1
|
Chen Y, Liu M, Zhou L, Deng J, Hou X, Mao X. Micro-Scale Ice Shoveling Effect Induced by Magnetic-Responsive Microfins. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2408594. [PMID: 39440521 DOI: 10.1002/advs.202408594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/13/2024] [Indexed: 10/25/2024]
Abstract
Icing is ubiquitous in nature and engineering applications, and imposes threats to road and air transportations, wind energy infrastructures, etc. However, current active de-icing solutions, especially the most popular one, i.e., heating, suffer from high energy consumption whilst passive methods are often ineffective at high-speed, long-term, or large-particle conditions. Herein, a promising strategy adopting magnetic-responsive microfins (MRS) featuring reversible deformations is developed for de-icing. A novel micro-scale ice shoveling effect induced by the localized destruction of the ice adhesion interface owing to the inhomogeneous deformation is demonstrated, and its dependence on the ice particle size and temperature is investigated. An analytical model is proposed to describe the mechanism of this effect, showing a linear relation between the position of the magnet and the induced force agreeing well with experiments, leading to a system straightforward to predict and control. Specifically, the de-icing capacity of the surface becomes prominent when small-scale ice particles merge to large ones, providing a promising solution for applications on aircraft, wind turbines, etc., as the first of its kind to remove large particles under high-speed conditions effectively.
Collapse
Affiliation(s)
- Yiyi Chen
- Advanced Research Institute of Multi-Disciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
- School of Mechanical Engineering, Beijing Institute of Petrochemical Technology, Beijing, 102617, China
| | - Ming Liu
- Advanced Research Institute of Multi-Disciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
| | - Lijing Zhou
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Jian Deng
- State Key Laboratory of Fluid Power and Mechatronic Systems, Department of Mechanics, Zhejiang University, Hangzhou, 310027, China
| | - Xianghui Hou
- State Key Laboratory of Solidification Processing, Shaanxi Key Laboratory of Fiber Reinforced Light Composite Materials, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Xuerui Mao
- Beijing Institute of Technology, Zhuhai Beijing Institute of Technology (BIT), Zhuhai, 519088, China
- State Key Laboratory of Explosion Science and Safety Protection, Beijing, 100081, China
| |
Collapse
|
2
|
Chu F, Hu Z, Feng Y, Lai NC, Wu X, Wang R. Advanced Anti-Icing Strategies and Technologies by Macrostructured Photothermal Storage Superhydrophobic Surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2402897. [PMID: 38801015 DOI: 10.1002/adma.202402897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/23/2024] [Indexed: 05/29/2024]
Abstract
Water is the source of life and civilization, but water icing causes catastrophic damage to human life and diverse industrial processes. Currently, superhydrophobic surfaces (inspired by the lotus effect) aided anti-icing attracts intensive attention due to their energy-free property. Here, recent advances in anti-icing by design and functionalization of superhydrophobic surfaces are reviewed. The mechanisms and advantages of conventional, macrostructured, and photothermal superhydrophobic surfaces are introduced in turn. Conventional superhydrophobic surfaces, as well as macrostructured ones, easily lose the icephobic property under extreme conditions, while photothermal superhydrophobic surfaces strongly rely on solar illumination. To address the above issues, a potentially smart strategy is found by developing macrostructured photothermal storage superhydrophobic (MPSS) surfaces, which integrate the functions of macrostructured superhydrophobic materials, photothermal materials, and phase change materials (PCMs), and are expected to achieve all-day anti-icing in various fields. Finally, the latest achievements in developing MPSS surfaces, showcasing their immense potential, are highlighted. Besides, the perspectives on the future development of MPSS surfaces are provided and the problems that need to be solved in their practical applications are proposed.
Collapse
Affiliation(s)
- Fuqiang Chu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zhifeng Hu
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Yanhui Feng
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Nien-Chu Lai
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xiaomin Wu
- Department of Energy and Power Engineering, Tsinghua University, Beijing, 100084, China
| | - Ruzhu Wang
- Research Center of Solar Power and Refrigeration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
3
|
He Q, Xu Y, Zhang F, Jia Y, Du Z, Li G, Shi B, Li P, Ning M, Li A. Preparation methods and research progress of super-hydrophobic anti-icing surface. Adv Colloid Interface Sci 2024; 323:103069. [PMID: 38128377 DOI: 10.1016/j.cis.2023.103069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 09/11/2023] [Accepted: 12/04/2023] [Indexed: 12/23/2023]
Abstract
The problem of surface icing poses a serious threat to people's economy and safety, especially in the fields of aerospace, wind power generation and circuit transmission. Super-hydrophobic has excellent anti-icing performance, so it has been widely studied. As the most promising anti-icing technology, superhydrophobic anti-icing surface should not only be simple to prepare, but also have excellent comprehensive performance, which can meet the anti-icing task under harsh working conditions and long-term durability. This paper summarizes the basic performance requirements of superhydrophobic surface for anti-icing operation, and then summarizes the preparation methods and existing problems of superhydrophobic surface in recent years. Finally, the future development trend of superhydrophobic anti-icing surface is prospected and discussed, hoping to provide certain technical guidance for the subsequent research of high-performance superhydrophobic anti-icing surface.
Collapse
Affiliation(s)
- Qiang He
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China; Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000, China; College of Mechanical and Electrical Engineering, Gansu Agricultural University, Gansu, Lanzhou 730070, China; Henan Joint International Research Laboratory of man machine environment and emergency management, Henan, Anyang 455000, China.
| | - Yuan Xu
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China; Key Laboratory of Icing and Anti/De-icing, China Aerodynamics Research and Development Center, Mianyang, Sichuan 621000, China; College of Mechanical and Electrical Engineering, Gansu Agricultural University, Gansu, Lanzhou 730070, China
| | - Fangyuan Zhang
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China; College of Mechanical and Electrical Engineering, Gansu Agricultural University, Gansu, Lanzhou 730070, China
| | - Yangyang Jia
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China
| | - Zhicai Du
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China; College of Mechanical and Electrical Engineering, Gansu Agricultural University, Gansu, Lanzhou 730070, China
| | - Guotao Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China
| | - Binghong Shi
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China; College of Mechanical and Electrical Engineering, Gansu Agricultural University, Gansu, Lanzhou 730070, China
| | - Peiwen Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China; College of Mechanical and Electrical Engineering, Gansu Agricultural University, Gansu, Lanzhou 730070, China
| | - Mengyao Ning
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China; College of Mechanical and Electrical Engineering, Gansu Agricultural University, Gansu, Lanzhou 730070, China
| | - Anling Li
- College of Civil Aviation Safety Engineering, Civil Aviation Flight University of China, Sichuan, Guanghan 618307, China.
| |
Collapse
|
4
|
Cui J, Wang T, Che Z. Melting Process of Frozen Sessile Droplets on Superhydrophobic Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:14800-14810. [PMID: 37797346 DOI: 10.1021/acs.langmuir.3c02318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Superhydrophobic surfaces can exhibit icephobicity in many ways due to their large contact angles and small rolling angles. The melting process of frozen droplets on superhydrophobic surfaces is still unclear, hindering the understanding of surface icephobicity. In this experimental study of the melting process of frozen sessile droplets on superhydrophobic surfaces, we find two types of melting morphologies with opposite vortex directions on a single-scale nanostructured (SN) superhydrophobic substrate and a hierarchical-scale micronanostructured (HMN) superhydrophobic substrate. Melting pattern visualizations and flow field measurements showed Marangoni convection and natural convection occurring in the melting sessile droplets. For the HMN superhydrophobic substrate, the internal flow was found to be dominated by Marangoni convection due to the temperature gradient along the surface of the droplet. For the SN superhydrophobic substrate, Marangoni convection was inhibited by the superhydrophobic particles at the surface of the droplet, which were shed from the fragile superhydrophobic substrate during the freezing-melting process, as confirmed by surface characterizations of the substrate and flow measurements of a water pool. These results will help researchers better understand the melting process of frozen droplets and in designing novel icephobic surfaces for numerous applications.
Collapse
Affiliation(s)
- Jiawang Cui
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
| | - Tianyou Wang
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, China
| | - Zhizhao Che
- State Key Laboratory of Engines, Tianjin University, Tianjin 300350, China
- National Industry-Education Platform of Energy Storage, Tianjin University, Tianjin 300350, China
| |
Collapse
|
5
|
Ma N, Wang X, Zhang M, Lu S, Hua Z, Wu Z, An R, Li L. Programmable Interactions of Cellulose Acetate with Octadecyltrichlorosilane-Functionalized SiO 2 Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:5956-5969. [PMID: 37084536 DOI: 10.1021/acs.langmuir.2c03232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
It is significant to understand the interfacial interactions involved between the cellulose acetate (CA) and dispersed nanomaterials, in which the enhanced interaction improves the mechanical behavior of CA. In this work, the amendments of CA with SiO2 nanoparticles have been found to be endowed by grafting varying concentrations (0, 3, 5, and 6%) of octadecyltrichlorosilane (OTS). Aided by SiO2 colloid probe atomic force microscopy (AFM with a probe diameter of 20 μm), the adhesion force between CA and SiO2 is found to be programmable by tuning OTS concentrations functionalized onto SiO2 surfaces. The adhesion forces of 5% OTS-functionalized SiO2 with CA are the strongest, followed by the ones of 0, 3, and 6% OTS, resulting in a smoother and denser morphology on the film with 5% OTS. The AFM-measured approaching force-distance curves have been further compared to predictions by the extended Derjaguin-Landau-Verwey-Overbeek (XDLVO) theory, in which the XDLVO force is summed as the Liftshitz-van der Waals force (FLW), the electrostatic double-layer force (FEL), and the acid-base interaction force (FAB). FLW and FEL do not change significantly with OTS concentrations functionalized onto SiO2. However, FAB is sensitive to the functionalized OTS concentration onto SiO2 and significantly contributes to the interaction force of the composite films with 5% OTS, promoting the formation of a smooth and dense surface feature with a considerable mechanical performance demonstrated by load-displacement curves from a nanoindenter. This is highly encouraging and suggests that nanomaterials can be incorporated into CA to effectively improve their mechanical compatibility by programming the interaction between the CA matrix and nanomaterials.
Collapse
Affiliation(s)
- Na Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Wang
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mengjie Zhang
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Shenjie Lu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zelin Hua
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhenyu Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Rong An
- School of Materials Science and Engineering/Herbert Gleiter Institute of Nanoscience, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Licheng Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
6
|
Montazeri K, Cao P, Won Y. Interfacial Features Govern Nanoscale Jumping Droplets. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4317-4325. [PMID: 36926895 DOI: 10.1021/acs.langmuir.2c03313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The solid surfaces with different profile levels impact the liquid-solid contact nature and hence wetting characteristics, showing a vital role in liquid droplets' mobility and dynamic behaviors. Therefore, engineering nanostructured features ultimately enables tuning and controlling the dynamic motion of droplets. In this study, we demonstrate an approach to manipulate nanodroplets' motion behaviors in contact with a surface through tailoring the surface morphological profile. By tracking the trajectories of water molecules at the interface, we find that the motions of a nanodroplet subjected to different levels of lateral force reveal various modes that are identified as creeping, rolling, and jumping motions. Interestingly, the elastic deformation of the droplet and sudden changes in the receding contact angle provide the mechanistic origin for droplet jumping. Guided by computational simulations, a regime map delineating the droplet motion modes with surface profile levels and applied forces is constructed, providing a design strategy for controlling droplet motions via surface engineering.
Collapse
Affiliation(s)
- Kimia Montazeri
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Penghui Cao
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, California 92697, United States
| | - Yoonjin Won
- Department of Mechanical and Aerospace Engineering, University of California Irvine, Irvine, California 92697, United States
- Department of Electrical Engineering and Computer Science, University of California Irvine, Irvine, California 92697, United States
| |
Collapse
|
7
|
Chen C, Fan P, Zhu D, Tian Z, Zhao H, Wang L, Peng R, Zhong M. Crack-Initiated Durable Low-Adhesion Trilayer Icephobic Surfaces with Microcone-Array Anchored Porous Sponges and Polydimethylsiloxane Cover. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6025-6034. [PMID: 36688663 DOI: 10.1021/acsami.2c15483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reducing unfavorable ice accretion on surfaces exposed in cold environment requires effective passive anti-icing/deicing techniques. Icephobic surfaces are widely applied on various infrastructures due to their low ice adhesion strength and flexibility, whereas their poor mechanical durability, common liquid infusion, weak resistance to contamination, and low bonding strength to substrates are the major remaining challenges. According to the fracture mechanics of ice layer, initiating cracks at the ice-solid interfaces via the proper design of internal structures of icephobic materials is a promising way to icephobicity. Herein, a crack initiating icephobic surface with porous PDMS sponges sandwiched between a protective, dense PDMS layer and a textured metal microstructure was proposed and fabricated. The combination of high- and low- stiffness PDMS layers anchored by the structured metal surface give the sandwich-like structure excellent icephobicity with both high durability and low ice adhesion (5.3 kPa in the icing-deicing cycles). The porosity and the elastic modulus of the PDMS sponges and the periodicity of the metal surface structures can both be tailored to realize enhanced icephobicity. The sandwich-like icephobic surface remained insignificantly changed under solid particle impacting and the durability characterized via linear abrasion tests was elevated compared with PDMS coating on flat metal surfaces. Additionally, the trilayer icephobic surface possesses durability, low ice adhesion strength, and improved resistance to contamination and is applicable on various surfaces.
Collapse
Affiliation(s)
- Changhao Chen
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Peixun Fan
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Dongyu Zhu
- Shenyang Key Laboratory of Aircraft Icing and Ice Protection, AVIC Aerodynamics Research Institute, Shenyang, Liaoning110034, P. R. China
| | - Ze Tian
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Huanyu Zhao
- Shenyang Key Laboratory of Aircraft Icing and Ice Protection, AVIC Aerodynamics Research Institute, Shenyang, Liaoning110034, P. R. China
| | - Lizhong Wang
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Rui Peng
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| | - Minlin Zhong
- Laser Materials Processing Research Center, Key Laboratory for Advanced Materials Processing Technology (Ministry of Education), Joint Research Center for Advanced Materials & Anti-icing of Tsinghua University (SMSE)-AVIC ARI, School of Materials Science and Engineering, Tsinghua University, Beijing100084, P. R. China
| |
Collapse
|
8
|
Stendardo L, Milionis A, Kokkoris G, Stamatopoulos C, Sharma CS, Kumar R, Donati M, Poulikakos D. Out-of-Plane Biphilic Surface Structuring for Enhanced Capillary-Driven Dropwise Condensation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:1585-1592. [PMID: 36645348 PMCID: PMC9893811 DOI: 10.1021/acs.langmuir.2c03029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 12/30/2022] [Indexed: 06/17/2023]
Abstract
Rapid and sustained condensate droplet departure from a surface is key toward achieving high heat-transfer rates in condensation, a physical process critical to a broad range of industrial and societal applications. Despite the progress in enhancing condensation heat transfer through inducing its dropwise mode with hydrophobic materials, sophisticated surface engineering methods that can lead to further enhancement of heat transfer are still highly desirable. Here, by employing a three-dimensional, multiphase computational approach, we present an effective out-of-plane biphilic surface topography, which reveals an unexplored capillarity-driven departure mechanism of condensate droplets. This texture consists of biphilic diverging microcavities wherein a matrix of small hydrophilic spots is placed at their bottom, that is, among the pyramid-shaped, superhydrophobic microtextures forming the cavities. We show that an optimal combination of the hydrophilic spots and the angles of the pyramidal structures can achieve high deformational stretching of the droplets, eventually realizing an impressive "slingshot-like" droplet ejection process from the texture. Such a droplet departure mechanism has the potential to reduce the droplet ejection volume and thus enhance the overall condensation efficiency, compared to coalescence-initiated droplet jumping from other state-of-the-art surfaces. Simulations have shown that optimal pyramid-shaped biphilic microstructures can provoke droplet self-ejection at low volumes, up to 56% lower than superhydrophobic straight pillars, revealing a promising new surface microtexture design strategy toward enhancing the condensation heat-transfer efficiency and water harvesting capabilities.
Collapse
Affiliation(s)
- Luca Stendardo
- Laboratory
of Thermodynamics in Emerging Technologies (LTNT), ETH Zurich, Sonneggstrasse
3, Zurich 8092, Switzerland
| | - Athanasios Milionis
- Laboratory
of Thermodynamics in Emerging Technologies (LTNT), ETH Zurich, Sonneggstrasse
3, Zurich 8092, Switzerland
| | - George Kokkoris
- Institute
of Nanoscience and Nanotechnology, NCSR
Demokritos, Agia Paraskevi 15341, Greece
- School
of Chemical Engineering, National Technical
University of Athens, Heroon Polytechniou 9, Zografou, Athens 15780, Greece
| | - Christos Stamatopoulos
- Laboratory
of Thermodynamics in Emerging Technologies (LTNT), ETH Zurich, Sonneggstrasse
3, Zurich 8092, Switzerland
| | - Chander Shekhar Sharma
- Thermofluidics
Research Lab, Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 India
| | - Raushan Kumar
- Thermofluidics
Research Lab, Department of Mechanical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab 140001 India
| | - Matteo Donati
- Laboratory
of Thermodynamics in Emerging Technologies (LTNT), ETH Zurich, Sonneggstrasse
3, Zurich 8092, Switzerland
| | - Dimos Poulikakos
- Laboratory
of Thermodynamics in Emerging Technologies (LTNT), ETH Zurich, Sonneggstrasse
3, Zurich 8092, Switzerland
| |
Collapse
|
9
|
Curiotto S, Paulovics D, Raufaste C, Celestini F, Frisch T, Leroy F, Cheynis F, Müller P. Atomistic Description of Interdroplet Ice-Bridge Formation during Condensation Frosting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:579-587. [PMID: 36534788 DOI: 10.1021/acs.langmuir.2c02860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The propagation of frost in an assembly of supercooled dew droplets takes place by the formation of ice protrusions that bridge ice particles and still-liquid droplets. In this work, we develop a Kinetic Monte Carlo (KMC) model to study the formation kinetics of the ice protrusions. The KMC simulations reproduce well the experimental results reported in the literature. The elongation speed of the ice protrusions does not depend on the droplet size but increases when the interdroplet distance decreases, the temperature increases, or the substrate wettability increases. While 2D diffusion of the water molecules on the substrate surface is sufficient to explain the process kinetics, high 3D (vapor) water-molecule concentration can lead to the development of 3D lateral branches on the ice protrusions. A 1D analytical model based on the water-molecule concentration gradient between a droplet and a nearby ice particle reproduces well the simulation results and highlights the relation between the protrusion elongation kinetics and parameters like the interdroplet distance, the water diffusivity, and the concentration gradient. The bridge-formation time has a quadratic dependence on the droplet-ice distance. Comparing the simulations, the analytical model, and the experimental results of the literature, we conclude that the propagation of frost on a flat substrate in an assembly of supercooled dew droplets with interdroplet spacing larger than about 1 μm is limited by water-molecule diffusivity.
Collapse
Affiliation(s)
- Stefano Curiotto
- Aix Marseille University, CNRS, CINAM, Campus de Luminy, Marseille13288, France
| | - David Paulovics
- Université Côte d'Azur, CNRS, Institut de Physique de Nice (INPHYNI), Nice06100, France
| | - Christophe Raufaste
- Université Côte d'Azur, CNRS, Institut de Physique de Nice (INPHYNI), Nice06100, France
- Institut Universitaire de France (IUF), Paris75005, France
| | - Franck Celestini
- Université Côte d'Azur, CNRS, Institut de Physique de Nice (INPHYNI), Nice06100, France
| | - Thomas Frisch
- Université Côte d'Azur, CNRS, Institut de Physique de Nice (INPHYNI), Nice06100, France
| | - Frédéric Leroy
- Aix Marseille University, CNRS, CINAM, Campus de Luminy, Marseille13288, France
| | - Fabien Cheynis
- Aix Marseille University, CNRS, CINAM, Campus de Luminy, Marseille13288, France
| | - Pierre Müller
- Aix Marseille University, CNRS, CINAM, Campus de Luminy, Marseille13288, France
| |
Collapse
|
10
|
Yue J, Tang S, Ge B, Wang M, Ren G, Shao X. Versatile superhydrophobic bismuth molybdate cotton fabric for oil/water separation and decompose dyestuff. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:48376-48387. [PMID: 35190981 DOI: 10.1007/s11356-022-19190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Water pollution caused by the discharged insolubility petroleum contaminants and organic compound dyes seriously threatens the natural self-purity capacity of the water body and the survival of aquatic species, so it is imperative to restraint the deterioration of the aquatic environment. In this paper, pathways are propounded for the simultaneous removal of insoluble spilling oil and organic dye contaminants. Particularly, hydrophobic ZnSnO3 after stearic acid modification and Bi2MoO6 photocatalysts are introduced into the cotton fabric substrate through solution dip-coating. The durability of the prepared fabric suffers from the acid-base corrosion, thermal treatment and mechanical wear, while still exhibiting remarkable water-repellent (WCA > 150°) property. Furthermore, the remarkable photocatalytic activity makes it possible for reusable degradation and the primary active species, namely the holes, to be verified by the radicals-capturing experiment. It is worth observing that as-prepared superhydrophobic fabric possesses admirable water-proof property and cycling durability of decomposing toxic water-soluble organic dye, thereby contributing to further realizing the ecological concept of clear waters.
Collapse
Affiliation(s)
- Jie Yue
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Shaowang Tang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Bo Ge
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China.
| | - Min Wang
- School of Materials Science and Engineering, Liaocheng University, Liaocheng, 252059, Shandong, China
| | - Guina Ren
- School of Environmental and Material Engineering, Yantai University, Yantai, 264405, Shandong, China
| | - Xin Shao
- School of Physics Science and Information Technology, Liaocheng University, Liaocheng, 252059, Shandong, China.
| |
Collapse
|
11
|
Huang W, Huang J, Guo Z, Liu W. Icephobic/anti-icing properties of superhydrophobic surfaces. Adv Colloid Interface Sci 2022; 304:102658. [PMID: 35381422 DOI: 10.1016/j.cis.2022.102658] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/26/2022] [Accepted: 03/26/2022] [Indexed: 01/31/2023]
Abstract
In the winter, icing on solid surfaces is a typical occurrence that may create a slew of hassles and even tragedies. Anti-icing surfaces are one of the effective solutions for this kind of problem. The roughness of a superhydrophobic surface traps air and weakens the contact between the solid surface and liquid water, allowing water droplets to be removed before freezing. At present, the conventional anti-icing methods including mechanical or thermal technology are not only surface structure unfriendly but also have the obsessions of low efficiency, high energy consumption and high manufacturing costs. Hence, developing a way to remove ice by just modifying the surface shape or chemical composition with a low surface energy is extremely desirable. Numerous attempts have been made to investigate the evolution of ice nucleation and icing on superhydrophobic surfaces under the direction of the ice nucleation hypothesis. In this paper, the research progress of ice nucleation in recent years is reviewed from theoretical and application. The icephobic surfaces are described using the wettability and classical nucleation theories. The benefits and drawbacks of anti-icing superhydrophobic surface are summarized, as well as deicing methods. Finally, several applications of ice phobic materials are illustrated, and some problems and challenges in the research field are discussed. We believed that this review will be useful in guiding future water freezing initiatives.
Collapse
|
12
|
Chen F, Wang Y, Tian Y, Zhang D, Song J, Crick CR, Carmalt CJ, Parkin IP, Lu Y. Robust and durable liquid-repellent surfaces. Chem Soc Rev 2022; 51:8476-8583. [DOI: 10.1039/d0cs01033b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
This review provides a comprehensive summary of characterization, design, fabrication, and application of robust and durable liquid-repellent surfaces.
Collapse
Affiliation(s)
- Faze Chen
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Yaquan Wang
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| | - Yanling Tian
- School of Engineering, University of Warwick, Coventry CV4 7AL, UK
| | - Dawei Zhang
- School of Mechanical Engineering, Tianjin University, Tianjin 300350, China
- Key Laboratory of Mechanism Theory and Equipment Design of Ministry of Education, Tianjin University, Tianjin 300350, China
| | - Jinlong Song
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Colin R. Crick
- School of Engineering and Materials Science, Queen Mary University of London, London E1 4NS, UK
| | - Claire J. Carmalt
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Ivan P. Parkin
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK
| | - Yao Lu
- Department of Chemistry, School of Physical and Chemical Sciences, Queen Mary University of London, London E1 4NS, UK
| |
Collapse
|
13
|
Uzoma PC, Wang Q, Zhang W, Gao N, Li J, Okonkwo PC, Liu F, Han EH. Anti-bacterial, icephobic, and corrosion protection potentials of superhydrophobic nanodiamond composite coating. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127532] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
14
|
Yang S, Li W, Song Y, Ying Y, Wen R, Du B, Jin Y, Wang Z, Ma X. Hydrophilic Slippery Surface Promotes Efficient Defrosting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11931-11938. [PMID: 34570495 DOI: 10.1021/acs.langmuir.1c02159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Frost accretion occurs ubiquitously in various industrial applications and causes tremendous energy and economic loss, as manifested by the Texas power crisis that impacted millions of people over a vast area in 2021. To date, extensive efforts have been made on frost removal by micro-engineering surfaces with superhydrophobicity or lubricity. On such surfaces, air or oil cushions are introduced to suspend the frost layer and promote the rapid frost sliding off, which, although promising, faces the instability of the cushions under extreme frosting conditions. Most existing hydrophilic surfaces, characterized by large interfacial adhesion, have long been deemed unfavorable for frost shedding. Here, we demonstrated that a hydrophilic and slippery surface can achieve efficient defrosting. On such a surface, the hydrophilicity gave rise to a highly interconnected basal frost layer that boosted the substrate-to-frost heat transfer; then, the resulting melted frost readily slid off the surface due to the superb slipperiness. Notably, on our surface, the retained meltwater coverage after frost sliding off was only 2%. In comparison to two control surfaces, for example, surfaces lacking either hydrophilicity or slipperiness, the defrosting efficiency was 13 and 19 times higher and the energy consumption was 2.3 and 6.2 times lower, respectively. Our study highlights the use of a hydrophilic surface for the pronounced defrosting in a broad range of industrial applications.
Collapse
Affiliation(s)
- Siyan Yang
- State Key Laboratory of Fine Chemicals, Institute of Chemical Engineering, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Dalian University of Technology, Dalian 116024, China
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Wanbo Li
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Yajie Song
- State Key Laboratory of Fine Chemicals, Institute of Chemical Engineering, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Dalian University of Technology, Dalian 116024, China
| | - Yushan Ying
- State Key Laboratory of Fine Chemicals, Institute of Chemical Engineering, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Dalian University of Technology, Dalian 116024, China
| | - Rongfu Wen
- State Key Laboratory of Fine Chemicals, Institute of Chemical Engineering, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Dalian University of Technology, Dalian 116024, China
| | - Bingang Du
- State Key Laboratory of Fine Chemicals, Institute of Chemical Engineering, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Dalian University of Technology, Dalian 116024, China
| | - Yuankai Jin
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
| | - Zuankai Wang
- Department of Mechanical Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Research Center for Nature-Inspired Engineering, City University of Hong Kong, Kowloon, Hong Kong 999077, China
- Shenzhen Research Institute of City University of Hong Kong, Shenzhen 518057, China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Institute of Chemical Engineering, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
15
|
Li L, Lin Y, Rabbi KF, Ma J, Chen Z, Patel A, Su W, Ma X, Boyina K, Sett S, Mondal D, Tomohiro N, Hirokazu F, Miljkovic N. Fabrication Optimization of Ultra-Scalable Nanostructured Aluminum-Alloy Surfaces. ACS APPLIED MATERIALS & INTERFACES 2021; 13:43489-43504. [PMID: 34468116 DOI: 10.1021/acsami.1c08051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Aluminum and its alloys are widely used in various industries. Aluminum plays an important role in heat transfer applications, where enhancing the overall system performance through surface nanostructuring is achieved. Combining optimized nanostructures with a conformal hydrophobic coating leads to superhydrophobicity, which enables coalescence induced droplet jumping, enhanced condensation heat transfer, and delayed frosting. Hence, the development of a rapid, energy-efficient, and highly scalable fabrication method for rendering aluminum superhydrophobic is crucial. Here, we employ a simple, ultrascalable fabrication method to create boehmite nanostructures on aluminum. We systematically explore the influence of fabrication conditions such as water immersion time and immersion temperature, on the created nanostructure morphology and resultant nanostructure length scale. We achieved optimized structures and fabrication procedures for best droplet jumping performance as measured by total manufacturing energy utilization, fabrication time, and total cost. The wettability of the nanostructures was studied using the modified Cassie-Baxter model. To better differentiate performance of the fabricated superhydrophobic surfaces, we quantify the role of the nanostructure morphology to corresponding condensation and antifrosting performance through study of droplet jumping behavior and frost propagation dynamics. The effect of aluminum substrate composition (alloy) on wettability, condensation and antifrosting performance was investigated, providing important directions for proper substrate selection. Our findings indicate that the presence of trace alloying elements play a previously unobserved and important role on wettability, condensation, and frosting behavior via the inclusion of defect sites on the surface that are difficult to remove and act as pinning locations to increase liquid-solid adhesion. Our work provides optimization strategies for the fabrication of ultrascalable aluminum and aluminum alloy superhydrophobic surfaces for a variety of applications.
Collapse
Affiliation(s)
- Longnan Li
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Yukai Lin
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Kazi Fazle Rabbi
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Jingcheng Ma
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Zhuo Chen
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Ashay Patel
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Wei Su
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Xiaochen Ma
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Kalyan Boyina
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Soumyadip Sett
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
| | - Debkumar Mondal
- Daikin Industries LTD,1-1, Nishi-Hitotsuya, Settsa, Osaka 566-8585, Japan
| | - Nagano Tomohiro
- Daikin Industries LTD,1-1, Nishi-Hitotsuya, Settsa, Osaka 566-8585, Japan
| | - Fujino Hirokazu
- Daikin Industries LTD,1-1, Nishi-Hitotsuya, Settsa, Osaka 566-8585, Japan
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
16
|
Park H, Ahmadi SF, Boreyko JB. Using Frost to Promote Cassie Ice on Hydrophilic Pillars. PHYSICAL REVIEW LETTERS 2021; 127:044501. [PMID: 34355925 DOI: 10.1103/physrevlett.127.044501] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 05/24/2021] [Accepted: 06/17/2021] [Indexed: 06/13/2023]
Abstract
We develop a novel approach to suspend ice in the air-trapping Cassie state without requiring any fragile hydrophobic coatings or nanostructures. First, frost was preferentially grown on the tops of hydrophilic aluminum pillars due to their sharp corners and elevation over the noncondensable gas barrier. Subsequently, Cassie ice was formed by virtue of the impacting droplets getting arrested by the upper frost tips. A scaling model reveals that the dynamic pressure of an impacting droplet causes the water to wick inside the porous frost faster than the timescale to impale between the pillars.
Collapse
Affiliation(s)
- Hyunggon Park
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, USA
| | - S Farzad Ahmadi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Jonathan B Boreyko
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, USA
| |
Collapse
|
17
|
Wang Y, Guo Z, Liu W. Adhesion behaviors on four special wettable surfaces: natural sources, mechanisms, fabrications and applications. SOFT MATTER 2021; 17:4895-4928. [PMID: 33942819 DOI: 10.1039/d1sm00248a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The study of adhesion behaviors on solid-liquid surfaces plays an important role in scientific research and development in various fields, such as medicine, biology and agriculture. The contact angle and sliding angle of the liquid on the solid surface are commonly used to characterize and measure the wettability of a particular surface. They have a wide range of values, which results in different wettability. It boils down to the adhesion of solid surfaces to liquids. This feature article is aimed at revealing the essence of the adhesion behavior from the aspects of controlling the chemical composition or changing the geometrical microstructure of the surface, and reviewing the natural sources, wetting models, preparation methods and applications of four kinds of typical solid-liquid surfaces (low-adhesion superhydrophobic surfaces, high-adhesion superhydrophobic surfaces, slippery liquid-infused porous surfaces (SLIPS) and hydrophilic/superhydrophilic surfaces). Last, a summary and outlook on this field are given to point out the current challenges and the potential research directions of surface adhesion in the coming future.
Collapse
Affiliation(s)
- Yi Wang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| |
Collapse
|
18
|
Nguyen VH, Nguyen BD, Pham HT, Lam SS, Vo DVN, Shokouhimehr M, Vu THH, Nguyen TB, Kim SY, Le QV. Anti-icing performance on aluminum surfaces and proposed model for freezing time calculation. Sci Rep 2021; 11:3641. [PMID: 33574397 PMCID: PMC7878756 DOI: 10.1038/s41598-020-80886-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 12/30/2020] [Indexed: 11/27/2022] Open
Abstract
In this work, we proposed a facile approach to fabricate a superhydrophobic surface for anti-icing performance in terms of adhesive strength and freezing time. A hierarchical structure was generated on as-received Al plates using a wet etching method and followed with a low energy chemical compound coating. Surfaces after treatment exhibited the great water repellent properties with a high contact angle and extremely low sliding angle. An anti-icing investigation was carried out by using a custom-built apparatus and demonstrated the expected low adhesion and freezing time for icephobic applications. In addition, we proposed a model for calculating the freezing time. The experimented results were compared with theoretical calculation and demonstrated the good agreement, illustrating the importance of theoretical contribution in design icephobic surfaces. Therefore, this study provides a guideline for the understanding of icing phenomena and designing of icephobic surfaces.
Collapse
Affiliation(s)
- Van-Huy Nguyen
- Department for Management of Science and Technology Development, Ton Duc Thang University, Ho Chi Minh City, Vietnam. .,Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
| | - Ba Duc Nguyen
- Basic Science Department, Tan Trao University, Tuyen Quang, Vietnam
| | - Hien Thu Pham
- Surface Analysis Department, Samsung Display Vietnam, Bac Ninh, Vietnam
| | - Su Shiung Lam
- Pyrolysis Technology Research Group, Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030, Kuala Terengganu, Terengganu, Malaysia
| | - Dai-Viet N Vo
- Center of Excellence for Green Energy and Environmental Nanomaterials (CE@GrEEN), Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City, 755414, Vietnam
| | - Mohammadreza Shokouhimehr
- Department of Materials Science and Engineering, Research Institute of Advanced Materials, Seoul National University, Seoul, 08826, Republic of Korea
| | - Thi Hong Hanh Vu
- Physics Faculty, Thai Nguyen University of Education, Thai Nguyen, Vietnam
| | - Thanh-Binh Nguyen
- Physics Faculty, Thai Nguyen University of Education, Thai Nguyen, Vietnam.
| | - Soo Young Kim
- Department of Materials Science and Engineering, Institute of Green Manufacturing Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| | - Quyet Van Le
- Institute of Research and Development, Duy Tan University, Da Nang, 550000, Vietnam.
| |
Collapse
|
19
|
Ahmadi SF, Spohn CA, Nath S, Boreyko JB. Suppressing Condensation Frosting Using an Out-of-Plane Dry Zone. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15603-15609. [PMID: 33325712 DOI: 10.1021/acs.langmuir.0c03054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The vapor pressure above ice is lower than that above supercooled water at the same temperature. This inherent hygroscopic quality of ice has recently been exploited to suppress frost growth by patterning microscopic ice stripes along a surface. These vapor-attracting ice stripes prevented condensation frosting from occurring in the intermediate regions; however, the required presence of the sacrificial ice stripes made it impossible to achieve the ideal case of a completely dry surface. Here, we decouple the sacrificial ice from the antifrosting surface by holding an uncoated aluminum surface in parallel with a prefrosted surface. By replacing the overlapping in-plane dry zones with a uniform out-of-plane dry zone, we show that even an uncoated aluminum surface can stay almost completely dry in chilled and supersaturated conditions. Using a blend of experiments and numerical simulations, we show that the critical separation required to keep the surface dry is a function of the ambient supersaturation.
Collapse
Affiliation(s)
- S Farzad Ahmadi
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
- Department of Mechanical Engineering, University of California Santa Barbara, Santa Barbara, California 93106, United States
| | - Corey A Spohn
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Saurabh Nath
- Department of Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, Virginia 24061, United States
- Physique et Mécanique des Milieux Hétérogènes, UMR 7636 du CNRS, ESPCI, 75005 Paris, France
| | - Jonathan B Boreyko
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
20
|
Abstract
Polydimethylsiloxane modified SiO2/organic silicon sol (PDMS-SiO2/SS) hybrid coating was synthesized via a simple two-step modification route. The nanoparticles (NPs) of PDMS-SiO2 were synthesized through a high temperature dehydration reaction by using silica and excessive PDMS. The NPs lapped with each other and formed a branch and tendril structure. Organic silicon sol (SS) added as basement introduced a hydrophobic group and protected the structure of the NPs. The PDMS-SiO2/SS hybrid coating exhibits a superhydrophobic performance with a maximum water contact angle of 152.82°. The frost test was carried out on a refrigerator evaporator, and the results showed that the coating did not merely delay the frost crystal time about 113 min but also increased the frost layer process time. Meanwhile, the defrosted water droplets rolled off from the coated surface easily which is a benefit for frost suppression performance of the next refrigeration cycle.
Collapse
|
21
|
Yan X, Qin Y, Chen F, Zhao G, Sett S, Hoque MJ, Rabbi KF, Zhang X, Wang Z, Li L, Chen F, Feng J, Miljkovic N. Laplace Pressure Driven Single-Droplet Jumping on Structured Surfaces. ACS NANO 2020; 14:12796-12809. [PMID: 33052666 DOI: 10.1021/acsnano.0c03487] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Droplet transport on, and shedding from, surfaces is ubiquitous in nature and is a key phenomenon governing applications including biofluidics, self-cleaning, anti-icing, water harvesting, and electronics thermal management. Conventional methods to achieve spontaneous droplet shedding enabled by surface-droplet interactions suffer from low droplet transport velocities and energy conversion efficiencies. Here, by spatially confining the growing droplet and enabling relaxation via rationally designed grooves, we achieve single-droplet jumping of micrometer and millimeter droplets with dimensionless jumping velocities v* approaching 0.95, significantly higher than conventional passive approaches such as coalescence-induced droplet jumping (v* ≈ 0.2-0.3). The mechanisms governing single-droplet jumping are elucidated through the study of groove geometry and local pinning, providing guidelines for optimized surface design. We show that rational design of grooves enables flexible control of droplet-jumping velocity, direction, and size via tailoring of local pinning and Laplace pressure differences. We successfully exploit this previously unobserved mechanism as a means for rapid removal of droplets during steam condensation. Our study demonstrates a passive method for fast, efficient, directional, and surface-pinning-tolerant transport and shedding of droplets having micrometer to millimeter length scales.
Collapse
Affiliation(s)
- Xiao Yan
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yimeng Qin
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Feipeng Chen
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Guanlei Zhao
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Soumyadip Sett
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Muhammad Jahidul Hoque
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Kazi Fazle Rabbi
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Xueqian Zhang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Zi Wang
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Longnan Li
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Feng Chen
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Jie Feng
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Moto-oka, Nishi-ku, Fukuoka 819-0395, Japan
| |
Collapse
|
22
|
Baba S, Sawada K, Tanaka K, Okamoto A. Dropwise Condensation on a Hierarchical Nanopillar Structured Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:10033-10042. [PMID: 32787030 DOI: 10.1021/acs.langmuir.0c00950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nanopillar structure processing has been performed on condensation surfaces to control wettability and achieve a high heat transfer coefficient via dropwise condensation and jumping droplets. Modified dry etching was performed using gold (Au) nanoparticles generated by annealing Au as a mask. High-aspect-ratio nanopillar processing was also performed to produce uniform pillar surfaces and novel hierarchical pillar surfaces. A uniform nanopillar surface with pillars having diameters of 20-850 nm and a hierarchical pillar surface with thick pillars having diameters ranging from 100 to 860 nm and thin pillars with diameters ranging from 20 to 40 nm were mixed and fabricated. Condensation experiments were performed using the noncoated nanopillar surfaces, and the condensation behaviors on the silicon (Si) surfaces were observed from above using a microscope and from the side using a high-speed camera. On the uniform surface US-3 and the hierarchical surfaces HS-1 and HS-2, droplet jumps were observed frequently in the droplet size range of 20-50 μm. In contrast, as the droplet size increased to 50 μm or more, the number of jumps observed decreased as the droplet size increased. The frequency of droplet jumps on the hierarchical surfaces from the start of condensation to approximately 2 min was higher than that on the uniform surfaces, although the density of droplet formation on the hierarchical surfaces was not relatively large. On the basis of the observation of droplet behavior from the side surface, we identified that the primary jump was due to the coalescence of droplets adhering to the surface and that the subsequent jump was caused by the droplet coalescence when the jump droplets were reattached. The primary jump occurrence rate was high on all pillar surfaces.
Collapse
Affiliation(s)
- Soumei Baba
- National Institute of Advanced Industrial Science and Technology (AIST), 1-2-1 Namiki, Tsukuba-shi, Ibaraki 305-8564, Japan
| | - Kenichiro Sawada
- Japan Aerospace Exploration Agency (JAXA), 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
| | - Kohsuke Tanaka
- Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba-shi, Ibaraki 305-8505, Japan
| | - Atsushi Okamoto
- Japan Aerospace Exploration Agency (JAXA), 2-1-1 Sengen, Tsukuba-shi, Ibaraki 305-8505, Japan
| |
Collapse
|
23
|
Han G, Nguyen TB, Park S, Jung Y, Lee J, Lim H. Moth-Eye Mimicking Solid Slippery Glass Surface with Icephobicity, Transparency, and Self-Healing. ACS NANO 2020; 14:10198-10209. [PMID: 32700892 DOI: 10.1021/acsnano.0c03463] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Slippery liquid-infused porous surfaces (SLIPSs) have been actively studied to improve the limitations of superhydrophobic (SHP) surfaces, especially the defects of the nonwetting chemical coating layer and the weak mechanical robustness of surface micro/nanostructures. However, the SLIPSs also have several drawbacks including volatilization and leakage of lubricant caused by long-term usage. In this study, we suggest the use of icephobic, highly transparent, and self-healing solid slippery surface to overcome the limitations of both surfaces (SLIPS and SHP) by combining specific biomimetic morphology and intrinsic properties of paraffin wax. A moth-eye mimicking nanopillar structure was prepared instead of a porous structure and was coated with solid paraffin wax for water repellence. Moth-eye structures enable high surface transparency based on antireflective effect, and the paraffin layer can recover from damage due to sunlight exposure. Furthermore, the paraffin coating on the nanopillars provides an air trap, resulting in a low heat transfer rate, increasing freezing time and reducing adhesion strength between the ice droplet and the surface. The heat transfer model was also calculated to elucidate the effects of the nanopillar height and paraffin layer thickness. The antireflection and freezing time of the surfaces are enhanced with increase in nanopillar height. The paraffin layer slightly deteriorates the transmittance but enhances the icephobicity. The solar cell efficiency using a biomimetic solid slippery surface is higher than that of bare glass due to the antireflective effect. This integrated biomimetic solid slippery surface is multifunctional due to its self-cleaning, anti-icing, antireflection, and self-healing properties and may replace SLIPS and SHP surfaces.
Collapse
Affiliation(s)
- Gyuhyeon Han
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea
- School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon 16419, Gyeonggi-Do, Republic of Korea
| | - Thanh-Binh Nguyen
- Thai Nguyen University of Education, 20 Luong Ngoc Quyen Street, Thai Nguyen City 250000, Vietnam
- Department of Nano-mechatronics, University of Science and Technology, 217 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34113, Republic of Korea
| | - Seungchul Park
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea
| | - Youngdo Jung
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University, 2066, Seobu-Ro, Jangan-Gu, Suwon 16419, Gyeonggi-Do, Republic of Korea
| | - Hyuneui Lim
- Department of Nature-Inspired Nanoconvergence Systems, Korea Institute of Machinery and Materials, 156 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34103, Republic of Korea
- Department of Nano-mechatronics, University of Science and Technology, 217 Gajeongbuk-Ro, Yuseong-Gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
24
|
Mohammadian B, Annavarapu RK, Raiyan A, Nemani SK, Kim S, Wang M, Sojoudi H. Delayed Frost Growth on Nanoporous Microstructured Surfaces Utilizing Jumping and Sweeping Condensates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6635-6650. [PMID: 32418428 DOI: 10.1021/acs.langmuir.0c00413] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-propelled jumping of condensate droplets (dew) enables their easy and efficient removal from surfaces and is essential for enhancing the condensation heat transfer coefficient and for delaying the frost growth rate on supercooled surfaces. Here, we report the droplet-jumping phenomenon using nanoporous vertically aligned carbon nanotube (VA-CNT) microstructures grown on smooth silicon substrates and coated with poly-(1H, 1H, 2H, 2H-perfluorodecylacrylate) (pPFDA). We also report droplet-sweeping phenomenon on horizontally mounted surfaces, concluding that the frost surface coverage area and the frost growth rates observed with the droplet-sweeping phenomenon are much lower than those that are observed with the droplet-jumping phenomenon alone. We also investigate the fundamentals of droplet-jumping and the frost growth phenomena using line-shaped, hollow-cylindrical, and cylindrical microstructures, comparing the frost surface coverage area and the ice-bridging times during condensation-frosting, prolonged condensation-frosting, and direct-frosting. We find that the closely spaced thin line-shaped microstructures and hollow-cylindrical microstructures are optimal for frost coverage reduction because of their ability to exhibit droplet-jumping and droplet-sweeping phenomena. We observe that adding nonuniform roughness on top of the microstructures leads to jumping-associated droplet-sweeping on supercooled surfaces. Here, we report the evaporation of an already frozen droplet because of freezing of a supercooled condensate droplet in its close vicinity, enabling the Cassie-Baxter state frost growth and enhancing defrosting efficiency. Finally, we discuss the dynamic defrosting behavior of the pPFDA-coated VA-CNT microstructures, concluding that the small gaps (spacings) between the microstructures not only enable dewetting transitions of droplets but also promote the Cassie-Baxter state frost formation.
Collapse
Affiliation(s)
- Behrouz Mohammadian
- Department of Mechanical Industrial and Manufacturing Engineering (MIME), The University of Toledo, 4006 Nitschke Hall, Toledo, Ohio 43606, United States
| | - Rama Kishore Annavarapu
- Department of Mechanical Industrial and Manufacturing Engineering (MIME), The University of Toledo, 4006 Nitschke Hall, Toledo, Ohio 43606, United States
| | - Asif Raiyan
- Department of Mechanical Industrial and Manufacturing Engineering (MIME), The University of Toledo, 4006 Nitschke Hall, Toledo, Ohio 43606, United States
| | - Srinivasa Kartik Nemani
- Department of Mechanical Industrial and Manufacturing Engineering (MIME), The University of Toledo, 4006 Nitschke Hall, Toledo, Ohio 43606, United States
| | - Sanha Kim
- Department of Mechanical Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Minghui Wang
- Department of Chemical Engineering, Massachusetts Institute of Technology (MIT), 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States
| | - Hossein Sojoudi
- Department of Mechanical Industrial and Manufacturing Engineering (MIME), The University of Toledo, 4006 Nitschke Hall, Toledo, Ohio 43606, United States
| |
Collapse
|
25
|
Azimi Yancheshme A, Momen G, Jafari Aminabadi R. Mechanisms of ice formation and propagation on superhydrophobic surfaces: A review. Adv Colloid Interface Sci 2020; 279:102155. [PMID: 32305656 DOI: 10.1016/j.cis.2020.102155] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 04/02/2020] [Accepted: 04/06/2020] [Indexed: 12/25/2022]
Abstract
Icephobic surfaces, used as passive anti-icing materials, are in high demand due to the costs, damage, and loss of equipment and lives related to ice formation on outdoor surfaces. The proper design of icephobic surfaces is intertwined with the need for a profound understanding of ice formation processes and how ice propagates over a surface. Ice formation (ice nucleation) and interdroplet freezing propagation are processes that determine the onset of freezing and complete ice coverage on a surface, respectively. Evaluating the nature of these phenomena, along with their interactions with substrate and environmental factors, can offer a step toward designing surfaces having an improved icephobic performance. This review paper is organized to discuss ice nucleation and rate, preferable locations of nucleation, and favorable pathways of freezing (desublimation and condensation-freezing) on superhydrophobic surfaces. Furthermore, as the propagation of ice over a substrate plays a more deterministic role for the complete freezing coverage of a surface than that of ice formation, this review also elucidates possible mechanisms of ice propagation, theoretical backgrounds, and strategies to control this propagation using surface characteristics.
Collapse
|
26
|
Yang Q, Zhu Z, Tan S, Luo Y, Luo Z. How Micro-/Nanostructure Evolution Influences Dynamic Wetting and Natural Deicing Abilities of Bionic Lotus Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:4005-4014. [PMID: 32233373 DOI: 10.1021/acs.langmuir.0c00145] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Anti-icing materials have become increasingly urgent for many fields such as power transmission, aviation, energy, telecommunications, and so on. Bionic lotus hydrophobic surfaces with hierarchical micro-/nanostructures show good potential of delaying ice formation; however, their icephobicity (deicing ability) has been controversial. It is mainly attributed to lack of deep understanding of the correlation between micro-/nanoscale structures, wettability, and icephobicity, as well as effective methods for evaluating the deicing ability close to natural environments. In this article, the natural deicing ability is innovatively proposed on the basis of ice adhesion and the influence of microscale structure evolution on dynamic wetting and deicing ability (both ice adhesion strength and natural deicing time) was systematically investigated. Interestingly, different modes (sticky or slippery) were found in natural deicing of hierarchical hydrophobic surfaces, although their ice adhesion strength was higher than that of smooth surfaces. The mechanism was analyzed from three aspects: mechanics, heat transfer, and dynamic wetting. It is highlighted that the sliding of melted interface is not equal to water droplet sliding (dynamic wetting) before freezing or after deicing but significantly depends on the microscale structure. The fundamental understanding on natural deicing of bionic hydrophobic surfaces will open up a new window for developing new anti-icing materials and technology.
Collapse
Affiliation(s)
- Qin Yang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
| | - Zewei Zhu
- School of Materials, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Sheng Tan
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- School of Materials, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yimin Luo
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- School of Materials, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zhuangzhu Luo
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, P. R. China
- School of Materials, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
27
|
Wang G, Guo Z. Liquid infused surfaces with anti-icing properties. NANOSCALE 2019; 11:22615-22635. [PMID: 31755495 DOI: 10.1039/c9nr06934h] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Ice accretion on solid surfaces, a ubiquitous phenomenon that occurs in winter, brings much inconvenience to daily life and can even cause serious catastrophes. Icephobic surfaces, a passive way of processing surfaces to prevent surface destruction from ice accumulation, have attracted much attention from scientists because of their special ice-repellent properties, and many efforts have been made to rationally design durable icephobic coatings. This review is aimed at providing a brief and crucial overview of ice formation processes and feasible de-icing strategies. Here, the excellent anti-icing performance of liquid infused surfaces (LIS) inspired from Nepenthes is emphatically introduced. After a short introduction, the recent progresses in ice nucleation theory and ice adhesion decrease mechanism are comprehensively reviewed to gain a general understanding of the long freeze process and low ice adhesion on LIS. Subsequently, the anti-icing performance of LIS is systematically evaluated from four aspects regarding water repellence, condensation-frosting, long freeze process, and low ice adhesion. Finally, this review focuses on discussing the advantages and disadvantages of LIS and the potential measures to eliminate and alleviate these drawbacks.
Collapse
Affiliation(s)
- Guowei Wang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| | - Zhiguang Guo
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials and Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, People's Republic of China. and State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China
| |
Collapse
|
28
|
Irajizad P, Nazifi S, Ghasemi H. Icephobic surfaces: Definition and figures of merit. Adv Colloid Interface Sci 2019; 269:203-218. [PMID: 31096074 DOI: 10.1016/j.cis.2019.04.005] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 03/12/2019] [Accepted: 04/24/2019] [Indexed: 12/30/2022]
Abstract
Icephobic surfaces have a critical footprint on human daily lives ranging from aviation systems and infrastructures to energy systems, but creation of these surfaces for low-temperature applications remains elusive. Non-wetting, liquid-infused and hydrated surfaces have inspired routes for development of icephobic surfaces. However, high freezing temperature, high ice adhesion strength and subsequent ice accretion, low mechanical durability, and high production cost have restricted their practical applications. In this review, we provide a comprehensive definition for icephobicity through thermodynamics, heat transfer and mechanics of ice/water-material interface and elucidate physic-based routes through which nano-scale could help to achieve exceptional icephobic surfaces. Based on conservation laws, mathematical models are developed that accurately predict ice growth rate on various substrates and wind conditions. Through physics of fracture at ice-icephobic material interface, we cast a standard method for ice adhesion measurement that has the potential to eliminate discrepancies between reported ice adhesion from different laboratories. To assure long-time performance of icephobic surfaces, durability metrics need to be defined. We provide standard methods to examine mechanical, chemical, and environmental durability of icephobic surfaces. In the developed comprehensive framework on icephobicity in this review, performance of state-of-the-art icephobic surfaces are compared and main deficiencies in this field are highlighted.
Collapse
|
29
|
Kaneko S, Urata C, Sato T, Hönes R, Hozumi A. Smooth and Transparent Films Showing Paradoxical Surface Properties: The Lower the Static Contact Angle, the Better the Water Sliding Performance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:6822-6829. [PMID: 31058518 DOI: 10.1021/acs.langmuir.9b00206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Smooth and transparent hydrophilic films showing excellent water sliding properties were prepared by using a sol-gel solution of 2-[methoxy (ethyleneoxy)10 propyl]trimethoxysilane and tetraethoxysilane. The resulting hybrid films were statically hydrophilic (static water contact angles (CAs) were in the range of 30-45°), but water droplets (50 μL) could move smoothly on an inclined surface (minimum sliding angle was 6°) without pinning or tailing because of low CA hysteresis (5 ± 1°). Thanks to this hybrid film formation on aluminum (Al) substrate, drainage performance during condensation and frosting/defrosting markedly improved compared to that on hydrophilic, bare Al, or hydrophobic monolayer-covered Al substrates.
Collapse
Affiliation(s)
- Sohei Kaneko
- Nippon Paint Surf Chemicals. Co., Ltd. , 4-1-15 Minami-Shinagawa , Shinagawa , Tokyo 140-8675 , Japan
| | - Chihiro Urata
- National Institute of Advanced Industrial Science and Technology (AIST) , 2266-98 Anagahora, Shimo-Shidami , Moriyama , Nagoya 463-8560 , Japan
| | - Tomoya Sato
- National Institute of Advanced Industrial Science and Technology (AIST) , 2266-98 Anagahora, Shimo-Shidami , Moriyama , Nagoya 463-8560 , Japan
| | - Roland Hönes
- National Institute of Advanced Industrial Science and Technology (AIST) , 2266-98 Anagahora, Shimo-Shidami , Moriyama , Nagoya 463-8560 , Japan
| | - Atsushi Hozumi
- National Institute of Advanced Industrial Science and Technology (AIST) , 2266-98 Anagahora, Shimo-Shidami , Moriyama , Nagoya 463-8560 , Japan
| |
Collapse
|
30
|
Yan X, Zhang L, Sett S, Feng L, Zhao C, Huang Z, Vahabi H, Kota AK, Chen F, Miljkovic N. Droplet Jumping: Effects of Droplet Size, Surface Structure, Pinning, and Liquid Properties. ACS NANO 2019; 13:1309-1323. [PMID: 30624899 DOI: 10.1021/acsnano.8b06677] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Coalescence-induced droplet jumping has the potential to enhance the efficiency of a plethora of applications. Although binary droplet jumping is quantitatively understood from energy and hydrodynamic perspectives, multiple aspects that affect jumping behavior, including droplet size mismatch, droplet-surface interaction, and condensate thermophysical properties, remain poorly understood. Here, we develop a visualization technique utilizing microdroplet dispensing to study droplet jumping dynamics on nanostructured superhydrophobic, hierarchical superhydrophobic, and hierarchical biphilic surfaces. We show that on the nanostructured superhydrophobic surface the jumping velocity follows inertial-capillary scaling with a dimensionless velocity of 0.26 and a jumping direction perpendicular to the substrate. A droplet mismatch phase diagram was developed showing that jumping is possible for droplet size mismatch up to 70%. On the hierarchical superhydrophobic surface, jumping behavior was dependent on the ratio between the droplet radius Ri and surface structure length scale L. For small droplets ( Ri ≤ 5 L), the jumping velocity was highly scattered, with a deviation of the jumping direction from the substrate normal as high as 80°. Surface structure length scale effects were shown to vanish for large droplets ( Ri > 5 L). On the hierarchical biphilic surface, similar but more significant scattering of the jumping velocity and direction was observed. Droplet-size-dependent surface adhesion and pinning-mediated droplet rotation were responsible for the reduced jumping velocity and scattered jumping direction. Furthermore, droplet jumping studies of liquids with surface tensions as low as 38 mN/m were performed, further confirming the validity of inertial-capillary scaling for varying condensate fluids. Our work not only demonstrates a powerful platform to study droplet-droplet and droplet-surface interactions but provides insights into the role of fluid-substrate coupling as well as condensate properties during droplet jumping.
Collapse
Affiliation(s)
- Xiao Yan
- Department of Mechanical Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Institute of Nuclear and New Energy Technology , Tsinghua University , Beijing , 100084 , China
| | - Leicheng Zhang
- Department of Mechanical Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Soumyadip Sett
- Department of Mechanical Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Lezhou Feng
- Department of Mechanical Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
| | - Chongyan Zhao
- Institute of Nuclear and New Energy Technology , Tsinghua University , Beijing , 100084 , China
| | - Zhiyong Huang
- Institute of Nuclear and New Energy Technology , Tsinghua University , Beijing , 100084 , China
| | - Hamed Vahabi
- Department of Mechanical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Arun K Kota
- Department of Mechanical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
- School of Biomedical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
- Department of Chemical Engineering , Colorado State University , Fort Collins , Colorado 80523 , United States
| | - Feng Chen
- Institute of Nuclear and New Energy Technology , Tsinghua University , Beijing , 100084 , China
| | - Nenad Miljkovic
- Department of Mechanical Science and Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Department of Electrical and Computer Engineering , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- Frederick Seitz Materials Research Laboratory , University of Illinois at Urbana-Champaign , Urbana , Illinois 61801 , United States
- International Institute for Carbon Neutral Energy Research (WPI-I2CNER) , Kyushu University , 744 Moto-oka , Nishi-ku, Fukuoka , 819-0395 , Japan
| |
Collapse
|
31
|
Corti G, Schmiesing NC, Barrington GT, Humphreys MG, Sommers AD. Characterization of Methyl-Functionalized Silica Nanosprings for Superhydrophobic and Defrosting Coatings. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4607-4615. [PMID: 30615841 DOI: 10.1021/acsami.8b18873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Thin non-perfluoroalkoxy superhydrophobic coatings are desirable for heat exchangers because of their lower thermal resistance and reduced environmental concerns. Coatings requirements must also include robustness and longevity and facilitate high defrosting rates in refrigeration applications to warrant their adoption and use. Methyl-functionalized silica nanosprings (SN) possess water droplet static contact angles above 160° with contact angle hysteresis values as low as 6.9° for a sub-micrometer-thick coating. The methyl functional groups render the silica surface hydrophobic, whereas the geometrical and topographical characteristics of the nanosprings make it super-hydrophobic. Results show that SN are capable of removing 95% of the frost from the surface at a lower temperature than the base aluminum substrate. The sub-micrometer SN coating also decreases the time to defrost by ≈1.5 times and can withstand more than 20 frosting-defrosting cycles in a high humidity environment akin to real working conditions for heat exchangers.
Collapse
Affiliation(s)
- Giancarlo Corti
- Department of Mechanical and Manufacturing Engineering , Miami University , Oxford , Ohio 45056 , United States
| | - Nickolas C Schmiesing
- Department of Mechanical and Manufacturing Engineering , Miami University , Oxford , Ohio 45056 , United States
| | - Griffin T Barrington
- Department of Mechanical and Manufacturing Engineering , Miami University , Oxford , Ohio 45056 , United States
| | - Morgan G Humphreys
- Department of Mechanical and Manufacturing Engineering , Miami University , Oxford , Ohio 45056 , United States
| | - Andrew D Sommers
- Department of Mechanical and Manufacturing Engineering , Miami University , Oxford , Ohio 45056 , United States
| |
Collapse
|
32
|
Nguyen TB, Park S, Jung Y, Lim H. Effects of hydrophobicity and lubricant characteristics on anti-icing performance of slippery lubricant-infused porous surfaces. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2018.09.003] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
33
|
Chu F, Wen D, Wu X. Frost Self-Removal Mechanism during Defrosting on Vertical Superhydrophobic Surfaces: Peeling Off or Jumping Off. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14562-14569. [PMID: 30360621 DOI: 10.1021/acs.langmuir.8b03347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Although a superhydrophobic surface has great potential to delay frosting, it tends to become frosted under humid conditions and needs to defrost periodically. So far, the exact mechanism of defrosting still remains unclear. Here, we investigate the frost self-removal mechanism during defrosting on vertical superhydrophobic surfaces. Two self-removal modes are observed: peeling off and jumping off. When the frost thickness is larger than a threshold value, peeling off mode occurs; otherwise, jumping off mode takes place. Compared with the peeling off mode, the jumping off mode is less effective in self-removing frost as jumping is limited by energy transformation. A theoretical model based on frost melting-water permeation mechanism is proposed to determine the threshold value of frost thickness. According to this model, the threshold value of the frost thickness is dependent on the frost porosity and the surface temperature (or heat flux). For our particular experiments, the threshold value of the frost thickness predicted by the proposed model agrees well with our experimental results. Our work may advance the defrosting applications of superhydrophobic surfaces in related engineering fields.
Collapse
Affiliation(s)
- Fuqiang Chu
- School of Aeronautic Science and Engineering , Beihang University , Beijing 100191 , China
| | - Dongsheng Wen
- School of Aeronautic Science and Engineering , Beihang University , Beijing 100191 , China
| | - Xiaomin Wu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Energy and Power Engineering , Tsinghua University , Beijing 100084 , China
| |
Collapse
|
34
|
Mitridis E, Schutzius TM, Sicher A, Hail CU, Eghlidi H, Poulikakos D. Metasurfaces Leveraging Solar Energy for Icephobicity. ACS NANO 2018; 12:7009-7017. [PMID: 29932625 DOI: 10.1021/acsnano.8b02719] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Inhibiting ice accumulation on surfaces is an energy-intensive task and is of significant importance in nature and technology where it has found applications in windshields, automobiles, aviation, renewable energy generation, and infrastructure. Existing methods rely on on-site electrical heat generation, chemicals, or mechanical removal, with drawbacks ranging from financial costs to disruptive technical interventions and environmental incompatibility. Here we focus on applications where surface transparency is desirable and propose metasurfaces with embedded plasmonically enhanced light absorption heating, using ultrathin hybrid metal-dielectric coatings, as a passive, viable approach for de-icing and anti-icing, in which the sole heat source is renewable solar energy. The balancing of transparency and absorption is achieved with rationally nanoengineered coatings consisting of gold nanoparticle inclusions in a dielectric (titanium dioxide), concentrating broadband absorbed solar energy into a small volume. This causes a > 10 °C temperature increase with respect to ambient at the air-solid interface, where ice is most likely to form, delaying freezing, reducing ice adhesion, when it occurs, to negligible levels (de-icing) and inhibiting frost formation (anti-icing). Our results illustrate an effective unexplored pathway toward environmentally compatible, solar-energy-driven icephobicity, enabled by respectively tailored plasmonic metasurfaces, with the ability to design the balance of transparency and light absorption.
Collapse
Affiliation(s)
- Efstratios Mitridis
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Thomas M Schutzius
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Alba Sicher
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Claudio U Hail
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Hadi Eghlidi
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering , ETH Zurich , Sonneggstrasse 3 , CH-8092 Zurich , Switzerland
| |
Collapse
|
35
|
Chu F, Wu X, Wang L. Meltwater Evolution during Defrosting on Superhydrophobic Surfaces. ACS APPLIED MATERIALS & INTERFACES 2018; 10:1415-1421. [PMID: 29220152 DOI: 10.1021/acsami.7b16087] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Defrosting is essential for removing frost from engineering surfaces, but some fundamental issues are still unclear, especially for defrosting on superhydrophobic surfaces. Here, defrosting experiments on prepared superhydrophobic surfaces were conducted along with the investigation on meltwater evolution characteristics. According to the experiments, the typical meltwater evolution process on superhydrophobic surfaces can be divided into two stages: dewetting by edge curling and dewetting by shrinkage. The edge curling of a meltwater film is a distinct phenomenon and has been first reported in this work. Profiting from the ultralow adhesion of the superhydrophobic surface, edge curling is mainly attributed to two unbalanced forces (one at the interface between the ice slurry layer and pure water layer and the other in the triple phase line area) acting on the layered meltwater film. During the multi-meltwater evolution process, the nonbreaking of chained droplets on superhydrophobic surfaces is also an interesting phenomenon, which is controlled by the interaction between the surface tension and the retentive force because of contact angle hysteresis. An approximate criterion was then developed to explain and determine the status of chained droplets, and experimental data from various surfaces have validated the effectiveness of this criterion. This work may deepen the understanding of defrosting on superhydrophobic surfaces and promote antifrosting/icing applications in engineering.
Collapse
Affiliation(s)
- Fuqiang Chu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Department of Thermal Engineering, Tsinghua University , Beijing 100084, China
| | - Xiaomin Wu
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Department of Thermal Engineering, Tsinghua University , Beijing 100084, China
| | - Lingli Wang
- Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Department of Thermal Engineering, Tsinghua University , Beijing 100084, China
| |
Collapse
|
36
|
Zuo Z, Liao R, Song X, Zhao X, Yuan Y. Improving the anti-icing/frosting property of a nanostructured superhydrophobic surface by the optimum selection of a surface modifier. RSC Adv 2018; 8:19906-19916. [PMID: 35541649 PMCID: PMC9080775 DOI: 10.1039/c8ra00712h] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/14/2018] [Indexed: 11/21/2022] Open
Abstract
To understand the effect of chemical composition on the anti-icing properties of a nanostructured superhydrophobic surface (SHP), four SHP surfaces were prepared on glass, which was initially roughed by a radio frequency (RF) magnetron sputtering method and then modified with HDTMS (a siloxane coupling agent), G502 (a partially fluorinated siloxane coupling agent), FAS-17 (a fully fluorinated siloxane coupling agent) and PDMS (a kind of polysilicone widely used in power transmission lines). Results show that the anti-icing properties of these four SHP surfaces in glaze ice varied wildly and the as-prepared SHP surface which was modified with FAS-17 (SHP-FAS) demonstrated a superior anti-icing/frosting performance. Approximately 56% of the entire SHP-FAS remained free of ice after spraying it for 60 min with glaze ice, and the average delay-frosting time (the time taken for the whole surface to become covered with frost) was more than 320 min at −5 °C. Equivalent model analysis indicates that ΔG, defined as the difference in free energy of the Cassie–Baxter and Wenzel states, of the SHP-FAS is much lower than the other three SHP surfaces, giving priority to Cassie state condensation and the self-transfer phenomenon helping to effectively inhibit the frosting process by delaying the ice-bridging process, which is beneficial for improving the anti-frosting property. This work sheds light on and improves understanding of the relationship between anti-icing and anti-frosting properties and is helpful in making the optimum selection of a surface modifier for improving the anti-frosting/icing performances of a SHP surface. To study the anti-icing properties of a nanostructured superhydrophobic surface (SHP), four SHP surfaces were prepared on glass with a radio frequency (RF) magnetron sputtering method and then modified with HDTMS, G502, FAS-17 and PDMS.![]()
Collapse
Affiliation(s)
- Zhiping Zuo
- School of Automation
- Chongqing University
- Chongqing 400044
- China
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology
| | - Ruijin Liao
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology
- Chongqing University
- Chongqing 400044
- China
| | - Xiaoyu Song
- Department of Electrical Engineering and Computer Science
- College of Engineering & Applied Science
- University of Cincinnati
- Cincinnati
- USA
| | - Xuetong Zhao
- State Key Laboratory of Power Transmission Equipment & System Security and New Technology
- Chongqing University
- Chongqing 400044
- China
| | - Yuan Yuan
- College of Materials Science and Engineering
- Chongqing University
- Chongqing 400044
- China
| |
Collapse
|
37
|
Zhang S, Huang J, Cheng Y, Yang H, Chen Z, Lai Y. Bioinspired Surfaces with Superwettability for Anti-Icing and Ice-Phobic Application: Concept, Mechanism, and Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 29058767 DOI: 10.1002/smll.201701867] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 08/08/2017] [Indexed: 05/03/2023]
Abstract
Ice accumulation poses a series of severe issues in daily life. Inspired by the nature, superwettability surfaces have attracted great interests from fundamental research to anti-icing and ice-phobic applications. Here, recently published literature about the mechanism of ice prevention is reviewed, with a focus on the anti-icing and ice-phobic mechanisms, encompassing the behavior of condensate microdrops on the surface, wetting, ice nucleation, and freezing. Then, a detailed account of the innovative fabrication and fundamental research of anti-icing materials with special wettability is summarized with a focus on recent progresses including low-surface energy coatings and liquid-infused layered coatings. Finally, special attention is paid to a discussion about advantages and disadvantages of the technologies, as well as factors that affect the anti-icing and ice-phobic efficiency. Outlooks and the challenges for future development of the anti-icing and ice-phobic technology are presented and discussed.
Collapse
Affiliation(s)
- Songnan Zhang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Jianying Huang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Yan Cheng
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Hui Yang
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
| | - Zhong Chen
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Yuekun Lai
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, 215123, P. R. China
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
38
|
Liu X, Chen H, Zhao Z, Wang Y, Liu H, Zhang D. Self-jumping Mechanism of Melting Frost on Superhydrophobic Surfaces. Sci Rep 2017; 7:14722. [PMID: 29116123 PMCID: PMC5676707 DOI: 10.1038/s41598-017-15130-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 10/20/2017] [Indexed: 11/25/2022] Open
Abstract
Frost accretion on surfaces may cause severe problems and the high-efficiency defrosting methods are still urgently needed in many application fields like heat transfer, optical and electric power system, etc. In this study, a nano-needle superhydrophobic surface is prepared and the frosting/defrosting experiments are conducted on it. Three steps are found in the defrosting process: melting frost shrinking and splitting, instantaneous self-triggered deforming followed by deformation-induced movements (namely, in-situ shaking, rotating, rolling, and self-jumping). The self-jumping performance of the melting frost is extremely fascinating and worth studying due to its capability of evidently shortening the defrosting process and reducing (even avoiding) residual droplets after defrosting. The study on the melting frost self-jumping phenomena demonstrates that the kinetic energy transformed from instantaneous superficial area change in self-triggered deforming step is the intrinsic reason for various melting frost self-propelled movements, and when the transformed energy reaches a certain amount, the self-jumping phenomena occur. And some facilitating conditions for melting frost self-jumping phenomena are also discussed. This work will provide an efficient way for defrosting or an inspiration for further research on defrosting.
Collapse
Affiliation(s)
- Xiaolin Liu
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Huawei Chen
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China.
| | - Zehui Zhao
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | - Yamei Wang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| | | | - Deyuan Zhang
- School of Mechanical Engineering and Automation, Beihang University, Beijing, 100191, China
| |
Collapse
|
39
|
Jiang S, Guo Z, Liu G, Gyimah GK, Li X, Dong H. A Rapid One-Step Process for Fabrication of Biomimetic Superhydrophobic Surfaces by Pulse Electrodeposition. MATERIALS 2017; 10:ma10111229. [PMID: 29068427 PMCID: PMC5706176 DOI: 10.3390/ma10111229] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 10/20/2017] [Accepted: 10/21/2017] [Indexed: 01/09/2023]
Abstract
Inspired by some typical plants such as lotus leaves, superhydrophobic surfaces are commonly prepared by a combination of low surface energy materials and hierarchical micro/nano structures. In this work, superhydrophobic surfaces on copper substrates were prepared by a rapid, facile one-step pulse electrodepositing process, with different duty ratios in an electrolyte containing lanthanum chloride (LaCl3·6H2O), myristic acid (CH3(CH2)12COOH), and ethanol. The equivalent electrolytic time was only 10 min. The surface morphology, chemical composition and superhydrophobic property of the pulse electrodeposited surfaces were fully investigated with SEM, EDX, XRD, contact angle meter and time-lapse photographs of water droplets bouncing method. The results show that the as-prepared surfaces have micro/nano dual scale structures mainly consisting of La[CH3(CH2)12COO]3 crystals. The maximum water contact angle (WCA) is about 160.9°, and the corresponding sliding angle is about 5°. This method is time-saving and can be easily extended to other conductive materials, having a great potential for future applications.
Collapse
Affiliation(s)
- Shuzhen Jiang
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China.
- School of Metallurgy and Materials, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Zhongning Guo
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guixian Liu
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Glenn Kwabena Gyimah
- School of Electromechanical Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Xiaoying Li
- School of Metallurgy and Materials, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Hanshan Dong
- School of Metallurgy and Materials, The University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| |
Collapse
|
40
|
Dong J, Jin Y, Dong H, Sun L. Numerical Calculation Method of Apparent Contact Angles on Heterogeneous Double-Roughness Surfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10411-10418. [PMID: 28885028 DOI: 10.1021/acs.langmuir.7b02564] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Double-roughness surfaces can be used to mimic lotus surfaces. The apparent contact angles (ACAs) of droplets on these surfaces were first calculated by Herminghaus. Then Patankar utilized the pillar model to improve the Herminghaus approach and put forward the formulas for ACAs calculation of the homogeneous double-roughness surfaces where the dual-scale structures and the bases were the same wettable materials. In this paper, we propose a numerical calculation method of ACAs on the heterogeneous double-roughness surfaces where the dual-scale structures and the bases are made of different wettable materials. This numerical calculation method has successfully enhanced the Herminghaus approach. It is promising to become a novel design approach of heterogeneous superhydrophobic surfaces, which are frequently applied in technical fields of self-cleaning, anti-icing, antifogging, and enhancing condensation heat transfer.
Collapse
Affiliation(s)
- Jian Dong
- Key Laboratory of E&M, Zhejiang University of Technology, Ministry of Education & Zhejiang Province , Hangzhou, 310014, China
| | - Yanli Jin
- Key Laboratory of E&M, Zhejiang University of Technology, Ministry of Education & Zhejiang Province , Hangzhou, 310014, China
| | - He Dong
- Key Laboratory of E&M, Zhejiang University of Technology, Ministry of Education & Zhejiang Province , Hangzhou, 310014, China
| | - Li Sun
- Key Laboratory of E&M, Zhejiang University of Technology, Ministry of Education & Zhejiang Province , Hangzhou, 310014, China
| |
Collapse
|
41
|
Mulroe MD, Srijanto BR, Ahmadi SF, Collier CP, Boreyko JB. Tuning Superhydrophobic Nanostructures To Enhance Jumping-Droplet Condensation. ACS NANO 2017; 11:8499-8510. [PMID: 28719740 DOI: 10.1021/acsnano.7b04481] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
It was recently discovered that condensation growing on a nanostructured superhydrophobic surface can spontaneously jump off the surface, triggered by naturally occurring coalescence events. Many reports have observed that droplets must grow to a size of order 10 μm before jumping is enabled upon coalescence; however, it remains unknown how the critical jumping size relates to the topography of the underlying nanostructure. Here, we characterize the dynamic behavior of condensation growing on six different superhydrophobic nanostructures, where the topography of the nanopillars was systematically varied. The critical jumping diameter was observed to be highly dependent upon the height, diameter, and pitch of the nanopillars: tall and slender nanopillars promoted 2 μm jumping droplets, whereas short and stout nanopillars increased the critical size to over 20 μm. The topology of each surface is successfully correlated to the critical jumping diameter by constructing an energetic model that predicts how large a nucleating embryo needs to grow before it can inflate into the air with an apparent contact angle large enough for jumping. By extending our model to consider any possible surface, it is revealed that properly designed nanostructures should enable nanometric jumping droplets, which would further enhance jumping-droplet condensers for heat transfer, antifogging, and antifrosting applications.
Collapse
Affiliation(s)
- Megan D Mulroe
- Department of Biomedical Engineering and Mechanics, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - Bernadeta R Srijanto
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6493, United States
| | - S Farzad Ahmadi
- Department of Biomedical Engineering and Mechanics, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - C Patrick Collier
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831-6493, United States
| | - Jonathan B Boreyko
- Department of Biomedical Engineering and Mechanics, Virginia Tech , Blacksburg, Virginia 24061, United States
| |
Collapse
|
42
|
Jin Y, He Z, Guo Q, Wang J. Control of Ice Propagation by Using Polyelectrolyte Multilayer Coatings. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201705190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Yuankai Jin
- Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zhiyuan He
- Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Qian Guo
- Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jianjun Wang
- Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
43
|
Jin Y, He Z, Guo Q, Wang J. Control of Ice Propagation by Using Polyelectrolyte Multilayer Coatings. Angew Chem Int Ed Engl 2017; 56:11436-11439. [DOI: 10.1002/anie.201705190] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Yuankai Jin
- Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Zhiyuan He
- Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Qian Guo
- Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| | - Jianjun Wang
- Key Laboratory of Green Printing; Institute of Chemistry; Chinese Academy of Sciences; Beijing 100190 China
- University of Chinese Academy of Sciences; Beijing 100049 China
| |
Collapse
|
44
|
Murphy KR, McClintic WT, Lester KC, Collier CP, Boreyko JB. Dynamic Defrosting on Scalable Superhydrophobic Surfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:24308-24317. [PMID: 28653826 DOI: 10.1021/acsami.7b05651] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Recent studies have shown that frost can grow in a suspended Cassie state on nanostructured superhydrophobic surfaces. During defrosting, the melting sheet of Cassie frost spontaneously dewets into quasi-spherical slush droplets that are highly mobile. Promoting Cassie frost would therefore seem advantageous from a defrosting standpoint; however, nobody has systematically compared the efficiency of defrosting Cassie ice versus defrosting conventional surfaces. Here, we characterize the defrosting of an aluminum plate, one-half of which exhibits a superhydrophobic nanostructure while the other half is smooth and hydrophobic. For thick frost sheets (>1 mm), the superhydrophobic surface was able to dynamically shed the meltwater, even at very low tilt angles. In contrast, the hydrophobic surface was unable to shed any appreciable meltwater even at a 90° tilt angle. For thin frost layers (≲1 mm), not even the superhydrophobic surface could mobilize the meltwater. We attribute this to the large apparent contact angle of the meltwater, which for small amounts of frost serves to minimize coalescence events and prevent droplets from approaching the capillary length. Finally, we demonstrate a new mode of dynamic defrosting using an upside-down surface orientation, where the melting frost was able to uniformly detach from the superhydrophobic side and subsequently pull the frost from the hydrophobic side in a chain reaction. Treating surfaces to enable Cassie frost is therefore very desirable for enabling rapid and low-energy thermal defrosting, but only for frost sheets that are sufficiently thick.
Collapse
Affiliation(s)
- Kevin R Murphy
- Department of Biomedical Engineering and Mechanics, Virginia Tech , Blacksburg, Virginia 24061, United States
| | - William T McClintic
- Bredesen Center, The University of Tennessee , Knoxville, Tennessee 37996, United States
| | - Kevin C Lester
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - C Patrick Collier
- Bredesen Center, The University of Tennessee , Knoxville, Tennessee 37996, United States
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| | - Jonathan B Boreyko
- Department of Biomedical Engineering and Mechanics, Virginia Tech , Blacksburg, Virginia 24061, United States
| |
Collapse
|
45
|
Vasileiou T, Schutzius TM, Poulikakos D. Imparting Icephobicity with Substrate Flexibility. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:6708-6718. [PMID: 28609620 DOI: 10.1021/acs.langmuir.7b01412] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Ice accumulation hinders the performance of, and poses safety threats for, infrastructure both on the ground and in the air. Previously, rationally designed superhydrophobic surfaces have demonstrated some potential as a passive means to mitigate ice accretion; however, further studies on material solutions that reduce impalement and the contact time for impacting supercooled droplets (high viscosity) and can also repel droplets that freeze during surface contact are urgently needed. Here we demonstrate the collaborative effect of substrate flexibility and surface micro/nanotexture on enhancing both icephobicity and the repellency of viscous droplets (typical of supercooled water). We first investigate the influence of increased viscosity (spanning from 0.9 to 1078 mPa·s using water-glycerol mixtures) on impalement resistance and the droplet-substrate contact time after impact. Then we examine the effect of droplet partial solidification on recoil and simulate more challenging icing conditions by impacting supercooled water droplets (down to -15 °C) onto flexible and rigid surfaces containing ice nucleation promoters (AgI). We demonstrate a passive mechanism for shedding partially solidified (recalescent) droplets-under conditions where partial solidification occurs much faster than the natural droplet oscillation-which does not rely on converting droplet surface energy into kinetic energy (classic recoil mechanism). Using an energy-based model (kinetic-elastic-capillary), we identify a previously unexplored mechanism whereby the substrate oscillation and velocity govern the rebound process, with low areal density and moderately stiff substrates acting to efficiently absorb the incoming droplet kinetic energy and rectify it back, allowing droplets to overcome adhesion and gravitational forces, and recoil. This mechanism applies for a range of droplet viscosities, spanning from low- to high-viscosity fluids and even ice slurries, which do not rebound from rigid superhydrophobic substrates. For a low-viscosity fluid, i.e., water, if the substrate oscillates faster than the droplet spreading and retraction, the action of the substrate is decoupled from the droplet oscillation, resulting in a reduction in the droplet-substrate contact time.
Collapse
Affiliation(s)
- Thomas Vasileiou
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich , Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Thomas M Schutzius
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich , Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Department of Mechanical and Process Engineering, ETH Zurich , Sonneggstrasse 3, CH-8092 Zurich, Switzerland
| |
Collapse
|
46
|
Stamatopoulos C, Hemrle J, Wang D, Poulikakos D. Exceptional Anti-Icing Performance of Self-Impregnating Slippery Surfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:10233-10242. [PMID: 28230349 DOI: 10.1021/acsami.7b00186] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A heat exchange interface at subzero temperature in a water vapor environment exhibits high probability of frost formation due to freezing condensation, a factor that markedly decreases the heat transfer efficacy due to the considerable thermal resistance of ice. Here we report a novel strategy to delay ice nucleation on these types of solid-water vapor interfaces. With a process-driven mechanism, a self-generated liquid intervening layer immiscible to water is deposited on a textured superhydrophobic surface and acts as a barrier between the water vapor and the solid substrate. This liquid layer imparts remarkable slippery conditions resulting in high mobility of condensing water droplets. A large increase of the ensuing ice coverage time is shown compared to the cases of standard smooth hydrophilic or textured superhydrophobic surfaces. During deicing of these self-impregnating surfaces we show an impressive tendency of ice fragments to skate expediting defrosting. Robustness of such surfaces is also demonstrated by operating them under subcooling for at least 490 h without a marked degradation. This is attributed to the presence of the liquid intervening layer, which protects the substrate from hydrolyzation, enhancing longevity and sustaining heat transfer efficiency.
Collapse
Affiliation(s)
- Christos Stamatopoulos
- Laboratory of Thermodynamics in Emerging Technologies, Mechanical and Process Engineering Department, ETH Zürich , Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Jaroslav Hemrle
- ABB Switzerland, Corporate Research , Segelhofstrasse 1K, 5405 Baden-Daetwill, Switzerland
| | - Danhong Wang
- Laboratory of Thermodynamics in Emerging Technologies, Mechanical and Process Engineering Department, ETH Zürich , Sonneggstrasse 3, 8092 Zurich, Switzerland
| | - Dimos Poulikakos
- Laboratory of Thermodynamics in Emerging Technologies, Mechanical and Process Engineering Department, ETH Zürich , Sonneggstrasse 3, 8092 Zurich, Switzerland
| |
Collapse
|
47
|
Chu F, Wu X, Wang L. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces. ACS APPLIED MATERIALS & INTERFACES 2017; 9:8420-8425. [PMID: 28222256 DOI: 10.1021/acsami.6b16803] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Condensed droplet freezing and freezing droplet melting phenomena on the prepared ultraslippery superhydrophobic surface were observed and discussed in this study. Although the freezing delay performance of the surface is common, the melting of the freezing droplets on the surface is quite interesting. Three self-propelled movements of the melting droplets (ice- water mixture) were found including the droplet rotating, the droplet jumping, and the droplet sliding. The melting droplet rotating, which means that the melting droplet rotates spontaneously on the superhydrophobic surface like a spinning top, is first reported in this study and may have some potential applications in various engineering fields. The melting droplet jumping and sliding are similar to those occurring during condensation but have larger size scale and motion scale, as the melting droplets have extra-large specific surface area with much more surface energy available. These self-propelled movements make all the melting droplets on the superhydrophobic surface dynamic, easily removed, which may be promising for the anti-icing/frosting applications.
Collapse
Affiliation(s)
- Fuqiang Chu
- Department of Thermal Engineering, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Xiaomin Wu
- Department of Thermal Engineering, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University , Beijing 100084, China
| | - Lingli Wang
- Department of Thermal Engineering, Beijing Key Laboratory for CO2 Utilization and Reduction Technology, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Tsinghua University , Beijing 100084, China
| |
Collapse
|
48
|
Zhang Q, Jin B, Wang B, Fu Y, Zhan X, Chen F. Fabrication of a Highly Stable Superhydrophobic Surface with Dual-Scale Structure and Its Antifrosting Properties. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04650] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Qinghua Zhang
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Biyu Jin
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Bing Wang
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Yuchen Fu
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Xiaoli Zhan
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| | - Fengqiu Chen
- College of Chemical and Biological
Engineering, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
49
|
Sun X, Rykaczewski K. Suppression of Frost Nucleation Achieved Using the Nanoengineered Integral Humidity Sink Effect. ACS NANO 2017; 11:906-917. [PMID: 28005319 DOI: 10.1021/acsnano.6b07505] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Inhibition of frost formation is important for increasing efficiency of refrigeration systems and heat exchangers, as well as for preventing the rapid icing over of water-repellant coatings that are designed to prevent accumulation of rime and glaze. From a thermodynamic point of view, this task can be achieved by either increasing hydrophobicity of the surface or decreasing the concentration of water vapor above it. The first approach has been studied in depth, but so far has not yielded a robust solution to the problem of frost formation. In this work, we systematically explore how frost growth can be inhibited by controlling water vapor concentration using bilayer coatings with a porous exterior covering a hygroscopic liquid-infused layer. We lay the theoretical foundation and provide experimental validation of the mass transport mechanism that governs the integral humidity sink effect based on this coating platform as well as reveal intriguing sizing effects about this system. We show that the concentration profile above periodically spaced pores is governed by the sink and source concentrations and two geometrical parameters: the nondimensional pore size and the ratio of the pore spacing to the boundary layer thickness. We demonstrate that when the ratio of the pore spacing to the boundary layer thickness vanishes, as for the nanoporous bilayer coatings, the entire surface concentration becomes uniform and equal to the concentration set by the hygroscopic liquid. In other words, the surface concentration becomes completely independent of the nanopore size. We identified the threshold geometrical parameters for this condition and show that it can lead to a 65 K decrease in the nucleation onset surface temperature below the dew point. With this fundamental insight, we use bilayer coatings to nanoengineer the integral humidity sink effect to provide extreme antifrosting performance with up to a 2 h delay in nucleation onset at 263 K. The nanoporous bilayer coatings can be designed to combine optimal antifrosting functionality with a superhydrophobic water repelling exterior to provide coatings that can robustly prevent frost, rime, and glaze accumulation. By minimizing the required amount of antifreeze, this anti-icing method can have minimal operational cost and environmental impact.
Collapse
Affiliation(s)
- Xiaoda Sun
- School for Engineering of Matter, Transport and Energy, Arizona State University , Tempe, Arizona 85287, United States
| | - Konrad Rykaczewski
- School for Engineering of Matter, Transport and Energy, Arizona State University , Tempe, Arizona 85287, United States
| |
Collapse
|
50
|
Wang S, Zhang W, Yu X, Liang C, Zhang Y. Sprayable superhydrophobic nano-chains coating with continuous self-jumping of dew and melting frost. Sci Rep 2017; 7:40300. [PMID: 28074938 PMCID: PMC5225496 DOI: 10.1038/srep40300] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Accepted: 12/01/2016] [Indexed: 01/20/2023] Open
Abstract
Spontaneous movement of condensed matter provides a new insight to efficiently improve condensation heat transfer on superhydrophobic surface. However, very few reports have shown the jumping behaviors on the sprayable superhydrophobic coatings. Here, we developed a sprayable silica nano-porous coating assembled by fluorinated nano-chains to survey the condensates’ dynamics. The dewdrops were continuously removed by self- and/or trigger-propelling motion due to abundant nano-pores from random multilayer stacking of nano-chains. In comparison, the dewdrops just could be slipped under the gravity effect on lack of nano-pores coatings stacked by silica nano-spheres and nano-aggregates. More interestingly, the spontaneous jumping effect also occurred on micro-scale frost crystals under the defrosting process on nano-chains coating surfaces. Different from self-jumping of dewdrops motion, the propelling force of frost crystals were provided by a sudden increase of the pressure under the frost crystal.
Collapse
Affiliation(s)
- Shanlin Wang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Wenwen Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Xinquan Yu
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Caihua Liang
- School of Energy and Environment, Southeast University, Nanjing 210096, P. R. China
| | - Youfa Zhang
- Jiangsu Key Laboratory of Advanced Metallic Materials, School of Materials Science and Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|