1
|
Francés-Soriano L, Bellezza D, Ferrera-González J, González-Béjar M, Pérez-Prieto J. NIR-triggered photooxygenation of α-terpinene with upconversion nanohybrids. NANOSCALE ADVANCES 2024:d4na00528g. [PMID: 39355838 PMCID: PMC11440474 DOI: 10.1039/d4na00528g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/11/2024] [Indexed: 10/03/2024]
Abstract
Upconversion nanohybrids (UCNHs) consisting of rose bengal (RB) and upconversion nanoparticles (UCNPs) are able to promote terpinene oxidation upon near-infrared irradiation. The photophysical events occurring upon NIR-irradiation of the UCNH correlate well with the synthetic protocol used to prepare the UCNHs (RB loading and aggregation). These results highlight the importance of the optimization of UCNH composition for the photocatalysis outcome.
Collapse
Affiliation(s)
- Laura Francés-Soriano
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València Calle Catedrático José Beltrán 2 Paterna Valencia 46980 Spain
| | - Delia Bellezza
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València Calle Catedrático José Beltrán 2 Paterna Valencia 46980 Spain
| | - Juan Ferrera-González
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València Calle Catedrático José Beltrán 2 Paterna Valencia 46980 Spain
| | - María González-Béjar
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València Calle Catedrático José Beltrán 2 Paterna Valencia 46980 Spain
| | - Julia Pérez-Prieto
- Instituto de Ciencia Molecular (ICMol), Departamento de Química Orgánica, Universitat de València Calle Catedrático José Beltrán 2 Paterna Valencia 46980 Spain
| |
Collapse
|
2
|
Properties of bacterial cellulose acetate nanocomposite with TiO 2 nanoparticle and graphene reinforcement. Int J Biol Macromol 2023; 235:123705. [PMID: 36801305 DOI: 10.1016/j.ijbiomac.2023.123705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 02/06/2023] [Accepted: 02/11/2023] [Indexed: 02/18/2023]
Abstract
Agricultural waste is considered a promising source for bacterial cellulose production. This study aims to observe the influence of TiO2 nanoparticles and graphene on the characteristic of bacterial cellulose acetate-based nanocomposite membranes for bacterial filtration in waters. Bacterial cellulose was produced from the pineapple peel waste using fermentation process. High-pressure homogenization process was applied to reduce bacterial nanocellulose size and esterification process was carried out to produce cellulose acetate. Nanocomposite membranes were synthesized with reinforcement of TiO2 nanoparticles 1 % and graphene nanopowder 1 %. The nanocomposite membrane was characterized using an FTIR, SEM, XRD, BET, tensile testing, and bacterial filtration effectiveness using the plate count method. The results showed that the main cellulose structure was identified at the diffraction angle 22° and the cellulose structure slightly changed at the peak of diffraction angles of 14° and 16°. In addition, the crystallinity of bacterial cellulose increased from 72.5 % to 75.9 %, and the functional group analysis showed that several peak shifts indicated a change in the functional group of membrane. Similarly, the surface morphology of membrane became rougher with the structure of mesoporous membrane. Moreover, adding TiO2 and graphene increases crystallinity and bacterial filtration effectiveness of nanocomposite membrane.
Collapse
|
3
|
Mandal P, Marcasuzaa P, Billon L. para-Fluoro/thiol click chemistry-driven pentafluorostyrene-based block copolymer self-assembly: to mimic or not to mimic the solubility parameter? Polym Chem 2022. [DOI: 10.1039/d2py00784c] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This investigation reports the controlled transition from disordered/nano-segregated poly(styrene-b-pentafluorostyrene) (PS-b-PPFS)-based block copolymers after a subsequent para-fluoro/thiol click reaction with different functional thiol agents.
Collapse
Affiliation(s)
- Prithwiraj Mandal
- Université de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR5254, 64000 Pau, France
- Bio-inspired Materials group: Functionalities & Self-assembly, E2S UPPA, Pau, France
| | - Pierre Marcasuzaa
- Université de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR5254, 64000 Pau, France
- Bio-inspired Materials group: Functionalities & Self-assembly, E2S UPPA, Pau, France
| | - Laurent Billon
- Université de Pau et Pays de l'Adour, E2S UPPA, CNRS, IPREM, UMR5254, 64000 Pau, France
- Bio-inspired Materials group: Functionalities & Self-assembly, E2S UPPA, Pau, France
| |
Collapse
|
4
|
Yang W, Feng S, Zhang X, Wang Y, Li C, Zhang L, Zhao J, Gurzadyan GG, Tao S. Bodipy-Containing Porous Microcapsules for Flow Heterogeneous Photocatalysis. ACS APPLIED MATERIALS & INTERFACES 2021; 13:38722-38731. [PMID: 34370443 DOI: 10.1021/acsami.1c10807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Photocatalysis is a facile strategy for complex chemical transformations. Heterogeneous photocatalysis, especially in the flow system, has attracted much attention as it avoids the separation of catalysts. Herein, a kind of a Bodipy-containing porous microcapsule heterogeneous photocatalyst was rationally constructed with modulation on a multiscale. The diiodo-Bodipy with methacrylate (MA-2IBDP) was synthesized as a polymerizable photosensitizer. After immobilization in a polymer matrix, the intersystem crossing rate constant of MA-2IBDP increased to 2.7 × 1010 s-1 and its triplet excited-state lifetime prolonged to ∼1 ms. Porous structures in microcapsules were created to facilitate mass transfer. A flat plate flow reactor was constructed to fix the catalytic microcapsules and improve light utilization. With the combination of all the above benefits, the reaction rate constant (0.896 s-1) is 10 times faster than that of MA-2IBDP in a homogeneous system for juglone synthesis. The continuous production can last for 30 h without yield decrease. The photocatalyst can also be used in aza-Henry reaction, Alder-Ene reaction, and oxidation of thiols to disulfides with conversion rates above 95%. This study provides a means for the construction of heterogeneous catalysts and the flow reaction system.
Collapse
Affiliation(s)
- Wenbo Yang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Shi Feng
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Xue Zhang
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yuchao Wang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Chong Li
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Lijing Zhang
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Gagik G Gurzadyan
- Institute of Artificial Photosynthesis, State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Shengyang Tao
- School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning, P.R. China
| |
Collapse
|
5
|
Ferguson CTJ, Zhang KAI. Classical Polymers as Highly Tunable and Designable Heterogeneous Photocatalysts. ACS Catal 2021. [DOI: 10.1021/acscatal.1c02056] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Calum T. J. Ferguson
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Kai A. I. Zhang
- Department of Materials Science, Fudan University, 200433 Shanghai, P. R. China
| |
Collapse
|
6
|
Mendoza C, Désert A, Khrouz L, Páez CA, Parola S, Heinrichs B. Heterogeneous singlet oxygen generation: in-operando visible light EPR spectroscopy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25124-25129. [PMID: 30903479 DOI: 10.1007/s11356-019-04763-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 03/04/2019] [Indexed: 06/09/2023]
Abstract
The use of photosensitizers immobilized on mesoporous materials to produce singlet oxygen (1O2) has opened a new way to synthetic and environmental applications due to the fast development of flow photochemistry and continuous-flow microreactors. 1O2-based photosensitized processes can be employed for the degradation of organic pollutants in an aqueous medium and the photosensitizer can be covalently attached to the support and separated from the effluent reducing the environmental impact. The aim of the present paper is to evaluate the 1O2 generation of Rose Bengal (RB) in homogeneous and heterogeneous systems using in-operando evaluation. Mesoporous SiO2 nanoparticles (MSNs) were successfully conjugated with RB (MSN-RB) and electron paramagnetic resonance (EPR) spectroscopy in combination with the spin trap TEMP was employed to obtain paramagnetic TEMPO via generated 1O2 when RB or MSN-RB are exposed to visible light. Additionally, EPR/DMPO was used to exclude the possible generation of other reactive oxygen species (ROS) by the functionalized nanoparticles. We found that in situ 1O2 generation was enhanced when the same amount of RB is immobilized inside of mesoporous SiO2.
Collapse
Affiliation(s)
- Carlos Mendoza
- Nanomaterials, Catalysis & Electrochemistry (NCE), Department of Chemical Engineering, University of Liège, B-4000, Liège, Belgium.
| | - Anthony Désert
- UMR 5182, Laboratoire de Chimie, Université de Lyon, Ecole Normale Superieure de Lyon, CNRS, Université Lyon 1, 46 allée d'Italie, F69364, Lyon, France
| | - Lhoussain Khrouz
- UMR 5182, Laboratoire de Chimie, Université de Lyon, Ecole Normale Superieure de Lyon, CNRS, Université Lyon 1, 46 allée d'Italie, F69364, Lyon, France
| | - Carlos A Páez
- Nanomaterials, Catalysis & Electrochemistry (NCE), Department of Chemical Engineering, University of Liège, B-4000, Liège, Belgium
| | - Stéphane Parola
- UMR 5182, Laboratoire de Chimie, Université de Lyon, Ecole Normale Superieure de Lyon, CNRS, Université Lyon 1, 46 allée d'Italie, F69364, Lyon, France
| | - Benoît Heinrichs
- Nanomaterials, Catalysis & Electrochemistry (NCE), Department of Chemical Engineering, University of Liège, B-4000, Liège, Belgium
| |
Collapse
|
7
|
Cheng Q, Lin L, Deng X, Zheng T, Wang Q, Gao Y, Zhai X, Yang J, Ma W, Li X, Zhang Y. Large-Scale and Low-Cost Preparation of Ordered Honeycomb-Patterned Film by Solvent Evaporation-Induced Phase Separation Method. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.0c04780] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Qi Cheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Ligang Lin
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Xuesong Deng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Tiantian Zheng
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Qi Wang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Yixin Gao
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Xiaofei Zhai
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Jing Yang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Wensong Ma
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Xinyang Li
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| | - Yuzhong Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes/National Center for International Joint Research on Separation Membrane, School of Materials Science and Engineering, Tiangong University, Tianjin 300387, P. R. China
| |
Collapse
|
8
|
Boussiron C, Le Bechec M, Sabalot J, Lacombe S, Save M. Photoactive rose bengal-based latex via RAFT emulsion polymerization-induced self-assembly. Polym Chem 2021. [DOI: 10.1039/d0py01128b] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Rose bengal shell- or core-functionalized acrylic latex synthesized by RAFT emulsion PISA: interfacial photosensitized 1O2 production under visible light.
Collapse
Affiliation(s)
- Charlène Boussiron
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| | - Mickaël Le Bechec
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| | - Julia Sabalot
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| | - Sylvie Lacombe
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| | - Maud Save
- CNRS
- University Pau & Pays Adour
- E2S UPPA
- Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux
- IPREM
| |
Collapse
|
9
|
Aynard A, Pessoni L, Billon L. Directed self-assembly in “breath figure” templating of block copolymers followed by soft hydrolysis-condensation: One step towards synthetic bio-inspired silica diatoms exoskeleton. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.123047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
10
|
Yuan H, Li G, Dai E, Lu G, Huang X, Hao L, Tan Y. Ordered
Honeycomb‐Pattern
Membrane
†. CHINESE J CHEM 2020. [DOI: 10.1002/cjoc.202000340] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Hua Yuan
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Guangzhen Li
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Enhao Dai
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Guolin Lu
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Xiaoyu Huang
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Longyun Hao
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| | - Yeqiang Tan
- Key Laboratory of Bio‐Fibers and Eco‐Textiles, Collaborative Innovation Center of Marine Biobased Fiber and Ecological Textile Technology, Institute of Marine Biobased Materials, College of Materials Science and Engineering, Qingdao University Qingdao, Shandong 266071, China Key Laboratory of Synthetic and Self‐Assembly Chemistry for Organic Functional Molecules, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese
| |
Collapse
|
11
|
Modigunta JKR, Kim JM, Cao TT, Yabu H, Huh DS. Pore-selective modification of the honeycomb-patterned porous polystyrene film with poly(N-isopropylacrylamide) and application for thermo-responsive smart material. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122630] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Taylor D, Dalgarno SJ, Xu Z, Vilela F. Conjugated porous polymers: incredibly versatile materials with far-reaching applications. Chem Soc Rev 2020; 49:3981-4042. [DOI: 10.1039/c9cs00315k] [Citation(s) in RCA: 93] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This review discusses conjugated porous polymers and focuses on relating design principles and synthetic methods to key properties and applications such as (photo)catalysis, gas storage, chemical sensing, energy storage and environmental remediation.
Collapse
Affiliation(s)
- Dominic Taylor
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Scott J. Dalgarno
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| | - Zhengtao Xu
- Department of Chemistry
- City University of Hong Kong
- Kowloon
- Hong Kong
| | - Filipe Vilela
- School of Engineering and Physical Science
- Heriot-Watt University
- Riccarton
- UK
| |
Collapse
|
13
|
Kim YW, Modigunta JKR, Male U, Huh DS. Effect of ferrocene on the fabrication of honeycomb-patterned porous polystyrene films and silver functionalization of the film. POLYMER 2019. [DOI: 10.1016/j.polymer.2019.01.046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
14
|
Modigunta JKR, Male U, Huh DS. Formylated polystyrene for the fabrication of pore selective aldehyde group functionalized honeycomb patterned porous polystyrene films. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/polb.24641] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jeevan Kumar Reddy Modigunta
- Department of Chemistry and Nanoscience and Engineering; Center for Nanomanufacturing, Inje University; Gimhae Gyeongsangnam-do, 621749 South Korea
| | - Umashankar Male
- Department of Chemistry and Nanoscience and Engineering; Center for Nanomanufacturing, Inje University; Gimhae Gyeongsangnam-do, 621749 South Korea
| | - Do Sung Huh
- Department of Chemistry and Nanoscience and Engineering; Center for Nanomanufacturing, Inje University; Gimhae Gyeongsangnam-do, 621749 South Korea
| |
Collapse
|
15
|
Boussiron C, Le Bechec M, Petrizza L, Sabalot J, Lacombe S, Save M. Synthesis of Film-Forming Photoactive Latex Particles by Emulsion Polymerization-Induced Self-Assembly to Produce Singlet Oxygen. Macromol Rapid Commun 2018; 40:e1800329. [DOI: 10.1002/marc.201800329] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/15/2018] [Indexed: 01/28/2023]
Affiliation(s)
- Charlène Boussiron
- CNRS/Univ Pau & Pays Adour/E2S UPPA, IPREM; Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux; UMR5254, Hélioparc, 2 av. P. Angot. 64000 Pau France
| | - Mickaël Le Bechec
- CNRS/Univ Pau & Pays Adour/E2S UPPA, IPREM; Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux; UMR5254, Hélioparc, 2 av. P. Angot. 64000 Pau France
| | - Luca Petrizza
- CNRS/Univ Pau & Pays Adour/E2S UPPA, IPREM; Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux; UMR5254, Hélioparc, 2 av. P. Angot. 64000 Pau France
| | - Julia Sabalot
- CNRS/Univ Pau & Pays Adour/E2S UPPA, IPREM; Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux; UMR5254, Hélioparc, 2 av. P. Angot. 64000 Pau France
| | - Sylvie Lacombe
- CNRS/Univ Pau & Pays Adour/E2S UPPA, IPREM; Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux; UMR5254, Hélioparc, 2 av. P. Angot. 64000 Pau France
| | - Maud Save
- CNRS/Univ Pau & Pays Adour/E2S UPPA, IPREM; Institut des Sciences Analytiques et de Physicochimie pour l'Environnement et les Matériaux; UMR5254, Hélioparc, 2 av. P. Angot. 64000 Pau France
| |
Collapse
|
16
|
Wu R, Ding X, Qi Y, Zeng Q, Wu YW, Yu B, Xu FJ. Flexible Cationic Nanoparticles with Photosensitizer Cores for Multifunctional Biomedical Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800201. [PMID: 29717807 DOI: 10.1002/smll.201800201] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 03/21/2018] [Indexed: 06/08/2023]
Abstract
One challenge for multimodal therapy is to develop appropriate multifunctional agents to meet the requirements of potential applications. Photodynamic therapy (PDT) is proven to be an effective way to treat cancers. Diverse polycations, such as ethylenediamine-functionalized poly(glycidyl methacrylate) (PGED) with plentiful primary amines, secondary amines, and hydroxyl groups, demonstrate good gene transfection performances. Herein, a series of multifunctional cationic nanoparticles (PRP) consisting of photosensitizer cores and PGED shells are readily developed through simple dopamine-involving processes for versatile bioapplications. A series of experiments demonstrates that PRP nanoparticles are able to effectively mediate gene delivery in different cell lines. PRP nanoparticles are further validated to possess remarkable capability of combined PDT and gene therapy for complementary tumor treatment. In addition, because of their high dispersities in biological matrix, the PRP nanoparticles can also be used for in vitro and in vivo imaging with minimal aggregation-caused quenching. Therefore, such flexible nanoplatforms with photosensitizer cores and polycationic shells are very promising for multimodal tumor therapy with high efficacy.
Collapse
Affiliation(s)
- Rui Wu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiaokang Ding
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yu Qi
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Qiang Zeng
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 10010, China
| | - Yu-Wei Wu
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Peking University School and Hospital of Stomatology, Beijing, 10010, China
| | - Bingran Yu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Fu-Jian Xu
- State Key Laboratory of Chemical Resource Engineering, Key Laboratory of Carbon Fiber and Functional Polymers (Beijing University of Chemical Technology), Ministry of Education, Beijing Laboratory of Biomedical Materials, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
17
|
Baron M, Morris JC, Telitel S, Clément JL, Lalevée J, Morlet-Savary F, Spangenberg A, Malval JP, Soppera O, Gigmes D, Guillaneuf Y. Light-Sensitive Alkoxyamines as Versatile Spatially- and Temporally- Controlled Precursors of Alkyl Radicals and Nitroxides. J Am Chem Soc 2018; 140:3339-3344. [DOI: 10.1021/jacs.7b12807] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Marc Baron
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397, France
| | - Jason C. Morris
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397, France
| | - Siham Telitel
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, 4 Rue Blaise Pascal, Strasbourg 67081, France
| | - Jean-Louis Clément
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397, France
| | - Jacques Lalevée
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, 4 Rue Blaise Pascal, Strasbourg 67081, France
| | - Fabrice Morlet-Savary
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, 4 Rue Blaise Pascal, Strasbourg 67081, France
| | - Arnaud Spangenberg
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, 4 Rue Blaise Pascal, Strasbourg 67081, France
| | - Jean-Pierre Malval
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, 4 Rue Blaise Pascal, Strasbourg 67081, France
| | - Olivier Soppera
- Université de Haute-Alsace, CNRS, IS2M UMR 7361, Mulhouse F-68100, France
- Université de Strasbourg, 4 Rue Blaise Pascal, Strasbourg 67081, France
| | - Didier Gigmes
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397, France
| | - Yohann Guillaneuf
- Aix Marseille Univ., CNRS, Institut de Chimie Radicalaire UMR 7273, Marseille 13397, France
| |
Collapse
|
18
|
Radical Copolymerization of Vinyl Ethers and Cyclic Ketene Acetals as a Versatile Platform to Design Functional Polyesters. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
19
|
Tardy A, Honoré JC, Tran J, Siri D, Delplace V, Bataille I, Letourneur D, Perrier J, Nicoletti C, Maresca M, Lefay C, Gigmes D, Nicolas J, Guillaneuf Y. Radical Copolymerization of Vinyl Ethers and Cyclic Ketene Acetals as a Versatile Platform to Design Functional Polyesters. Angew Chem Int Ed Engl 2017; 56:16515-16520. [PMID: 29105983 DOI: 10.1002/anie.201707043] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 10/12/2017] [Indexed: 11/08/2022]
Abstract
Free-radical copolymerization of cyclic ketene acetals (CKAs) and vinyl ethers (VEs) was investigated as an efficient yet simple approach for the preparation of functional aliphatic polyesters. The copolymerization of CKA and VE was first predicted to be quasi-ideal by DFT calculations. The theoretical prediction was experimentally confirmed by the copolymerization of 2-methylene-1,3-dioxepane (MDO) and butyl vinyl ether (BVE), leading to rMDO =0.73 and rBVE =1.61. We then illustrated the versatility of this approach by preparing different functional polyesters: 1) copolymers functionalized by fluorescent probes; 2) amphiphilic copolymers grafted with poly(ethylene glycol) (PEG) side chains able to self-assemble into PEGylated nanoparticles; 3) antibacterial films active against Gram-positive and Gram-negative bacteria (including a multiresistant strain); and 4) cross-linked bioelastomers with suitable properties for tissue engineering applications.
Collapse
Affiliation(s)
- Antoine Tardy
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| | - Jean-Claude Honoré
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| | - Johanna Tran
- Institut Galien Paris-Sud, Univ Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Didier Siri
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| | - Vianney Delplace
- Institut Galien Paris-Sud, Univ Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Isabelle Bataille
- Laboratoire de recherche vasculaire translationnelle, INSERM 1148, University Paris 13 &, University Paris Diderot, Paris, France
| | - Didier Letourneur
- Laboratoire de recherche vasculaire translationnelle, INSERM 1148, University Paris 13 &, University Paris Diderot, Paris, France
| | - Josette Perrier
- Aix Marseille Univ, CNRS, Centrale Marseille, UMR 7313, iSm2, Marseille, France
| | - Cendrine Nicoletti
- Aix Marseille Univ, CNRS, Centrale Marseille, UMR 7313, iSm2, Marseille, France
| | - Marc Maresca
- Aix Marseille Univ, CNRS, Centrale Marseille, UMR 7313, iSm2, Marseille, France
| | - Catherine Lefay
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| | - Didier Gigmes
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| | - Julien Nicolas
- Institut Galien Paris-Sud, Univ Paris-Sud, UMR CNRS 8612, Faculté de Pharmacie, Châtenay-Malabry, France
| | - Yohann Guillaneuf
- Aix Marseille Univ, CNRS, Institut de Chimie Radicalaire, UMR 7273, Marseille, France
| |
Collapse
|
20
|
Chen HY, Liu JL, Xu WC, Wang ZF, Wang CY, Zhang M. Selective assembly of silver nanoparticles on honeycomb films and their surface-enhanced Raman scattering. Colloids Surf A Physicochem Eng Asp 2016. [DOI: 10.1016/j.colsurfa.2016.07.043] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Lacombe S, Pigot T. Materials for selective photo-oxygenation vs. photocatalysis: preparation, properties and applications in environmental and health fields. Catal Sci Technol 2016. [DOI: 10.1039/c5cy01929j] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Photosensitizing materials made of organic dyes embedded in various supports are compared to usual supported TiO2-based photocatalysts.
Collapse
Affiliation(s)
- S. Lacombe
- IPREM UMR CNRS 5254
- Université de Pau et des Pays de l'Adour
- 64053 Pau Cedex
- France
| | - T. Pigot
- IPREM UMR CNRS 5254
- Université de Pau et des Pays de l'Adour
- 64053 Pau Cedex
- France
| |
Collapse
|
22
|
Beltrán A, Mikhailov M, Sokolov MN, Pérez-Laguna V, Rezusta A, Revillo MJ, Galindo F. A photobleaching resistant polymer supported hexanuclear molybdenum iodide cluster for photocatalytic oxygenations and photodynamic inactivation of Staphylococcus aureus. J Mater Chem B 2016; 4:5975-5979. [DOI: 10.1039/c6tb01966h] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Photoinactivation of Staphylococcus aureus has been achieved using a hexanuclear molybdenum cluster, [Mo6I8(CH3COO)6]2−, supported on a polystyrene matrix.
Collapse
Affiliation(s)
- Alicia Beltrán
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Castellón
- Spain
| | - Maxim Mikhailov
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 3 Acad. Lavrentiev Prosp
- 630090 Novosibirsk
- Russia
| | - Maxim N. Sokolov
- Nikolaev Institute of Inorganic Chemistry
- Siberian Branch of the Russian Academy of Sciences
- 3 Acad. Lavrentiev Prosp
- 630090 Novosibirsk
- Russia
| | - Vanesa Pérez-Laguna
- Department of Microbiology – Miguel Servet University Hospital
- Universidad de Zaragoza
- Zaragoza
- Spain
| | - Antonio Rezusta
- Department of Microbiology – Miguel Servet University Hospital
- Universidad de Zaragoza
- Zaragoza
- Spain
| | - María José Revillo
- Department of Microbiology – Miguel Servet University Hospital
- Universidad de Zaragoza
- Zaragoza
- Spain
| | - Francisco Galindo
- Universitat Jaume I
- Departamento de Química Inorgánica y Orgánica
- Castellón
- Spain
| |
Collapse
|
23
|
Immobilized photosensitizers for antimicrobial applications. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2015; 150:11-30. [DOI: 10.1016/j.jphotobiol.2015.04.021] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 04/17/2015] [Accepted: 04/19/2015] [Indexed: 01/21/2023]
|
24
|
Zhang A, Bai H, Li L. Breath Figure: A Nature-Inspired Preparation Method for Ordered Porous Films. Chem Rev 2015; 115:9801-68. [PMID: 26284609 DOI: 10.1021/acs.chemrev.5b00069] [Citation(s) in RCA: 233] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Aijuan Zhang
- College of Materials, Xiamen University , Xiamen, 361005, People's Republic of China
| | - Hua Bai
- College of Materials, Xiamen University , Xiamen, 361005, People's Republic of China
| | - Lei Li
- College of Materials, Xiamen University , Xiamen, 361005, People's Republic of China
| |
Collapse
|
25
|
Aw JE, Goh GTW, Huang S, Reithofer MR, Thong AZ, Chin JM. Non-Close-Packed Breath Figures via Ion-Partitioning-Mediated Self-Assembly. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:6688-6694. [PMID: 26011098 DOI: 10.1021/la504656j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We report a one-step method of forming non-close-packed (NCP) pore arrays of micro- and sub-micropores using chloroform-based solutions of polystyrene acidified with hydrogen bromide for breath figure (BF) patterning. As BF patterning takes place, water vapor condenses onto the polystyrene solution, forming water droplets on the solution surface. Concurrently, preferential ion partitioning of hydrogen bromide leads to positively charged water droplets, which experience interdroplet electrostatic repulsion. Self-organization of charged water droplets because of surface flow and subsequent evaporation of the droplet templates result in ordered BF arrays with pore separation/diameter (L/D) ratios of up to 16.5. Evidence from surface potential scans show proof for preferential ion partitioning of HBr. Radial distribution functions and Voronoi polygon analysis of pore arrays show that they possess a high degree of conformational order. Past fabrication methods of NCP structures typically require multi-step processes. In contrast, we have established a new route for facile self-assembly of previously inaccessible patterns, which comprises of only a single operational step.
Collapse
Affiliation(s)
- Jia En Aw
- †Institute of Materials Research and Engineering (IMRE), 3 Research Link, Singapore 117602, Singapore
| | - Glen Tai Wei Goh
- †Institute of Materials Research and Engineering (IMRE), 3 Research Link, Singapore 117602, Singapore
| | - Shengnan Huang
- †Institute of Materials Research and Engineering (IMRE), 3 Research Link, Singapore 117602, Singapore
| | | | - Aaron Zhenghui Thong
- §Department of Materials, Imperial College London, SW7 2AZ London, United Kingdom
| | - Jia Min Chin
- †Institute of Materials Research and Engineering (IMRE), 3 Research Link, Singapore 117602, Singapore
- ‡Department of Chemistry, University of Hull, HU6 7RX Hull, United Kingdom
| |
Collapse
|
26
|
De León AS, Garnier T, Jierry L, Boulmedais F, Muñoz-Bonilla A, Rodríguez-Hernández J. Enzymatic Catalysis Combining the Breath Figures and Layer-by-Layer Techniques: Toward the Design of Microreactors. ACS APPLIED MATERIALS & INTERFACES 2015; 7:12210-12219. [PMID: 25984795 DOI: 10.1021/acsami.5b02607] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Herein, we report the fabrication of microstructured porous surfaces with controlled enzymatic activity by combining the breath figures and the layer-by-layer techniques. Two different types of porous surfaces were designed based on fluorinated and carboxylated copolymers in combination with PS, using poly(2,3,4,5,6-pentafluorostyrene)-b-polystyrene (PS5F31-b-PS21) and polystyrene-b-poly(acrylic acid) (PS19-b-PAA10) block copolymers, respectively. For comparative purposes, flat surfaces having similar chemistry were obtained by spin-coating. Poly(sodium 4-styrenesulfonate)/poly(allylamine hydrochloride) (PSS/PAH) multilayers incorporating alkaline phosphatase (ALP) were built on these porous surfaces to localize the enzyme both inside and outside of the pores using PS/PS5F31-b-PS21 surfaces and only inside the pores on PS/PS19-b-PAA10 surfaces. A higher catalytic activity of ALP (about three times) was obtained with porous surfaces compared to the flat ones. The catalysis happens specifically inside the holes of PS/PS19-b-PAA10surfaces, where ALP is located. This opens the route for applications in microreactors.
Collapse
Affiliation(s)
- A S De León
- †Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| | - T Garnier
- ‡Institut Charles Sadron, Centre National de la Recherche Scientifique, Université de Strasbourg, UPR 22, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
| | - L Jierry
- ‡Institut Charles Sadron, Centre National de la Recherche Scientifique, Université de Strasbourg, UPR 22, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
- §Institute of Advanced Study, University of Strasbourg, 5 allée du Général Rouvillois, 67083 Strasbourg, France
- ⊥Ecole de Chimie, Polymères et Matériaux, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, France
| | - F Boulmedais
- ‡Institut Charles Sadron, Centre National de la Recherche Scientifique, Université de Strasbourg, UPR 22, 23 rue du Loess, BP 84047, 67034, Strasbourg Cedex 2, France
- §Institute of Advanced Study, University of Strasbourg, 5 allée du Général Rouvillois, 67083 Strasbourg, France
| | - A Muñoz-Bonilla
- #Departamento de Química-Física Aplicada, Facultad de Ciencias, Universidad Autónoma de Madrid, C/Francisco Tomás y Valiente 7, Cantoblanco, 28049 Madrid, Spain
| | - J Rodríguez-Hernández
- †Instituto de Ciencia y Tecnología de Polímeros (ICTP), Consejo Superior de Investigaciones Científicas (CSIC), C/Juan de la Cierva 3, 28006 Madrid, Spain
| |
Collapse
|
27
|
Zhao Y, Shang Q, Yu J, Zhang Y, Liu S. Nanostructured 2D Diporphyrin Honeycomb Film: Photoelectrochemistry, Photodegradation, and Antibacterial Activity. ACS APPLIED MATERIALS & INTERFACES 2015; 7:11783-11791. [PMID: 25992484 DOI: 10.1021/acsami.5b03254] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Surface patterns of well-defined nanostructures play important roles in fabrication of optoelectronic devices and applications in catalysis and biology. In this paper, the diporphyrin honeycomb film, composed of titanium dioxide, protoporphyrin IX, and hemin (TiO2/PPIX/Hem), was synthesized using a dewetting technique with the well-defined polystyrene (PS) monolayer as a template. The TiO2/PPIX/Hem honeycomb film exhibited a higher photoelectrochemical response than that of TiO2 or TiO2/PPIX, which implied a high photoelectric conversion efficiency and a synergistic effect between the two kinds of porphyrins. The TiO2/PPIX/Hem honeycomb film was also a good photosensitizer due to its ability to generate singlet oxygen ((1)O2) under irradiation by visible light. This led to the use of diporphyrin TiO2/PPIX/Hem honeycomb film for the photocatalytic inactivation of bacteria. In addition, the photocatalytic activities of other metal-diporphyrin-based honeycomb films, such as TiO2/MnPPIX/Hem, TiO2/CoPPIX/Hem, TiO2/NiPPIX/Hem, TiO2/CuPPIX/Hem, and TiO2/ZnPPIX/Hem, were investigated. The result demonstrated that the photoelectric properties of diporphyrin-based film could be effectively enhanced by further coupling of porphyrin with metal ions. Such enhanced performance of diporphyrin compounds opened a new way for potential applications in various photoelectrochemical devices and medical fields.
Collapse
Affiliation(s)
- Yuewu Zhao
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Qiuwei Shang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Jiachao Yu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Yuanjian Zhang
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| | - Songqin Liu
- Jiangsu Province Hi-Tech Key Laboratory for Bio-medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing 211189, P. R. China
| |
Collapse
|
28
|
Liu Y, Ma H, Tian Y, Xie F, Wang X. Fabrication of Durable Honeycomb-Patterned Films of Poly(ether sulfone)s via Breath Figures. MACROMOL CHEM PHYS 2014. [DOI: 10.1002/macp.201400137] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuanyuan Liu
- Beijing Key Laboratory of Membrane Materials and Engineering; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Hengyu Ma
- Beijing Key Laboratory of Membrane Materials and Engineering; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Ye Tian
- Beijing Key Laboratory of Membrane Materials and Engineering; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Fucheng Xie
- Beijing Key Laboratory of Membrane Materials and Engineering; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| | - Xiaolin Wang
- Beijing Key Laboratory of Membrane Materials and Engineering; Department of Chemical Engineering; Tsinghua University; Beijing 100084 China
| |
Collapse
|
29
|
Wang Y, Liu Y, Li G, Hao J. Porphyrin-based honeycomb films and their antibacterial activity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:6419-6426. [PMID: 24846091 DOI: 10.1021/la501244s] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Micrometer-sized porous honeycomb-patterned thin films based on hybrid complexes formed via electrostatic interaction between Mn(III) meso-tetra(4-sulfonatophenyl) porphine chloride (an acid form, {MnTPPS}) and dimethyldioctadecylammonium bromide (DODMABr). The morphology of the microporous thin films can be well regulated by controlling the concentration of MnTPPS-DODMA complexes, DODMABr, and polystyrene (PS), respectively. The formation of the microporous thin films was largely influenced by different solvents. The well-ordered microporous films of MnTPPS-DODMA complexes exhibit a more efficient antibacterial activity under visible light than those of hybrid complexes of nanoparticles modified with DODMABr, implying that well-ordered microporous films containing porphyrin composition can improve photochemical activity and more dominance in applications in biological medicine fields.
Collapse
Affiliation(s)
- Yanran Wang
- Key Laboratory of Colloid and Interface Chemistry and Key Laboratory of Special Aggregated Materials, Shandong University , Ministry of Education, Jinan 250100, China
| | | | | | | |
Collapse
|
30
|
Aebisher D, Bartusik D, Liu Y, Zhao Y, Barahman M, Xu Q, Lyons AM, Greer A. Superhydrophobic photosensitizers. Mechanistic studies of (1)O2 generation in the plastron and solid/liquid droplet interface. J Am Chem Soc 2013; 135:18990-8. [PMID: 24295210 DOI: 10.1021/ja410529q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We describe here a physical-organic study of the first triphasic superhydrophobic sensitizer for photooxidations in water droplets. Control of synthetic parameters enables the mechanistic study of "borderline" two- and three-phase superhydrophobic sensitizer surfaces where (1)O2 is generated in compartments that are wetted, partially wetted, or remain dry in the plastron (i.e., air layer beneath the droplet). The superhydrophobic surface is synthesized by partially embedding silicon phthalocyanine (Pc) sensitizing particles to specific locations on polydimethylsiloxane (PDMS) posts printed in a square array (1 mm tall posts on 0.5 mm pitch). In the presence of red light and oxygen, singlet oxygen is formed on the superhydrophobic surface and reacts with 9,10-anthracene dipropionate dianion (1) within a freestanding water droplet to produce an endoperoxide in 54-72% yields. Control of the (1)O2 chemistry was achieved by the synthesis of superhydrophobic surfaces enriched with Pc particles either at the PDMS end-tips or at PDMS post bases. Much of the (1)O2 that reacts with anthracene 1 in the droplets was generated by the sensitizer "wetted" at the Pc particle/water droplet interface and gave the highest endoperoxide yields. About 20% of the (1)O2 can be introduced into the droplet from the plastron. The results indicate that the superhydrophobic sensitizer surface offers a unique system to study (1)O2 transfer routes where a balance of gas and liquid contributions of (1)O2 is tunable within the same superhydrophobic surface.
Collapse
Affiliation(s)
- David Aebisher
- Department of Natural Sciences, Shorter University , Rome, Georgia 30165, United States
| | | | | | | | | | | | | | | |
Collapse
|