsea F Mariano
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jia Hao
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA
| | - Min Yu
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA
| | - Keyue Shen
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, 90089, USA.
- Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
- USC Stem Cell, Keck School of Medicine, University of Southern California, Los Angeles, CA, 90033, USA.
| |
Collapse
|
4
|
Lee J, Kohl N, Shanbhang S, Parekkadan B. Scaffold-integrated microchips for end-to-end in vitro tumor cell attachment and xenograft formation. TECHNOLOGY 2015; 3:179-188. [PMID: 26709385 PMCID: PMC4687757 DOI: 10.1142/s2339547815500065] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Microfluidic technologies have substantially advanced cancer research by enabling the isolation of rare circulating tumor cells (CTCs) for diagnostic and prognostic purposes. The characterization of isolated CTCs has been limited due to the difficulty in recovering and growing isolated cells with high fidelity. Here, we present a strategy that uses a 3D scaffold, integrated into a microfludic device, as a transferable substrate that can be readily isolated after device operation for serial use in vivo as a transplanted tissue bed. Hydrogel scaffolds were incorporated into a PDMS fluidic chamber prior to bonding and were rehydrated in the chamber after fluid contact. The hydrogel matrix completely filled the fluid chamber, significantly increasing the surface area to volume ratio, and could be directly visualized under a microscope. Computational modeling defined different flow and pressure regimes that guided the conditions used to operate the chip. As a proof of concept using a model cell line, we confirmed human prostate tumor cell attachment in the microfluidic scaffold chip, retrieval of the scaffold en masse, and serial implantation of the scaffold to a mouse model with preserved xenograft development. With further improvement in capture efficiency, this approach can offer an end-to-end platform for the continuous study of isolated cancer cells from a biological fluid to a xenograft in mice.
Collapse
Affiliation(s)
- Jungwoo Lee
- Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School and Shriners Hospital for Children, Boston, MA 02114, USA ; Department of Chemical Engineering, University of Massachusetts, Amherst, MA 01003, USA
| | - Nathaniel Kohl
- Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
| | - Sachin Shanbhang
- Department of Scientific Computing, Florida State University, Tallahassee, FL 32306, USA
| | - Biju Parekkadan
- Center for Engineering in Medicine, Massachusetts General Hospital & Harvard Medical School and Shriners Hospital for Children, Boston, MA 02114, USA ; Harvard Stem Cell Institute, Boston, MA 02138, USA
| |
Collapse
|
5
|
De Vlieghere E, Verset L, Demetter P, Bracke M, De Wever O. Cancer-associated fibroblasts as target and tool in cancer therapeutics and diagnostics. Virchows Arch 2015; 467:367-82. [PMID: 26259962 DOI: 10.1007/s00428-015-1818-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Revised: 07/21/2015] [Accepted: 07/27/2015] [Indexed: 12/11/2022]
Abstract
Cancer-associated fibroblasts (CAFs) are drivers of tumour progression and are considered as a target and a tool in cancer diagnostic and therapeutic applications. An increased abundance of CAFs or CAF signatures are recognized as a bad prognostic marker in several cancer types. Tumour-environment biomimetics strongly improve our understanding of the communication between CAFs, cancer cells and other host cells. Several experimental drugs targeting CAFs are in clinical trials for multiple tumour entities; alternatively, CAFs can be exploited as a tool to characterize the functionality of circulating tumour cells or to capture them as a tool to prevent metastasis. The continuous interaction between tissue engineers, biomaterial experts and cancer researchers creates the possibility to biomimic the tumour-environment and provides new opportunities in cancer diagnostics and management.
Collapse
Affiliation(s)
- Elly De Vlieghere
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Laurine Verset
- Departments of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Pieter Demetter
- Departments of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Marc Bracke
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium
| | - Olivier De Wever
- Laboratory of Experimental Cancer Research, Department of Radiation Oncology and Experimental Cancer Research, Ghent University Hospital, De Pintelaan 185, 9000, Ghent, Belgium.
| |
Collapse
|
6
|
Bersani F, Lee J, Yu M, Morris R, Desai R, Ramaswamy S, Toner M, Haber DA, Parekkadan B. Bioengineered implantable scaffolds as a tool to study stromal-derived factors in metastatic cancer models. Cancer Res 2014; 74:7229-38. [PMID: 25339351 DOI: 10.1158/0008-5472.can-14-1809] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Modeling the hematogenous spread of cancer cells to distant organs poses one of the greatest challenges in the study of human metastasis. Both tumor cell-intrinsic properties as well as interactions with reactive stromal cells contribute to this process, but identification of relevant stromal signals has been hampered by the lack of models allowing characterization of the metastatic niche. Here, we describe an implantable bioengineered scaffold, amenable to in vivo imaging, ex vivo manipulation, and serial transplantation for the continuous study of human metastasis in mice. Orthotopic or systemic inoculation of tagged human cancer cells into the mouse leads to the release of circulating tumor cells into the vasculature, which seed the scaffold, initiating a metastatic tumor focus. Mouse stromal cells can be readily recovered and profiled, revealing differential expression of cytokines, such as IL1β, from tumor-bearing versus unseeded scaffolds. Finally, this platform can be used to test the effect of drugs on suppressing initiation of metastatic lesions. This generalizable model to study cancer metastasis may thus identify key stromal-derived factors with important implications for basic and translational cancer research.
Collapse
Affiliation(s)
- Francesca Bersani
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Jungwoo Lee
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, Massachusetts
| | - Min Yu
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts. Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Robert Morris
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Rushil Desai
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Sridhar Ramaswamy
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts
| | - Mehmet Toner
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, Massachusetts
| | - Daniel A Haber
- Cancer Center and Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts. Howard Hughes Medical Institute, Chevy Chase, Maryland.
| | - Biju Parekkadan
- Center for Engineering in Medicine and Surgical Services, Massachusetts General Hospital, Harvard Medical School and the Shriners Hospitals for Children, Boston, Massachusetts. Harvard Stem Cell Institute, Boston, Massachusetts.
| |
Collapse
|
7
|
Yu M, Bardia A, Aceto N, Bersani F, Madden MW, Donaldson MC, Desai R, Zhu H, Comaills V, Zheng Z, Wittner BS, Stojanov P, Brachtel E, Sgroi D, Kapur R, Shioda T, Ting DT, Ramaswamy S, Getz G, Iafrate AJ, Benes C, Toner M, Maheswaran S, Haber DA. Cancer therapy. Ex vivo culture of circulating breast tumor cells for individualized testing of drug susceptibility. Science 2014; 345:216-20. [PMID: 25013076 PMCID: PMC4358808 DOI: 10.1126/science.1253533] [Citation(s) in RCA: 701] [Impact Index Per Article: 70.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Circulating tumor cells (CTCs) are present at low concentrations in the peripheral blood of patients with solid tumors. It has been proposed that the isolation, ex vivo culture, and characterization of CTCs may provide an opportunity to noninvasively monitor the changing patterns of drug susceptibility in individual patients as their tumors acquire new mutations. In a proof-of-concept study, we established CTC cultures from six patients with estrogen receptor-positive breast cancer. Three of five CTC lines tested were tumorigenic in mice. Genome sequencing of the CTC lines revealed preexisting mutations in the PIK3CA gene and newly acquired mutations in the estrogen receptor gene (ESR1), PIK3CA gene, and fibroblast growth factor receptor gene (FGFR2), among others. Drug sensitivity testing of CTC lines with multiple mutations revealed potential new therapeutic targets. With optimization of CTC culture conditions, this strategy may help identify the best therapies for individual cancer patients over the course of their disease.
Collapse
Affiliation(s)
- Min Yu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| | - Aditya Bardia
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Nicola Aceto
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Francesca Bersani
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Marissa W Madden
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Maria C Donaldson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Rushil Desai
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Huili Zhu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Valentine Comaills
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Zongli Zheng
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medical Epidemiology and Biostatistics, Karolinska Insitutet, Stockholm, Sweden
| | - Ben S Wittner
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Petar Stojanov
- Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - Elena Brachtel
- Department of Pathology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Dennis Sgroi
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ravi Kapur
- Center for Bioengineering in Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Toshihiro Shioda
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Gad Getz
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Harvard Medical School, Charlestown, MA 02129, USA. Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA
| | - A John Iafrate
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Department of Pathology, Harvard Medical School, Charlestown, MA 02129, USA
| | - Cyril Benes
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA
| | - Mehmet Toner
- Center for Bioengineering in Medicine, Harvard Medical School, Charlestown, MA 02129, USA. Department of Surgery, Harvard Medical School, Charlestown, MA 02129, USA
| | - Shyamala Maheswaran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Department of Surgery, Harvard Medical School, Charlestown, MA 02129, USA.
| | - Daniel A Haber
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA. Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA. Department of Medicine, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
8
|
Joddar B, Hoshiba T, Chen G, Ito Y. Stem cell culture using cell-derived substrates. Biomater Sci 2014; 2:1595-1603. [DOI: 10.1039/c4bm00126e] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
There have been great efforts to develop cell culture systems using chemically-fixed cells or decellularized matrices to regulate stem cell functions.
Collapse
Affiliation(s)
| | - Takashi Hoshiba
- Department of Biochemical Engineering
- Graduate School of Science and Engineering
- Yamagata University
- Yonezawa, Japan
- Tissue Regeneration Materials Unit
| | - Guoping Chen
- Tissue Regeneration Materials Unit
- International Center for Materials Nanoarchitectonics
- National Institute for Materials Science
- Tsukuba, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory
- RIKEN
- Wako, Japan
- Emergent Bioengineering Materials Research Team
- RIKEN Center for Emergent Matter Science
| |
Collapse
|