1
|
Martins da Silva Filho P, Higor Rocha Mariano P, Lopes Andrade A, Barros Arrais Cruz Lopes J, de Azevedo Pinheiro A, Itala Geronimo de Azevedo M, Carneiro de Medeiros S, Alves de Vasconcelos M, Gonçalvez da Cruz Fonseca S, Barbosa Grangeiro T, Gonzaga de França Lopes L, Henrique Silva Sousa E, Holanda Teixeira E, Longhinotti E. Antibacterial and antifungal action of CTAB-containing silica nanoparticles against human pathogens. Int J Pharm 2023; 641:123074. [PMID: 37230370 DOI: 10.1016/j.ijpharm.2023.123074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 04/16/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
New antibiotic agents are urgently needed worldwide to combat the increasing tolerance and resistance of pathogenic fungi and bacteria to current antimicrobials. Here, we looked at the antibacterial and antifungal effects of minor quantities of cetyltrimethylammonium bromide (CTAB), ca. 93.8 mg g-1, on silica nanoparticles (MPSi-CTAB). Our results show that MPSi-CTAB exhibits antimicrobial activity against Methicillin-resistant Staphylococcus aureus strain (S. aureus ATCC 700698) with MIC and MBC of 0.625 mg mL-1 and 1.25 mg mL-1, respectively. Additionally, for Staphylococcus epidermidis ATCC 35984, MPSi-CTAB reduces MIC and MBC by 99.99% of viable cells on the biofilm. Furthermore, when combined with ampicillin or tetracycline, MPSi-CTAB exhibits reduced MIC values by 32- and 16-folds, respectively. MPSi-CTAB also exhibited in vitro antifungal activity against reference strains of Candida, with MIC values ranging from 0.0625 to 0.5 mg mL-1. This nanomaterial has low cytotoxicity in human fibroblasts, where over 80% of cells remained viable at 0.31 mg mL-1 of MPSi-CTAB. Finally, we developed a gel formulation of MPSi-CTAB, which inhibited in vitro the growth of Staphylococcus and Candida strains. Overall, these results support the efficacy of MPSi-CTAB with potential application in the treatment and/or prevention of infections caused by methicillin-resistant Staphylococcus and/or Candida species.
Collapse
Affiliation(s)
- Pedro Martins da Silva Filho
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará 60440-900 Fortaleza - CE, Brazil; Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil.
| | - Pedro Higor Rocha Mariano
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará 60440-900 Fortaleza - CE, Brazil
| | - Alexandre Lopes Andrade
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | - Jessica Barros Arrais Cruz Lopes
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | - Aryane de Azevedo Pinheiro
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | | | - Suelen Carneiro de Medeiros
- Departamento de Biologia, Universidade Federal do Ceará, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil
| | - Mayron Alves de Vasconcelos
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil; Departamento de Ciências Biológicas, Faculdade de Ciências Exatas e Naturais, Universidade do Estado do Rio Grande do Norte, 59610-090, Mossoró - RN, Brazil; Universidade do Estado de Minas Gerais, Unidade de Divinópolis, 35501-170, Divinópolis - MG, Brazil
| | | | - Thalles Barbosa Grangeiro
- Departamento de Biologia, Universidade Federal do Ceará, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil
| | - Luiz Gonzaga de França Lopes
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil
| | - Eduardo Henrique Silva Sousa
- Laboratório de Bioinorgânica, Departamento de Química Orgânica e Inorgânica, Universidade Federal do Ceará, PO Box 12200, Campus do Pici s/n, 60440-900, Fortaleza - CE, Brazil.
| | - Edson Holanda Teixeira
- Laboratório Integrado de Biomoléculas, Departamento de Patologia e Medicina Legal, Universidade Federal do Ceará, CEP 60430-270, Fortaleza - CE, Brazil
| | - Elisane Longhinotti
- Departamento de Química Analítica e Físico-Química, Universidade Federal do Ceará 60440-900 Fortaleza - CE, Brazil.
| |
Collapse
|
2
|
Bacterial Response to the Surface Aging of PLA Matrices Loaded with Active Compounds. Polymers (Basel) 2022; 14:polym14224976. [PMID: 36433103 PMCID: PMC9698402 DOI: 10.3390/polym14224976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/19/2022] Open
Abstract
The use of active components in biomaterials improves the properties of existing ones and makes it possible to obtain new devices with antibacterial properties that prevent infections after implantation, thus guaranteeing the success of the implant. In this work, cetyltrimethylammonium bromide (CTAB) and magnesium particles were incorporated into polylactic acid (PLA) films to assess the extent to which progressive aging of the new surfaces resists bacterial colonization processes. For this purpose, the films' surface was characterized by contact angle measurements, ToF-SIMS and AFM, and adhesion, viability and biofilm growth of Staphylococcus epidermidis bacteria on these films were also evaluated. The results show that the inclusion of Mg and CTAB in PLA films changes their surface properties both before and after aging and also modifies bacterial adhesion on the polymer. Complete bactericidal activity is exhibited on non-degraded films and films with CTAB. This antibacterial behavior is maintained after degradation for three months in the case of films containing a higher amount of CTAB.
Collapse
|
3
|
Carmona-Ribeiro AM, Mathiazzi BI, Pérez-Betancourt Y. Cationic Nanostructures as Adjuvants for Vaccines. Methods Mol Biol 2022; 2412:233-245. [PMID: 34918247 DOI: 10.1007/978-1-0716-1892-9_10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Spherical or discoidal lipid polymer nanostructures bearing cationic charges successfully adsorb a variety of oppositely charged antigens (Ag) such as proteins, peptides, nucleic acids, or oligonucleotides. This report provides instructions for the preparation and physical characterization of four different cationic nanostructures able to combine and deliver antigens to the immune system: (1) dioctadecyl dimethylammonium bromide (DODAB) bilayer fragments (DODAB BF); (2) polystyrene sulfate (PSS) nanoparticles (NPs) covered with one cationic dioctadecyl dimethylammonium bromide bilayer (DODAB) named (PSS/DODAB); (3) cationic NPs of biocompatible polymer poly(methyl methacrylate) (PMMA) prepared by emulsion polymerization of the methyl methacrylate (MMA) monomer in the presence of DODAB BF (PMMA/DODAB NPs); (4) antigen NPs (NPs) where the cationic polymer poly(diallyl dimethyl ammonium chloride) (PDDA) directly combined at nontoxic and low dose with the antigen (Ag); when the oppositely charged model antigen is ovalbumin (OVA), NPs are named PDDA/OVA. These nanostructures provide adequate microenvironments for carrying and delivering antigens to the antigen-presenting cells of the immune system.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil.
| | - Beatriz Ideriha Mathiazzi
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Yunys Pérez-Betancourt
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
4
|
Carmona-Ribeiro AM. Supramolecular Nanostructures for Vaccines. Biomimetics (Basel) 2021; 7:6. [PMID: 35076466 PMCID: PMC8788484 DOI: 10.3390/biomimetics7010006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 12/21/2021] [Accepted: 12/25/2021] [Indexed: 12/31/2022] Open
Abstract
Although this is an era of pandemics and many devastating diseases, this is also a time when bionanotechnology flourishes, illuminating a multidisciplinary field where vaccines are quickly becoming a balsam and a prevention against insidious plagues. In this work, we tried to gain and also give a deeper understanding on nanovaccines and their way of acting to prevent or cure cancer, infectious diseases, and diseases caused by parasites. Major nanoadjuvants and nanovaccines are temptatively exemplified trying to contextualize our own work and its relative importance to the field. The main properties for novel adjuvants seem to be the nanosize, the cationic character, and the biocompatibility, even if it is achieved in a low dose-dependent manner.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748, Butantan, São Paulo CEP 05508-000, SP, Brazil
| |
Collapse
|
5
|
Pérez-Betancourt Y, Araujo PM, Távora BDCLF, Pereira DR, Faquim-Mauro EL, Carmona-Ribeiro AM. Cationic and Biocompatible Polymer/Lipid Nanoparticles as Immunoadjuvants. Pharmaceutics 2021; 13:pharmaceutics13111859. [PMID: 34834275 PMCID: PMC8621050 DOI: 10.3390/pharmaceutics13111859] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/01/2021] [Accepted: 11/03/2021] [Indexed: 12/01/2022] Open
Abstract
Nanostructures have been of paramount importance for developing immunoadjuvants. They must be cationic and non-cytotoxic, easily assembling with usually oppositely charged antigens such as proteins, haptens or nucleic acids for use in vaccines. We obtained optimal hybrid nanoparticles (NPs) from the biocompatible polymer poly(methyl methacrylate) (PMMA) and the cationic lipid dioctadecyl dimethyl ammonium bromide (DODAB) by emulsion polymerization of methyl methacrylate (MMA) in the presence of DODAB. NPs adsorbed ovalbumin (OVA) as a model antigen and we determined their adjuvant properties. Interestingly, they elicited high double immune responses of the cellular and humoral types overcoming the poor biocompatibility of DODAB-based adjuvants of the bilayer type. The results suggested that the novel adjuvant would be possibly of use in a variety of vaccines.
Collapse
Affiliation(s)
- Yunys Pérez-Betancourt
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748 Butantan, São Paulo 05508-000, Brazil; (Y.P.-B.); (P.M.A.)
| | - Péricles Marques Araujo
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748 Butantan, São Paulo 05508-000, Brazil; (Y.P.-B.); (P.M.A.)
| | - Bianca de Carvalho Lins Fernandes Távora
- Immunopathology Laboratory, Butantan Institute, Avenida Vital Brasil, 1500 Butantan, São Paulo 05503-900, Brazil; (B.d.C.L.F.T.); (D.R.P.); (E.L.F.-M.)
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1730 Butantan, São Paulo 05508-000, Brazil
| | - Daniele Rodrigues Pereira
- Immunopathology Laboratory, Butantan Institute, Avenida Vital Brasil, 1500 Butantan, São Paulo 05503-900, Brazil; (B.d.C.L.F.T.); (D.R.P.); (E.L.F.-M.)
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1730 Butantan, São Paulo 05508-000, Brazil
| | - Eliana Lima Faquim-Mauro
- Immunopathology Laboratory, Butantan Institute, Avenida Vital Brasil, 1500 Butantan, São Paulo 05503-900, Brazil; (B.d.C.L.F.T.); (D.R.P.); (E.L.F.-M.)
- Departamento de Imunologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Avenida Professor Lineu Prestes, 1730 Butantan, São Paulo 05508-000, Brazil
| | - Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Avenida Professor Lineu Prestes, 748 Butantan, São Paulo 05508-000, Brazil; (Y.P.-B.); (P.M.A.)
- Correspondence:
| |
Collapse
|
6
|
Wang B, Guo W, Li T, Wang R, Song P, He Y, Cheng X. Synthesis of antibacterial Janus sheets containing dual-active centers by quaternization fracture. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127276] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Abstract
Biomimetic nanoparticles are hybrid nanostructures in which the uppermost layer is similar to a cell membrane. In these nanoparticles, lipids and biopolymers can be organized to improve drug incorporation and delivery. This report provides instructions for the preparation and physical characterization of four different biomimetic nanoparticles: (1) polystyrene sulphate (PSS) nanoparticles covered with one cationic dioctadecyl dimethylammonium bromide bilayer (DODAB), which incorporates dimeric channels of the antimicrobial peptide Gramicidin D; (2) silica nanoparticles covered with one single bilayer of the antimicrobial cationic lipid DODAB; (3) hybrid lipid/polymer indomethacin (IND) nanoparticles from injection of IND/DODAB ethanolic solution in a water solution of carboxymethyl cellulose (CMC); (4) bactericidal and fungicidal nanoparticles from DODAB bilayer fragments (BF) covered consecutively by a CMC and a poly(diallyl dimethyl ammonium chloride) (PDDA) layer. These examples provide the basis for the preparation and characterization of novel biomimetic nanoparticles with lipids and/or biopolymers in their composition. The polymers and lipids in the hybrid nanoparticle composition may impart stability and/or bioactivity and/or provide adequate microenvironments for carrying bioactive drugs and biomolecules.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil.
| |
Collapse
|
8
|
Biocompatible Lipid Polymer Cationic Nanoparticles for Antigen Presentation. Polymers (Basel) 2021; 13:polym13020185. [PMID: 33430262 PMCID: PMC7825723 DOI: 10.3390/polym13020185] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/02/2021] [Accepted: 01/04/2021] [Indexed: 02/07/2023] Open
Abstract
Biocompatible lipid polymer nanoparticles (NPs) previously used as antimicrobial agents are explored here as immuno-adjuvants. Poly (methyl methacrylate) (PMMA)/dioctadecyldimethylammonium bromide (DODAB)/poly (diallyldimethylammonium chloride) (PDDA) nanoparticles (NPs) were prepared by emulsion polymerization of methyl methacrylate (MMA) in the presence of DODAB and PDDA, with azobisisobutyronitrile (AIBN) as the initiator. NPs characterization after dialysis by dynamic light-scattering yielded 225 ± 2 nm hydrodynamic diameter (Dz), 73 ± 1 mV zeta-potential (ζ), and 0.10 ± 0.01 polydispersity (P). Ovalbumin (OVA) adsorption reduced ζ to 45 ± 2 mV. Balb/c mice immunized with NPs/OVA produced enhanced OVA-specific IgG1 and IgG2a, exhibited moderate delayed type hypersensitivity reaction, and enhanced cytokines production (IL-4, IL-10, IL-2, IFN-γ) by cultured spleen cells. There was no cytotoxicity against cultured macrophages and fibroblasts. Advantages of the PMMA/DODAB/PDDA NPs were high biocompatibility, zeta-potential, colloidal stability, and antigen adsorption. Both humoral and cellular antigen-specific immune responses were obtained.
Collapse
|
9
|
Lou Y, Dong Y, Wang X, Gong F, Zhao M, Rong Z. Synthesis, Micellization, and Surface Activity of Novel Linear‐Dendritic Carboxylate Surfactants. J SURFACTANTS DETERG 2020. [DOI: 10.1002/jsde.12455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Yuning Lou
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Yajuan Dong
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Xiaoyong Wang
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Feirong Gong
- School of Materials Science & Engineering East China University of Science and Technology Shanghai 200237 China
| | - Min Zhao
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| | - Zongming Rong
- School of Chemistry & Molecular Engineering East China University of Science and Technology Shanghai 200237 China
| |
Collapse
|
10
|
Carmona-Ribeiro AM, Pérez-Betancourt Y. Cationic Nanostructures for Vaccines Design. Biomimetics (Basel) 2020; 5:biomimetics5030032. [PMID: 32645946 PMCID: PMC7560170 DOI: 10.3390/biomimetics5030032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/02/2020] [Accepted: 07/03/2020] [Indexed: 12/20/2022] Open
Abstract
Subunit vaccines rely on adjuvants carrying one or a few molecular antigens from the pathogen in order to guarantee an improved immune response. However, to be effective, the vaccine formulation usually consists of several components: an antigen carrier, the antigen, a stimulator of cellular immunity such as a Toll-like Receptors (TLRs) ligand, and a stimulator of humoral response such as an inflammasome activator. Most antigens are negatively charged and combine well with oppositely charged adjuvants. This explains the paramount importance of studying a variety of cationic supramolecular assemblies aiming at the optimal activity in vivo associated with adjuvant simplicity, positive charge, nanometric size, and colloidal stability. In this review, we discuss the use of several antigen/adjuvant cationic combinations. The discussion involves antigen assembled to 1) cationic lipids, 2) cationic polymers, 3) cationic lipid/polymer nanostructures, and 4) cationic polymer/biocompatible polymer nanostructures. Some of these cationic assemblies revealed good yet poorly explored perspectives as general adjuvants for vaccine design.
Collapse
|
11
|
Hybrid Nanoparticles of Poly (Methyl Methacrylate) and Antimicrobial Quaternary Ammonium Surfactants. Pharmaceutics 2020; 12:pharmaceutics12040340. [PMID: 32290276 PMCID: PMC7238100 DOI: 10.3390/pharmaceutics12040340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/05/2020] [Accepted: 04/08/2020] [Indexed: 12/18/2022] Open
Abstract
Quaternary ammonium surfactants (QACs) are microbicides, whereas poly (acrylates) are biocompatible polymers. Here, the physical and antimicrobial properties of two QACs, cetyl trimethyl ammonium bromide (CTAB) or dioctadecyl dimethyl ammonium bromide (DODAB) in poly (methyl methacrylate) (PMMA) nanoparticles (NPs) are compared to those of QACs alone. Methyl methacrylate (MMA) polymerization using DODAB or CTAB as emulsifiers and initiator azobisisobutyronitrile (AIBN) yielded cationic, nanometric, homodisperse, and stable NPs. NPs’ physical and antimicrobial properties were assessed from dynamic light scattering (DLS), scanning electron microscopy, and viability curves of Escherichia coli, Staphylococcus aureus, or Candida albicans determined as log(colony-forming unities counting) over a range of [QACs]. NPs were spherical and homodisperse but activity for free QACs was higher than those for QACs in NPs. Inhibition halos against bacteria and yeast were observed only for free or incorporated CTAB in NPs because PMMA/CTAB NPs controlled the CTAB release. DODAB displayed fungicidal activity against C. albicans since DODAB bilayer disks could penetrate the outer glycoproteins fungus layer. The physical properties and stability of the cationic NPs highlighted their potential to combine with other bioactive molecules for further applications in drug and vaccine delivery.
Collapse
|
12
|
Shevchenko NN, Pankova GA, Shabsel’s BM, Laishevkina SG, Baigil’din VA. Emulsifier-Free Emulsion Copolymerization of Methyl Methacrylate As a Method of Obtaining Cationic Particles for Diagnostics of Tick-Borne Encephalitis Virus. COLLOID JOURNAL 2020. [DOI: 10.1134/s1061933x20020118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Physicochemical and antifungal properties of waterborne polymer nanoparticles synthesized with caffeine. Colloid Polym Sci 2020. [DOI: 10.1007/s00396-020-04615-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
14
|
Makvandi P, Gu JT, Zare EN, Ashtari B, Moeini A, Tay FR, Niu LN. Polymeric and inorganic nanoscopical antimicrobial fillers in dentistry. Acta Biomater 2020; 101:69-101. [PMID: 31542502 DOI: 10.1016/j.actbio.2019.09.025] [Citation(s) in RCA: 118] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 07/26/2019] [Accepted: 09/17/2019] [Indexed: 02/08/2023]
Abstract
Failure of dental treatments is mainly due to the biofilm accumulated on the dental materials. Many investigations have been conducted on the advancements of antimicrobial dental materials. Polymeric and inorganic nanoscopical agents are capable of inhibiting microorganism proliferation. Applying them as fillers in dental materials can achieve enhanced microbicidal ability. The present review provides a broad overview on the state-of-the-art research in the field of antimicrobial fillers which have been adopted for incorporation into dental materials over the last 5 years. The antibacterial agents and applications are described, with the aim of providing information for future investigations. STATEMENT OF SIGNIFICANCE: Microbial infection is the primary cause of dental treatment failure. The present review provides an overview on the state-of-art in the field of antimicrobial nanoscopical or polymeric fillers that have been applied in dental materials. Trends in the biotechnological development of these antimicrobial fillers over the last 5 years are reviewed to provide a backdrop for further advancement in this field of research.
Collapse
|
15
|
Ribeiro RT, Galvão CN, Betancourt YP, Mathiazzi BI, Carmona-Ribeiro AM. Microbicidal Dispersions and Coatings from Hybrid Nanoparticles of Poly (Methyl Methacrylate), Poly (Diallyl Dimethyl Ammonium) Chloride, Lipids, and Surfactants. Int J Mol Sci 2019; 20:E6150. [PMID: 31817604 PMCID: PMC6940815 DOI: 10.3390/ijms20246150] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 12/02/2019] [Accepted: 12/04/2019] [Indexed: 02/07/2023] Open
Abstract
Hybrid and antimicrobial nanoparticles (NPs) of poly (methyl methacrylate) (PMMA) in the presence of poly (diallyl dimethyl ammonium) chloride (PDDA) were previously obtained by emulsion polymerization in absence of surfactant with low conversion. In the presence of amphiphiles such as cetyl trimethyl ammonium bromide (CTAB), dioctadecyl dimethyl ammonium bromide (DODAB) or soybean lecithin, we found that conversion increased substantially. In this work, the effect of the amphiphiles on the NPs core-shell structure and on the antimicrobial activity of the NPs was evaluated. NPs dispersions casted on silicon wafers, glass coverslips or polystyrene substrates were also used to obtain antimicrobial coatings. Methods for characterizing the dispersions and coatings were based on scanning electron microscopy, dynamic light scattering, determination of thickness, rugosity, and wettability for the coatings and determination of colony-forming unities (log CFU/mL) of microbia after 1 h interaction with the coatings or dispersions. The amphiphiles used during PMMA/PDDA/amphiphile NPs synthesis reduced the thickness of the NPs PDDA shell surrounding each particle. The antimicrobial activity of the dispersions and coatings were due to PDDA-the amphiphiles were either washed out by dialysis or remained in the PMMA polymeric core of the NPs. The most active NPs and coatings were those of PMMA/PDDA/CTAB-the corresponding coatings showed the highest rugosity and total surface area to interact with the microbes. The dispersions and coatings obtained by casting of the NPs dispersions onto silicon wafers were hydrophilic and exhibited microbicidal activity against Escherichia coli, Staphylococcus aureus, and Candida albicans. In addition, a major effect of reduction in particle size revealed the suitability of nanometric and cationic NPs (sizes below 100 nm) represented by PMMA/PDDA/CTAB NPs to yield maximal microbicidal activity from films and dispersions against all microbia tested. The reduction of cell viability by coatings and dispersions amounted to 6-8 logs from [PDDA] ≥ minimal microbicidal concentration.
Collapse
Affiliation(s)
| | | | | | | | - Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil; (R.T.R.); (Y.P.B.); (B.I.M.)
| |
Collapse
|
16
|
Ciszewski RK, Gordon BP, Muller BN, Richmond GL. Takes Two to Tango: Choreography of the Coadsorption of CTAB and Hexanol at the Oil-Water Interface. J Phys Chem B 2019; 123:8519-8531. [PMID: 31513405 DOI: 10.1021/acs.jpcb.9b05775] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mixed surfactant systems at the oil-water interface play a vital role in applications ranging widely from drug delivery to oil-spill remediation. Synergistic mixtures are superior emulsifiers and more effective at modifying surface tension than either component alone. Mixtures of surfactants with dissimilar polar head groups are of particular interest because of the additional degree of control they offer. The interplay of hydrophobic and electrostatic effects in these systems is not well understood, in part because of the difficulty in examining their behavior at the buried oil-water interface where they reside. Here, surface-specific vibrational sum frequency spectroscopy is utilized in combination with surface tensiometry and computational methods to probe the cooperative molecular interactions between a cationic surfactant cetyltrimethylammonium bromide (CTAB) and a nonionic alcohol (1-hexanol) that induce the two initially reluctant surfactants to coadsorb synergistically at the interface. A careful deuteration study of CTAB reveals that hexanol cooperates with CTAB such that both molecules preferentially orient at the interface for sufficiently large enough concentrations of hexanol. This work's methodology is unique and serves as a guide for future explorations of macroscopic properties in these complex systems. Results from this work also provide valuable insights into how interfacial ordering impacts surface tensiometry measurements for nonionic surfactants.
Collapse
Affiliation(s)
- Regina K Ciszewski
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| | - Brittany P Gordon
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| | - Benjamin N Muller
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| | - Geraldine L Richmond
- Department of Chemistry and Biochemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| |
Collapse
|
17
|
Bošković P, Šprung M, Bazina L, Soldo B, Odžak R. The Aggregation Behavior and Antioxidative Activity of Amphiphilic Surfactants Based on Quinuclidin‐3‐ol. J SURFACTANTS DETERG 2019. [DOI: 10.1002/jsde.12348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Perica Bošković
- Faculty of Science, Department of ChemistryUniversity of Split, R. Bošković 33 21000 Split Croatia
| | - Matilda Šprung
- Faculty of Science, Department of ChemistryUniversity of Split, R. Bošković 33 21000 Split Croatia
| | - Linda Bazina
- Faculty of Science, Department of ChemistryUniversity of Split, R. Bošković 33 21000 Split Croatia
| | - Barbara Soldo
- Faculty of Science, Department of ChemistryUniversity of Split, R. Bošković 33 21000 Split Croatia
| | - Renata Odžak
- Faculty of Science, Department of ChemistryUniversity of Split, R. Bošković 33 21000 Split Croatia
| |
Collapse
|
18
|
Zhao P, Mecozzi F, Wessel S, Fieten B, Driesse M, Woudstra W, Busscher HJ, van der Mei HC, Loontjens TJA. Preparation and Evaluation of Antimicrobial Hyperbranched Emulsifiers for Waterborne Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:5779-5786. [PMID: 30673292 PMCID: PMC6495385 DOI: 10.1021/acs.langmuir.8b03584] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/11/2018] [Indexed: 06/09/2023]
Abstract
Nosocomial infections are a major problem in medical health care. To solve this problem, a series of antimicrobial waterborne paints were prepared by using antimicrobial hyperbranched (HB) emulsifiers. The HB-emulsifiers were prepared by polymerizing AB2 monomers obtained in a one-step reaction of bis(hexamethylene)triamine and carbonyl biscaprolactam. The blocked isocyanate end groups (B groups) of the HB-polymer were utilized to introduce tertiary amino groups through the reaction with compounds comprising either a hydroxyl or a primary amino group and a tertiary amino group. Quaternization of the tertiary amines with 6 different alkyl bromides resulted in 12 amphiphilic cationic species. The 12 emulsifiers showed the successful inhibition and killing of 8 bacterial and 2 fungal strains. The killing efficacy increased with increasing alkyl chain length. The octyl-functionalized compound was chosen for suspension polymerizations because of the good compromise between killing and emulsifying properties. With this emulsifier, aqueous poly(methacrylate) suspensions were prepared, which were stable and had excellent killing properties.
Collapse
Affiliation(s)
- Pei Zhao
- University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Francesco Mecozzi
- University
of Groningen, Nijenborgh
4, 9747 AG Groningen, The Netherlands
| | - Stefan Wessel
- University
of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Bram Fieten
- Van
Wijhe Verf, Russenweg
14, 8000 AE Zwolle, The Netherlands
| | | | - Willem Woudstra
- University
of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henk J. Busscher
- University
of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | - Henny C. van der Mei
- University
of Groningen and University Medical Center Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, The Netherlands
| | | |
Collapse
|
19
|
Colloidal Stability of Positively Charged Dispersions of Styrene and Acrylic Copolymers in the Presence of TiO2 and CaCO3. COLLOIDS AND INTERFACES 2019. [DOI: 10.3390/colloids3010020] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Increasing antibiotic resistance of several pathogenic microorganisms calls for alternative approaches to prevent spreading of bacterial diseases. We propose to employ for this purpose coatings obtained from positively charged latex dispersions. In this contribution we characterize aqueous mixed dispersions containing TiO2 or CaCO3 and methyl methacrylate-ethyl acrylate or styrene-ethyl acrylate copolymers synthesized using a cationic surfactant, cetyltrimethylammonium bromide as an emulsifier. Particle size, electrokinetic (ζ) potential of the mixed dispersions and the resulting thin films, as well as antimicrobial properties of the latter are described. The TiO2 and CaCO3 dispersions were stabilised with polyethyleneimine (PEI) and optimum pH for the mixed dispersions were chosen on the basis of ζ-potential measurements. For TiO2, the maximum ζ = +35 mV was found at pH 7.5, and for CaCO3, pH was set at 8.2 (ζ = +38 mV), to prevent its dissolution. In most 1:1 mixtures of TiO2 or CaCO3 with the cetyltrimethylammonium bromide (CTAB)-stabilised latex dispersions, two distinct particles populations were observed, corresponding to the bare latex and bare TiO2 or CaCO3 fractions. Films made of the mixed dispersions remained positively charged and showed antimicrobial activity similar or reduced with respect to the bare polymer films.
Collapse
|
20
|
He X, Wang L, Wu J, Yang J, Ma W, Bai L, Zhao B, Song B. The Effects of Amide Bonds and Aromatic Rings on the Surface Properties and Antimicrobial Activity of Cationic Surfactants. J SURFACTANTS DETERG 2018. [DOI: 10.1002/jsde.12221] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xianyou He
- College of Chemistry and Chemical Engineering; Qiqihar University; Qiqihar, 161006 China
| | - Liyan Wang
- College of Chemistry and Chemical Engineering; Qiqihar University; Qiqihar, 161006 China
| | - Jianglei Wu
- College of Chemistry and Chemical Engineering; Qiqihar University; Qiqihar, 161006 China
| | - Jia Yang
- College of Chemistry and Chemical Engineering; Qiqihar University; Qiqihar, 161006 China
| | - Wenhui Ma
- College of Chemistry and Chemical Engineering; Qiqihar University; Qiqihar, 161006 China
| | - Liming Bai
- College of Chemistry and Chemical Engineering; Qiqihar University; Qiqihar, 161006 China
| | - Bing Zhao
- College of Chemistry and Chemical Engineering; Qiqihar University; Qiqihar, 161006 China
| | - Bo Song
- College of Chemistry and Chemical Engineering; Qiqihar University; Qiqihar, 161006 China
| |
Collapse
|
21
|
Galvão CN, Sanches LM, Mathiazzi BI, Ribeiro RT, Petri DFS, Carmona-Ribeiro AM. Antimicrobial Coatings from Hybrid Nanoparticles of Biocompatible and Antimicrobial Polymers. Int J Mol Sci 2018; 19:E2965. [PMID: 30274201 PMCID: PMC6213362 DOI: 10.3390/ijms19102965] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 09/20/2018] [Accepted: 09/26/2018] [Indexed: 02/06/2023] Open
Abstract
Hybrid nanoparticles of poly(methylmethacrylate) synthesized in the presence of poly (diallyldimethyl ammonium) chloride by emulsion polymerization exhibited good colloidal stability, physical properties, and antimicrobial activity but their synthesis yielded poor conversion. Here we create antimicrobial coatings from casting and drying of the nanoparticles dispersions onto model surfaces such as those of silicon wafers, glass coverslips, or polystyrene sheets and optimize conversion using additional stabilizers such as cetyltrimethyl ammonium bromide, dioctadecyldimethyl ammonium bromide, or soybean lecithin during nanoparticles synthesis. Methodology included dynamic light scattering, determination of wettability, ellipsometry of spin-coated films, scanning electron microscopy, and determination of colony forming unities (log CFU/mL) of bacteria after 1 h interaction with the coatings. The additional lipids and surfactants indeed improved nanoparticle synthesis, substantially increasing the conversion rates by stabilizing the monomer droplets in dispersion during the polymerization. The coatings obtained by spin-coating or casting of the nanoparticles dispersions onto silicon wafers were hydrophilic with contact angles increasing with the amount of the cationic polymer in the nanoparticles. Against Escherichia coli and Staphylococcus aureus, bacteria cell counts were reduced by approximately 7 logs upon interaction with the coatings, revealing their potential for several biotechnological and biomedical applications.
Collapse
Affiliation(s)
- Carolina Nascimento Galvão
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| | - Luccas Missfeldt Sanches
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| | - Beatriz Ideriha Mathiazzi
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| | - Rodrigo Tadeu Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| | - Denise Freitas Siqueira Petri
- Departamento de Química Fundamental, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| | - Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes 748, 05508-000 São Paulo, Brazil.
| |
Collapse
|
22
|
Carmona-Ribeiro AM. Self-Assembled Antimicrobial Nanomaterials. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:E1408. [PMID: 29973521 PMCID: PMC6069395 DOI: 10.3390/ijerph15071408] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/17/2022]
Abstract
Nanotechnology came to stay improving the quality of human life by reducing environmental contamination of earth and water with pathogens. This review discusses how self-assembled antimicrobial nanomaterials can contribute to maintain humans, their water and their environment inside safe boundaries to human life even though some of these nanomaterials display an overt toxicity. At the core of their strategic use, the self-assembled antimicrobial nanomaterials exhibit optimal and biomimetic organization leading to activity at low doses of their toxic components. Antimicrobial bilayer fragments, bilayer-covered or multilayered nanoparticles, functionalized inorganic or organic polymeric materials, coatings and hydrogels disclose their potential for environmental and public health applications in this review.
Collapse
Affiliation(s)
- Ana Maria Carmona-Ribeiro
- Biocolloids Laboratory, Instituto de Química, Universidade de São Paulo; Av. Prof. Lineu Prestes 748, São Paulo 05508-000, Brazil.
| |
Collapse
|
23
|
Khademi M, Wang W, Reitinger W, Barz DPJ. Zeta Potential of Poly(methyl methacrylate) (PMMA) in Contact with Aqueous Electrolyte-Surfactant Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10473-10482. [PMID: 28915350 DOI: 10.1021/acs.langmuir.7b02487] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The addition of surfactants can considerably impact the electrical characteristics of an interface, and the zeta potential measurement is the standard method for its characterization. In this article, a comprehensive study of the zeta potential of poly(methyl methacrylate) (PMMA) in contact with aqueous solutions containing an anionic, a cationic, or a zwitterionic surfactant at different pH and ionic strength values is conducted. Electrophoretic mobilities are inferred from electrophoretic light scattering measurements of the particulate PMMA. These values can be converted into zeta potentials using permittivity and viscosity measurements of the continuous phase. Different behaviors are observed for each surfactant type, which can be explained with the various adsorption mechanisms on PMMA. For the anionic surfactant, the absolute zeta potential value below the critical micelle concentration (CMC) increases with the concentration, while it becomes rather constant around the CMC. At concentrations above the CMC, the absolute zeta potential increases again. We propose that hydrophobic-based adsorption and, at higher concentrations, the competing micellization process drive this behavior. The addition of cationic surfactant results in an isoelectric point below the CMC where the negative surface charge is neutralized by a layer of adsorbed cationic surfactant. At concentrations near the CMC, the positive zeta potential is rather constant. In this case, we propose that electrostatic interactions combined with hydrophobic adsorption are responsible for the observed behavior. The zeta potential in the presence of zwitterionic surfactant is influenced by the adsorption, because of hydrophobic interactions between the surfactant tail and the PMMA surface. However, there is less influence, compared to the ionic surfactants. For all three surfactant types, the zeta potential changes to more-negative or less-positive values for alkaline pH values, because of hydroxide adsorption. An increase of the ionic strength decreases the absolute value of the zeta potential, because of the shielding effects.
Collapse
Affiliation(s)
- Mahmoud Khademi
- Department of Chemical Engineering, Queen's University , Kingston, Ontario, Canada K7L 3N6
| | - Wuchun Wang
- Department of Chemical Engineering, Queen's University , Kingston, Ontario, Canada K7L 3N6
| | - Wolfgang Reitinger
- Department of Chemical Engineering, Queen's University , Kingston, Ontario, Canada K7L 3N6
| | - Dominik P J Barz
- Department of Chemical Engineering, Queen's University , Kingston, Ontario, Canada K7L 3N6
| |
Collapse
|
24
|
Su X, Zhou X, Tan Z, Zhou C. Highly efficient antibacterial diblock copolypeptides based on lysine and phenylalanine. Biopolymers 2017; 107. [DOI: 10.1002/bip.23041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 07/26/2017] [Accepted: 07/31/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Xiaokai Su
- School of Materials Science and Engineering; Tongji University, 4800 Caoan Road; Shanghai 201804 China
| | - Xinyu Zhou
- School of Materials Science and Engineering; Tongji University, 4800 Caoan Road; Shanghai 201804 China
| | - Zhengzhong Tan
- School of Materials Science and Engineering; Tongji University, 4800 Caoan Road; Shanghai 201804 China
| | - Chuncai Zhou
- School of Materials Science and Engineering; Tongji University, 4800 Caoan Road; Shanghai 201804 China
| |
Collapse
|
25
|
Carrasco LDDM, Bertolucci R, Ribeiro RT, Sampaio JLM, Carmona-Ribeiro AM. Cationic Nanostructures against Foodborne Pathogens. Front Microbiol 2016; 7:1804. [PMID: 27881979 PMCID: PMC5101191 DOI: 10.3389/fmicb.2016.01804] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 10/27/2016] [Indexed: 11/13/2022] Open
Affiliation(s)
- Letícia Dias de Melo Carrasco
- Laboratório de Biocolóides, Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil; Laboratório de Microbiologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São PauloSão Paulo, Brazil
| | - Ronaldo Bertolucci
- Laboratório de Biocolóides, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo São Paulo, Brazil
| | - Rodrigo T Ribeiro
- Laboratório de Biocolóides, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo São Paulo, Brazil
| | - Jorge L M Sampaio
- Laboratório de Microbiologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo São Paulo, Brazil
| | - Ana M Carmona-Ribeiro
- Laboratório de Biocolóides, Departamento de Bioquímica, Instituto de Química, Universidade de São PauloSão Paulo, Brazil; Laboratório de Microbiologia, Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São PauloSão Paulo, Brazil
| |
Collapse
|
26
|
Sun X, Qian Z, Luo L, Yuan Q, Guo X, Tao L, Wei Y, Wang X. Antibacterial Adhesion of Poly(methyl methacrylate) Modified by Borneol Acrylate. ACS APPLIED MATERIALS & INTERFACES 2016; 8:28522-28528. [PMID: 27712052 DOI: 10.1021/acsami.6b10498] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Poly(methyl methacrylate) (PMMA) is a widely used biomaterial. But there is still a challenge facing its unwanted bacterial adhesion because the subsequent biofilm formation usually leads to failure of related implants. Herein, we present a borneol-modified PMMA based on a facile and effective stereochemical strategy, generating antibacterial copolymer named as P(MMA-co-BA). It was synthesized by free radical polymerization and studied with different ratio between methyl methacrylate (MMA) and borneol acrylate (BA) monomers. NMR, GPC, and EA, etc., were used to confirm their chemical features. Their films were challenged with Escherichia coli (Gram-negative) and Bacillus subtilis (Gram-positive), showing a BA content dependent antibacterial performance. The minimum effective dose should be 10%. Then in vivo subcutaneous implantations in mice demonstrated their biocompatibilities through routine histotomy and HE staining. Therefore, P(MMA-co-BA)s not only exhibited their unique antibacterial character but also suggested a potential for the safe usage of borneol-modified PMMA frame and devices for further implantation.
Collapse
Affiliation(s)
- Xueli Sun
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, P. R. China
| | - Zhiyong Qian
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing 100191, P. R. China
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences , Beijing 100850, P. R. China
| | - Lingqiong Luo
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, P. R. China
| | - Qipeng Yuan
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, P. R. China
| | - Ximin Guo
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University , Beijing 100191, P. R. China
- Department of Advanced Interdisciplinary Studies, Institute of Basic Medical Sciences , Beijing 100850, P. R. China
| | - Lei Tao
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Yen Wei
- Department of Chemistry, Tsinghua University , Beijing 100084, P. R. China
| | - Xing Wang
- Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology , Beijing 100029, P. R. China
| |
Collapse
|
27
|
Lin MH, Hung CF, Aljuffali IA, Sung CT, Huang CT, Fang JY. Cationic amphiphile in phospholipid bilayer or oil-water interface of nanocarriers affects planktonic and biofilm bacteria killing. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 13:353-361. [PMID: 27558353 DOI: 10.1016/j.nano.2016.08.011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/01/2016] [Accepted: 08/06/2016] [Indexed: 10/21/2022]
Abstract
A cationic amphiphile, soyaethyl morpholinium ethosulfate (SME), immobilized in liposomes or nanoemulsions, was prepared in an attempt to compare the antibacterial activity between SME intercalated in the phospholipid bilayer and oil-water interface. Before antibacterial assessment, the size of the liposomes and nanoemulsions was respectively recorded as 75 and 214 nm. The data of minimum inhibitory concentration (MIC)/minimum bactericidal concentration (MBC) and live/dead cell count demonstrated a superior antimicrobial activity of nanoemulsions compared to liposomes against Staphylococcus aureus, methicillin-resistant S. aureus (MRSA), and Staphylococcus epidermidis. Nanoemulsion incubation reduced biofilm thickness by 2.4-fold, whereas liposomes showed a 1.6-fold decrease in thickness. SME insertion in the oil-water phase was found to induce bacterial membrane disruption. SME nanosystems were nontoxic to keratinocytes. In vivo topical application of the cationic nanosystems reduced skin infection, MRSA load, and inflammation in mice. The deteriorated skin barrier function evoked by MRSA was recovered by nanoemulsion treatment.
Collapse
Affiliation(s)
- Ming-Hsien Lin
- Department of Dermatology, Chi Mei Medical Center, Tainan, Taiwan
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei City, Taiwan
| | - Ibrahim A Aljuffali
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Calvin T Sung
- School of Medicine, University of California, Riverside, CA, USA
| | - Chi-Ting Huang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan
| | - Jia-You Fang
- Pharmaceutics Laboratory, Graduate Institute of Natural Products, Chang Gung University, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Taoyuan, Taiwan; Research Center for Industry of Human Ecology, Chang Gung University of Science and Technology, Taoyuan, Taiwan.
| |
Collapse
|
28
|
Cohen S, Gelber C, Natan M, Banin E, Corem-Salkmon E, Margel S. Synthesis and characterization of crosslinked polyisothiouronium methylstyrene nanoparticles of narrow size distribution for antibacterial and antibiofilm applications. J Nanobiotechnology 2016; 14:56. [PMID: 27388790 PMCID: PMC4936196 DOI: 10.1186/s12951-016-0208-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Accepted: 06/20/2016] [Indexed: 12/04/2022] Open
Abstract
Background Isothiouronium salts are well known in their variety of antimicrobials activities. The use of polymeric biocides, polymers with antimicrobial activities, is expected to enhance the efficacy of some existing antimicrobial agents, thus minimizing the environmental problems accompanying conventional antimicrobials. Methods The current manuscript describes the synthesis and characterization of crosslinked polyisothiouronium methylstyrene (PITMS) nanoparticles (NPs) of narrow size distribution by dispersion co-polymerization of the monomer isothiouronium methylstyrene with the crosslinking monomer ethylene glycol dimetacrylate. Results and discussion The effect of total monomer, crosslinker and initiator concentrations on the size and size distribution of the formed NPs was also elucidated. The bactericidal activity of PITMS NPs of 67 ± 8 nm diameter was illustrated for 4 bacterial pathogens: Listeria innocua, Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. In order to demonstrate the potential of these PITMS NPs as inhibitor of biofilm formation, polyethylene terephthalate (PET) films were thin-coated with the PITMS NPs. The formed PET/PITMS films reduced the viability of the biofilm of Listeria by 2 orders of magnitude, making the coatings excellent candidates for further development of non-fouling surfaces. In addition, PITMS NP coatings were found to be non-toxic in HaCaT cells. Conclusions The high antibacterial activity and effective inhibition of bacterial adsorption indicate the potential of these nanoparticles for development of new types of antibacterial and antibiofilm additives. Electronic supplementary material The online version of this article (doi:10.1186/s12951-016-0208-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sarit Cohen
- Department of Chemistry, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Chen Gelber
- Department of Chemistry, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Michal Natan
- The Mina and Everard Goodman Faculty of Life Sciences, The Institute for Advanced Materials and Nanotechnology, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Ehud Banin
- The Mina and Everard Goodman Faculty of Life Sciences, The Institute for Advanced Materials and Nanotechnology, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Enav Corem-Salkmon
- Department of Chemistry, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900, Ramat Gan, Israel
| | - Shlomo Margel
- Department of Chemistry, The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900, Ramat Gan, Israel.
| |
Collapse
|
29
|
Liu Y, Jia L, Guo X, Zhao Z. Surface activities and thermodynamic properties of novel cationic surfactants with hydroxymethyl group. J DISPER SCI TECHNOL 2016. [DOI: 10.1080/01932691.2016.1160322] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Yanyan Liu
- College of Chemistry and Chemical Engineering, Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, China
| | - Lihua Jia
- College of Chemistry and Chemical Engineering, Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, China
| | - Xiangfeng Guo
- College of Chemistry and Chemical Engineering, Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, China
| | - Zhenlong Zhao
- College of Chemistry and Chemical Engineering, Key Laboratory of Fine Chemicals of College of Heilongjiang Province, Qiqihar University, Qiqihar, China
| |
Collapse
|
30
|
Chitosan and functionalized acrylic nanoparticles as the precursor of new generation of bio-based antibacterial films. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 59:1-9. [DOI: 10.1016/j.msec.2015.09.096] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2015] [Revised: 06/15/2015] [Accepted: 09/26/2015] [Indexed: 11/23/2022]
|
31
|
Sanches LM, Petri DFS, de Melo Carrasco LD, Carmona-Ribeiro AM. The antimicrobial activity of free and immobilized poly (diallyldimethylammonium) chloride in nanoparticles of poly (methylmethacrylate). J Nanobiotechnology 2015; 13:58. [PMID: 26404400 PMCID: PMC4582890 DOI: 10.1186/s12951-015-0123-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/15/2015] [Indexed: 11/25/2022] Open
Abstract
Background Several cationic polymers exhibit a useful antimicrobial property, however the structure–activity relationship still requires a more complete investigation. The main objective of this work is the comparison between the antimicrobial activity and toxicity of free and immobilized poly (diallyldimethylammonium) chloride (PDDA) in biocompatible poly (methylmethacrylate) (PMMA) nanoparticles (NPs). Results NPs synthesis by emulsion polymerization is performed over a range of [PDDA] at two methylmethacrylate (MMA) concentrations. The PMMA/PDDA dispersions are characterized by dynamic light-scattering for sizing, polydispersity and zeta-potential analysis, scanning electron microscopy (SEM), plating plus colony forming unities (CFU) counting for determination of the minimal microbicidal concentrations (MMC) against Escherichia coli, Staphylococcus aureus and Candida albicans and hemolysis evaluation against mammalian erythrocytes. There is a high colloidal stability for the cationic PMMA/PDDA NPs over a range of [PDDA]. NPs diverse antimicrobial activity against the microorganisms reduces cell viability by eight-logs (E. coli), seven-logs (S. aureus) or two-logs (C. albicans). The NPs completely kill E. coli over a range of [PDDA] that are innocuous to the erythrocytes. Free PDDA antimicrobial activity is higher than the one observed for PDDA in the NPs. There is no PDDA induced-hemolysis at the MMC in contrast to the hemolytic effect of immobilized PDDA in the NPs. Hemolysis is higher than 15 % for immobilized PDDA at the MMC for S. aureus and C. albicans. Conclusions The mobility of the cationic antimicrobial polymer PDDA determines its access to the inner layers of the cell wall and the cell membrane, the major sites of PDDA antimicrobial action. PDDA freedom does matter for determining the antimicrobial activity at low PDDA concentrations and absence of hemolysis. Electronic supplementary material The online version of this article (doi:10.1186/s12951-015-0123-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Luccas Missfeldt Sanches
- Biocolloids Lab, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Caixa Postal 26077, CEP 05513-970, São Paulo, SP, Brazil.
| | | | - Letícia Dias de Melo Carrasco
- Biocolloids Lab, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Caixa Postal 26077, CEP 05513-970, São Paulo, SP, Brazil. .,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-900, São Paulo, Brazil.
| | - Ana Maria Carmona-Ribeiro
- Biocolloids Lab, Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, Caixa Postal 26077, CEP 05513-970, São Paulo, SP, Brazil. .,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Ciências Farmacêuticas, Universidade de São Paulo, CEP 05508-900, São Paulo, Brazil.
| |
Collapse
|
32
|
|
33
|
Supramolecular cationic assemblies against multidrug-resistant microorganisms: activity and mechanism of action. Int J Mol Sci 2015; 16:6337-52. [PMID: 25809608 PMCID: PMC4394535 DOI: 10.3390/ijms16036337] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 03/12/2015] [Accepted: 03/16/2015] [Indexed: 11/30/2022] Open
Abstract
The growing challenge of antimicrobial resistance to antibiotics requires novel synthetic drugs or new formulations for old drugs. Here, cationic nanostructured particles (NPs) self-assembled from cationic bilayer fragments and polyelectrolytes are tested against four multidrug-resistant (MDR) strains of clinical importance. The non-hemolytic poly(diallyldimethylammonium) chloride (PDDA) polymer as the outer NP layer shows a remarkable activity against these organisms. The mechanism of cell death involves bacterial membrane lysis as determined from the leakage of inner phosphorylated compounds and possibly disassembly of the NP with the appearance of multilayered fibers made of the NP components and the biopolymers withdrawn from the cell wall. The NPs display broad-spectrum activity against MDR microorganisms, including Gram-negative and Gram-positive bacteria and yeast.
Collapse
|
34
|
Tang S, Huang L, Shi Z, He W. Water-based synthesis of cationic hydrogel particles: effect of the reaction parameters and in vitro cytotoxicity study. J Mater Chem B 2015; 3:2842-2852. [DOI: 10.1039/c4tb01664e] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Simple variation of reaction parameters can provide a library of cationic epoxy–amine hydrogel particles with a diverse collection of physical and chemical characteristics, temperature responsiveness, and cytocompatibility.
Collapse
Affiliation(s)
- Shuangcheng Tang
- Department of Materials Science and Engineering
- University of Tennessee
- Knoxville
- USA
| | - Lu Huang
- Department of Materials Science and Engineering
- University of Tennessee
- Knoxville
- USA
| | - Zengqian Shi
- Center for Renewable Carbon
- Department of Forestry
- Wildlife & Fisheries
- University of Tennessee
- Knoxville
| | - Wei He
- Department of Materials Science and Engineering
- University of Tennessee
- Knoxville
- USA
- Department of Mechanical
| |
Collapse
|
35
|
Álvarez-Paino M, Muñoz-Bonilla A, López-Fabal F, Gómez-Garcés JL, Heuts JPA, Fernández-García M. Functional surfaces obtained from emulsion polymerization using antimicrobial glycosylated block copolymers as surfactants. Polym Chem 2015. [DOI: 10.1039/c5py00776c] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Antimicrobial surfaces were obtained from latex particles stabilized with amphiphilic block copolymer surfactants containing both quaternary ammonium and carbohydrate groups.
Collapse
Affiliation(s)
- Marta Álvarez-Paino
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC)
- 28006 Madrid
- Spain
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
| | - Alexandra Muñoz-Bonilla
- Instituto de Ciencia y Tecnología de Polímeros (ICTP-CSIC)
- 28006 Madrid
- Spain
- Departamento de Química Física Aplicada
- Facultad de Ciencias
| | | | | | - Johan P. A. Heuts
- Department of Chemical Engineering and Chemistry
- Eindhoven University of Technology
- 5600 MB Eindhoven
- The Netherlands
| | | |
Collapse
|
36
|
Zhao Z, Guo X, Jia L, Liu Y. Synthesis and properties of quaternary ammonium surfactants containing a methoxy benzyl substitute. RSC Adv 2014. [DOI: 10.1039/c4ra07363k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
m-MDRA-n exhibit high surface activity, excellent adsorptive and bacterial properties, thermodynamic functions of micellization for m-MDRA-n were researched.
Collapse
Affiliation(s)
- Zhenlong Zhao
- College of Chemistry and Chemical Engineering
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province
- Qiqihar University
- Qiqihar 161006, China
| | - Xiangfeng Guo
- College of Chemistry and Chemical Engineering
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province
- Qiqihar University
- Qiqihar 161006, China
| | - Lihua Jia
- College of Chemistry and Chemical Engineering
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province
- Qiqihar University
- Qiqihar 161006, China
| | - Yanyan Liu
- College of Chemistry and Chemical Engineering
- Key Laboratory of Fine Chemicals of College of Heilongjiang Province
- Qiqihar University
- Qiqihar 161006, China
| |
Collapse
|