1
|
Pradhan MK, Misra N, Sahala F, Pradhan NP, Srivastava A. Divergent self-assembly propensity of enantiomeric phenylalanine amphiphiles that undergo pH-induced nanofiber-to-nanoglobule conversion. SOFT MATTER 2024; 20:3602-3611. [PMID: 38576362 DOI: 10.1039/d4sm00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
This study presents the pathway diversity in the self-assembly of enantiomeric single phenylalanine derived amphiphiles (single F-PDAs), viz.L-NapF-EDA and D-NapF-EDA, that form supramolecular hydrogels at varied concentrations (≥1 mg mL-1 and ≥3 mg mL-1, respectively). By fitting the variable temperature circular dichroism (VT-CD) data to the isodesmic model, various thermodynamic parameters associated with their self-assembly, such as association constant (K), changes in enthalpy (ΔH), entropy (ΔS), and Gibbs free energy (ΔG), were extracted. The self-assembly of these single F-PDAs was found to be enthalpy-driven but entropically-disfavored. Although self-assembly of the D-isomer was slow, it also exhibited greater free energy of association than the L-isomer. Consequently, thermally and mechanically more robust self-assemblies were formed by the D-isomer than the L-isomer. We term these results as the "butterfly effect in self-assembly" wherein the difference in the stereochemical orientation of the residues at a single chiral center present in these molecules resulted in strong differences in the self-assembly propensity as well as in their thermal and mechanical stability. These single F-PDAs form helical nanofibers of opposite chirality upon self-assembly at basic pH (≥8) that produce intense CD signals. However, upon decreasing the pH, a gradual nanofiber-to-nanoglobular transformation was noticed due to protonation-induced structural changes in the PDAs.
Collapse
Affiliation(s)
- Manas Kumar Pradhan
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Nayanika Misra
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Fathima Sahala
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Nyaya Prakash Pradhan
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| |
Collapse
|
2
|
Zhao J, Yu R, Wu L, Li Y, Liu W, Yang Y. A PSCLC Pattern Prepared Based on Handedness Inversion for Anti-counterfeiting. Chem Asian J 2023; 18:e202300636. [PMID: 37606182 DOI: 10.1002/asia.202300636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
Handedness inversion has been widely studied in supramolecular chemistry and material sciences. Herein, a photoisomerizable chiral dopant was synthesized, which could induce the formation of a cholesteric phase with right-handedness. The Bragg reflection band of the cholesteric liquid crystal (CLC) mixture shifted to the long wavelength with extending 365 nm UV light irradiation time. Based on this photochromic property, a colourful polymer-stabilized CLC (PSCLC) film was prepared using a grayscale mask. A handedness reversible CLC mixture was prepared using a mixture of this chiral dopant and S5011. With extending the UV light irradiation time, the handedness of the CLC mixture changed from right- to left-handedness. A patterned PSCLC film was prepared using this CLC mixture. Complementary images were observed under right- and left-handedness circularly polarized lights. The results shown here not only give us a better understanding the competition between photopolymerization and photoisomerization, but also lay the foundations for decoration and anti-counterfeiting.
Collapse
Affiliation(s)
- Jinghua Zhao
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Runwei Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Limin Wu
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, P. R. China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P. R. China
| |
Collapse
|
3
|
Vicente-Garcia C, Colomer I. Lipopeptides as tools in catalysis, supramolecular, materials and medicinal chemistry. Nat Rev Chem 2023; 7:710-731. [PMID: 37726383 DOI: 10.1038/s41570-023-00532-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2023] [Indexed: 09/21/2023]
Abstract
Lipopeptides are amphiphilic peptides in which an aliphatic chain is attached to either the C or N terminus of peptides. Their self-assembly - into micelles, vesicles, nanotubes, fibres or nanobelts - leads to applications in nanotechnology, catalysis or medicinal chemistry. Self-organization of lipopeptides is dependent on both the length of the lipid tail and the amino acid sequence, in which the chirality of the peptide sequence can be transmitted into the supramolecular species. This Review describes the use of lipopeptides to design synthetic advanced dynamic supramolecular systems, nanostructured materials or self-responsive delivery systems in the area of medical biotechnology. We examine the influence of external stimuli, the ability of lipopeptide-derived structures to adapt over time and their application as medicinal agents with antibacterial, antifungal, antiviral or anticancer activities. Finally, we discuss the catalytic efficiency of lipopeptides, with the aim of building minimal synthetic enzymes, and recent efforts to incorporate metals into lipopeptide assemblies.
Collapse
Affiliation(s)
| | - Ignacio Colomer
- IMDEA-Nanociencia, Madrid, Spain.
- Instituto de Química Orgánica General (IQOG-CSIC), Madrid, Spain.
| |
Collapse
|
4
|
Wang J, Yang D, Qi K, Lai S, Li X, Ju X, Liu W, He C, Wang D, Zhao Y, Ke Y, Xu H. Effect of Achiral Glycine Residue on the Handedness of Surfactant-Like Short Peptide Self-Assembly Nanofibers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37402318 DOI: 10.1021/acs.langmuir.3c01165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Surfactant-like short peptides are a kind of ideal model for the study of chiral self-assembly. At present, there are few studies on the chiral self-assembly of multicharged surfactant-like peptides. In this study, we adopted a series of short peptides of Ac-I4KGK-NH2 with different combinations of L-lysine and D-lysine residues as the model molecules. TEM, AFM and SANS results showed that Ac-I4LKGLK-NH2, Ac-I4LKGDK-NH2, and Ac-I4DKGLK-NH2 formed the morphologies of nanofibers, and Ac-I4DKGDK-NH2 formed nanoribbons. All the self-assembled nanofibers, including the intermediate nanofibers of Ac-I4DKGDK-NH2 nanoribbons, showed the chirality of left handedness. Based on the molecular simulation results, it has been demonstrated that the supramolecular chirality was directly dictated by the orientation of single β strand. The insertion of glycine residue demolished the effect of lysine residues on the single strand conformation due to its high conformational flexibility. The replacement of L-isoleucine with Da-isoleucine also confirmed that the isoleucine residues involved in the β-sheet determined the supramolecular handedness. This study provides a profound mechanism of the chiral self-assembly of short peptides. We hope that it will improve the regulation of chiral molecular self-assembly with achiral glycine, as well.
Collapse
Affiliation(s)
- Jiqian Wang
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Debo Yang
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Kai Qi
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Shike Lai
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xiaohan Li
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Xinfeng Ju
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Wenliang Liu
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Chunyong He
- Spallation Neutron Source Science Center, Dongguan 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Dong Wang
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yurong Zhao
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| | - Yubin Ke
- Spallation Neutron Source Science Center, Dongguan 523803, China
- Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing 100049, China
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing, Center for Bioengineering and Biotechnology, China University of Petroleum (East China), Qingdao 266580, China
| |
Collapse
|
5
|
He S, Jiang Z, Dou X, Gao L, Feng C. Chiral Supramolecular Assemblies: Controllable Construction and Biological Activity. Chempluschem 2023; 88:e202300226. [PMID: 37438864 DOI: 10.1002/cplu.202300226] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
Chiral supramolecular assemblies with helical structures (e. g., proteins with α-helix, DNA with double helix, collagen with triple-helix) as the central structure motifs in biological systems play a crucial role in various physiological activities of living organisms. Variations in chiral structure can cause many abnormal physiological activities. To gain insight into the construction, structural transition, and related physiological functions of these complex helix in natural systems, it is necessary to fabricate artificial supramolecular assemblies with controllable helix orientation as research platform. This review discusses recent advances in chiral supramolecular assembly, including the precise construction and regulation of assembled chiral nanostructures with tunable chirality. Chiral structure-dependent biological activities, including cell proliferation, cell differentiation, antibacterial activity and tissue regeneration, are also discussed. This review not only contributes to further understanding of the importance of chirality in the physiological environment, but also plays an important role in the development of chiral biomedical materials for the treatment of diseases (e. g., tissue engineering regeneration, stem cell transplantation therapy).
Collapse
Affiliation(s)
- Sijia He
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zichao Jiang
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiaoqiu Dou
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Laiben Gao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
6
|
Kuila S, Singh AK, Shrivastava A, Dey S, Singha T, Roy L, Satpati B, Nanda J. Probing Molecular Chirality on the Self-Assembly and Gelation of Naphthalimide-Conjugated Dipeptides. J Phys Chem B 2023. [PMID: 37196104 DOI: 10.1021/acs.jpcb.3c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this work, 1,8-naphthalimide (NMI)-conjugated three hybrid dipeptides constituted of a β-amino acid and an α-amino acid have been designed, synthesized, and purified. Here, in the design, the chirality of the α-amino acid was varied to study the effect of molecular chirality on the supramolecular assembly. Self-assembly and gelation of three NMI conjugates were studied in mixed solvent systems [water and dimethyl sulphoxide (DMSO)]. Interestingly, chiral NMI derivatives [NMI-βAla-lVal-OMe (NLV) and NMI-βAla-dVal-OMe (NDV)] formed self-supported gels, while the achiral NMI derivative [NMI-βAla-Aib-OMe, (NAA)] failed to form any kind of gel at 1 mM concentration and in a mixed solvent (70% water in DMSO medium). Self-assembly processes were thoroughly investigated using UV-vis spectroscopy, nuclear magnetic resonance (NMR), fluorescence, and circular dichroism (CD) spectroscopy. A J-type molecular assembly was observed in the mixed solvent system. The CD study indicated the formation of chiral assembled structures for NLV and NDV, which were mirror images of one another, and the self-assembled state by NAA was CD-silent. The nanoscale morphology of the three derivatives was studied using scanning electron microscopy (SEM). In the case of NLV and NDV, left- and right-handed fibrilar morphologies were observed, respectively. In contrast, a flake-like morphology was noticed for NAA. The DFT study indicated that the chirality of the α-amino acid influenced the orientation of π-π stacking interactions of naphthalimide units in the self-assembled structure that in turn regulated the helicity. This is a unique work where molecular chirality controls the nanoscale assembly as well as the macroscopic self-assembled state.
Collapse
Affiliation(s)
- Soumen Kuila
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Akash Shrivastava
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Sukantha Dey
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Tukai Singha
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| |
Collapse
|
7
|
Advances in Self-Assembled Peptides as Drug Carriers. Pharmaceutics 2023; 15:pharmaceutics15020482. [PMID: 36839803 PMCID: PMC9964150 DOI: 10.3390/pharmaceutics15020482] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
In recent years, self-assembled peptide nanotechnology has attracted a great deal of attention for its ability to form various regular and ordered structures with diverse and practical functions. Self-assembled peptides can exist in different environments and are a kind of medical bio-regenerative material with unique structures. These materials have good biocompatibility and controllability and can form nanoparticles, nanofibers and hydrogels to perform specific morphological functions, which are widely used in biomedical and material science fields. In this paper, the properties of self-assembled peptides, their influencing factors and the nanostructures that they form are reviewed, and the applications of self-assembled peptides as drug carriers are highlighted. Finally, the prospects and challenges for developing self-assembled peptide nanomaterials are briefly discussed.
Collapse
|
8
|
Acet Ö, Shcharbin D, Zhogla V, Kirsanov P, Halets-Bui I, Önal Acet B, Gök T, Bryszewska M, Odabaşı M. Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications. Colloids Surf B Biointerfaces 2023; 222:113031. [PMID: 36435026 DOI: 10.1016/j.colsurfb.2022.113031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Short peptides are important in the design of self-assembled materials due to their versatility and flexibility. Self-assembled dipeptides, a group of peptide nanostructures, have highly attractive uses in the field of biomedicine. Recently these materials have proved to be important nanostructures because of their biocompatibility, low-cost and simplicity of synthesis, functionality/easy tunability and nano dimensions. Although there are different studies on peptide and protein-based nanostructures, more information about self-assembled nanostructures for dipeptides is still required to discover the advantages, challenges, importance, synthesis, interactions, and applications. This review describes and discusses the self-assembled dipeptide nanostructures especially for biomedical applications.
Collapse
Affiliation(s)
- Ömür Acet
- Vocational School of Health Science, Pharmacy Services Program, Tarsus University, Tarsus, Turkey.
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus.
| | - Victoriya Zhogla
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Pavel Kirsanov
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Inessa Halets-Bui
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Burcu Önal Acet
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| | - Tuba Gök
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Science, University of Lodz, Poland
| | - Mehmet Odabaşı
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| |
Collapse
|
9
|
Misra S, Singh P, Singh AK, Roy L, Kuila S, Dey S, Mahapatra AK, Nanda J. Tuning of the Supramolecular Helicity of Peptide-Based Gel Nanofibers. J Phys Chem B 2022; 126:10882-10892. [PMID: 36516185 DOI: 10.1021/acs.jpcb.2c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helical supramolecular architectures play important structural and functional roles in biological systems. The helicity of synthetic molecules can be tuned mainly by the chiral manipulation of the system. However, tuning of helicity by the achiral unit of the molecules is less studied. In this work, the helicity of naphthalimide-capped peptide-based gel nanofibers is tuned by the alteration of methylene units present in the achiral amino acid. The inversion of supramolecular helicity has been extensively studied by CD spectroscopy and morphological analysis. The density functional theory (DFT) study indicates that methylene spacers influence the orientation of π-π stacking interactions of naphthalimide units in the self-assembled structure that regulates the helicity. This work illustrates a new approach to tuning the supramolecular chirality of self-assembled biomaterials.
Collapse
Affiliation(s)
- Souvik Misra
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India.,Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Pijush Singh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai - IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai - IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Soumen Kuila
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Sukantha Dey
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Ajit K Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| |
Collapse
|
10
|
Pradhan MK, Gupta D, Namdev KR, Miglani C, Pal A, Srivastava A. Anion-responsive self-assembled hydrogels of a phenylalanine-TREN conjugate allow sequential release of propranolol and doxorubicin. NANOSCALE 2022; 14:15079-15090. [PMID: 36200975 DOI: 10.1039/d2nr04320c] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Stimuli-responsive self-assembled and supramolecular hydrogels derived from peptide amphiphiles have opened exciting new avenues in biomedicine and drug delivery. Herein, we screened a series of phenylalanine-amphiphiles possessing polyamine and oxyethylene appendages for their self-assembly and anion-responsiveness and found that the tris(aminoethyl)amine (TREN) containing amphiphile NapF-TREN formed injectable hydrogels that could be disrupted upon the addition of stoichiometric amounts of tetrahedral monovalent anions such as H2PO4- and HSO4-, while the addition of other anions such as Cl-, HPO42-, CO32-, HCO3- or SO42- did not affect the gel stability. The anion-gelator interaction was investigated by 1H and 31P NMR spectroscopy as well as by Isothermal Titration Calorimetry (ITC). These studies confirmed a 1 : 1 stoichiometry and revealed negative enthalpy and negative entropy for the binding of H2PO4- with NapF-TREN. Microscopic investigations by TEM, AFM, and SAXS revealed that H2PO4- anions induced a nanofiber-to-nanoglobule morphological change in the aqueous self-assemblies of NapF-TREN. However, upon ageing the samples, slow reformation of the nanofibers was also observed, reflecting the reversibility of the anion-gelator interaction. The anion- and pH-responsive nature of the NapF-TREN hydrogels was exploited to program sequential release of entrapped drugs propranolol and doxorubicin.
Collapse
Affiliation(s)
- Manas Kumar Pradhan
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Deepika Gupta
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Mohali, Punjab 140306, India.
| | - Kavthekar Rupesh Namdev
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| | - Chirag Miglani
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Mohali, Punjab 140306, India.
| | - Asish Pal
- Chemical Biology Unit, Institute of Nano Science and Technology, Sector 81, Mohali, Punjab 140306, India.
| | - Aasheesh Srivastava
- Department of Chemistry, Indian Institute of Science Education and Research, Bhauri, Bhopal By-pass Road, Bhopal-462066, India.
| |
Collapse
|
11
|
Wei H, Lin S, Liu W, Li Y, Li B, Yang Y. Stereostructure Dependence Phenomenon on the Self-Assembly of Ala-Ala-Ala Lipotripeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2248-2256. [PMID: 35133849 DOI: 10.1021/acs.langmuir.1c02813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of lipotripeptide stereoisomers based on alanine were synthesized, and their self-assembling behaviors were studied by means of circular dichroism spectra, ATR-IR, temperature-dependent 1H NMR, and X-ray diffraction patterns. In the mixed solvent of hexafluoroisopropanol/H2O (1/9, v/v), eight lipotripeptides were able to self-assembled into nanoflakes or nanoribbons driven by the hydrophobic association of alkyl chains, intermolecular hydrogen bonding among carboxyl groups at C-terminal and amide groups of alanine moieties in the peptide segment. It was found that the stacking chirality of carbonyl groups was determined by the chirality of alanine residue at C-terminal (i.e., "C-terminal determination" rule). Moreover, our research also highlighted the intermolecular hydrogen bonding on amide groups of each alanine residue, terminal carboxyl as well as the molecular packing structures can be subtly manipulated by changing the stereochemical sequence of peptide segment.
Collapse
Affiliation(s)
- He Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shuwei Lin
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, School of Optoelectronics Science and Engineering, Soochow University, Suzhou 215123, China
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
12
|
Li T, Lu XM, Zhang MR, Hu K, Li Z. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioact Mater 2022; 11:268-282. [PMID: 34977431 PMCID: PMC8668426 DOI: 10.1016/j.bioactmat.2021.09.029] [Citation(s) in RCA: 107] [Impact Index Per Article: 53.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
Peptide-based materials that have diverse structures and functionalities are an important type of biomaterials. In former times, peptide-based nanomaterials with excellent stability were constructed through self-assembly. Compared with individual peptides, peptide-based self-assembly nanomaterials that form well-ordered superstructures possess many advantages such as good thermo- and mechanical stability, semiconductivity, piezoelectricity and optical properties. Moreover, due to their excellent biocompatibility and biological activity, peptide-based self-assembly nanomaterials have been vastly used in different fields. In this review, we provide the advances of peptide-based self-assembly nanostructures, focusing on the driving forces that dominate peptide self-assembly and assembly mechanisms of peptides. After that, we outline the synthesis and properties of peptide-based nanomaterials, followed by the applications of functional peptide nanomaterials. Finally, we provide perspectives on the challenges and future of peptide-based nanomaterials. This review summarizes the advances of peptide-based nanomaterials, focusing on the mechanisms, properties, and applications. Outlining the synthesis and properties of peptide nanomaterials is helpful for the relevant research fields. The peptide-based nanomaterials show potential applications in many fields.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry and Chemical Engineering, Center of Nanoenergy Research, Guangxi University, Nanning, 530004, China.,Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xian-Mao Lu
- College of Chemistry and Chemical Engineering, Center of Nanoenergy Research, Guangxi University, Nanning, 530004, China.,Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, The National Institute of Radiological Sciences, The National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Kuan Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.,Department of Advanced Nuclear Medicine Sciences, The National Institute of Radiological Sciences, The National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Zhou Li
- College of Chemistry and Chemical Engineering, Center of Nanoenergy Research, Guangxi University, Nanning, 530004, China.,Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
13
|
Wu L, Liu W, Li Y, Yang Y. Self-assembly driven chiral transfer from a dipeptide to the twist and stacking handedness of cyanobiphenylyl groups. NEW J CHEM 2022. [DOI: 10.1039/d2nj01259f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The chiral transfer phenomenon was studied on four Ala–Ala lipodipeptides with a cyanobiphenylyl group at the terminal alkyl chain.
Collapse
Affiliation(s)
- Lijia Wu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Guo K, Liu W, Wang Y, Wei H, Li B, Li Y, Yang Y. Handedness inversion of the self-assemblies of lipotetrapeptides regulated by the shift of the methyl group. NEW J CHEM 2022. [DOI: 10.1039/d2nj00465h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four lipotetrapeptides containing three glycines and one l-alanine self-assembled into twisted nanoribbons. Handedness inversion was observed with the movement of l-alanine.
Collapse
Affiliation(s)
- Kexiao Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - He Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
15
|
Bellotto O, Kralj S, Melchionna M, Pengo P, Kisovec M, Podobnik M, De Zorzi R, Marchesan S. Self-Assembly of Unprotected Dipeptides into Hydrogels: Water-Channels Make the Difference. Chembiochem 2021; 23:e202100518. [PMID: 34784433 PMCID: PMC9299199 DOI: 10.1002/cbic.202100518] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/15/2021] [Indexed: 12/24/2022]
Abstract
Unprotected dipeptides are attractive building blocks for environmentally friendly hydrogel biomaterials by virtue of their low‐cost and ease of preparation. This work investigates the self‐assembling behaviour of the distinct stereoisomers of Ile‐Phe and Phe‐Ile in phosphate buffered saline (PBS) to form hydrogels, using transmission electron microscopy (TEM), attenuated total reflectance infrared spectroscopy (ATR‐IR), circular dichroism (CD), and oscillatory rheometry. Each peptide purity and identity was also confirmed by 1H‐ and 13C‐NMR spectroscopy and HPLC‐MS. Finally, single‐crystal XRD data allowed the key interactions responsible for the supramolecular packing into amphipathic layers or water‐channels to be revealed. The presence of the latter in the crystal structure is a distinctive feature of the only gelator of this work that self‐organizes into stable hydrogels, with fast kinetics and the highest elastic modulus amongst its structural isomers and stereoisomers.
Collapse
Affiliation(s)
- Ottavia Bellotto
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Slavko Kralj
- Materials Synthesis Department, Jožef Stefan Institute, Jamova 39, 1000, Ljubljana, Slovenia.,Department of Pharmaceutical Technology, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.,Unit of Trieste, INSTM, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Paolo Pengo
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Matic Kisovec
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Marjetka Podobnik
- Department of Molecular Biology and Nanobiotechnology, National Institute of Chemistry, Hajdrihova 19, 1001, Ljubljana, Slovenia
| | - Rita De Zorzi
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, 34127, Trieste, Italy.,Unit of Trieste, INSTM, Via L. Giorgieri 1, 34127, Trieste, Italy
| |
Collapse
|
16
|
Abstract
Lipopeptides are an exceptional example of amphiphilic molecules that self-assemble into functional structures with applications in the areas of nanotechnology, catalysis or medicinal chemistry. Herein, we report a library of 21 short lipopeptides, together with their supramolecular characterization and antimicrobial activity against both Gram-negative (E. coli) and Gram-positive (S. aureus) strains. This study shows that simple lipoamino acids self-assemble into micellar or vesicular structures, while incorporating dipeptides capable of stablishing hydrogen bonds results in the adoption of advanced fibrilar structures. The self-assembly effect has proven to be key to achieve antimicrobial activity.
Collapse
Affiliation(s)
| | - Ignacio Colomer
- IMDEA Nanociencia, Faraday 9, Campus UAM, 28049 Madrid, Spain and Instituto de Química Orgánica General (IQOG-CSIC), Juan de la Cierva 3, 28006, Madrid, Spain.
| |
Collapse
|
17
|
Zheng Y, Mao K, Chen S, Zhu H. Chirality Effects in Peptide Assembly Structures. Front Bioeng Biotechnol 2021; 9:703004. [PMID: 34239866 PMCID: PMC8258317 DOI: 10.3389/fbioe.2021.703004] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/26/2021] [Indexed: 12/13/2022] Open
Abstract
Peptide assembly structures have been widely exploited in fabricating biomaterials that are promising for medical applications. Peptides can self-organize into various highly ordered supramolecular architectures, such as nanofibril, nanobelt, nanotube, nanowire, and vesicle. Detailed studies of the molecular mechanism by which these versatile building blocks assemble can guide the design of peptide architectures with desired structure and functionality. It has been revealed that peptide assembly structures are highly sequence-dependent and sensitive to amino acid composition, the chirality of peptide and amino acid residues, and external factors, such as solvent, pH, and temperature. This mini-review focuses on the regulatory effects of chirality alteration on the structure and bioactivity of linear and cyclic peptide assemblies. In addition, chiral self-sorting and co-assembly of racemic peptide mixtures were discussed.
Collapse
Affiliation(s)
- Yongfang Zheng
- Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Kejing Mao
- Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Shixian Chen
- Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| | - Hu Zhu
- Engineering Research Center of Industrial Biocatalysis, Fujian Province Universities, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, Fujian Provincial Key Laboratory of Polymer Materials, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou, China
| |
Collapse
|
18
|
Jiang P, Li H, Liu W, Li Y, Li B, Yang Y. Silica covering driven intensity enhancement and handedness inversion of the CPL signals of the supramolecular assemblies. NEW J CHEM 2021. [DOI: 10.1039/d1nj01327k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Dipeptide-based hybrid materials with enhanced and inversed circularly polarized luminescence signals were fabricated through a dynamic supramolecular templating approach.
Collapse
Affiliation(s)
- Pan Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Hongkun Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
19
|
Zhang L, Lin S, Li Y, Li B, Yang Y. Ala–Ala dipeptides with a semi-perfluoroalkyl chain: chirality driven molecular packing difference and self-assembly driven chiral transfer. NEW J CHEM 2021. [DOI: 10.1039/d0nj05676f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
The chirality of amino acids triggered the chiral molecular stacking of dipeptides and, eventually, transferred to the semi-perfluoroalkyl chain.
Collapse
Affiliation(s)
- Lianglin Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Shuwei Lin
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China
- School of Optoelectronics Science and Engineering
- Soochow University
- Suzhou 215123
- China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
20
|
Lin S, Tong Q, Jiang P, Li B, Li Y, Yang Y. Effect of C 12H 25O– substituent position on the self-assembly behaviour of C 6H 5COO–Ala–Ala dipeptide. NEW J CHEM 2021. [DOI: 10.1039/d1nj01148k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intramolecular hydrogen bonding and steric hindrance of side chain lead the different molecular packing of dipeptides and the morphological transformation of self-assemblies’ nanostructures.
Collapse
Affiliation(s)
- Shuwei Lin
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China
- School of Optoelectronics Science and Engineering
- Soochow University
- Suzhou 215123
- China
| | - Qiyun Tong
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Pan Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
21
|
Jiang P, Liu W, Li Y, Li B, Yang Y. pH-influenced handedness inversion of circularly polarized luminescence. NEW J CHEM 2021. [DOI: 10.1039/d1nj04824d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Supramolecular co-assemblies between tolane-derived Phe–Phe dipeptides and 1,2-diaminoethane were fabricated, and CPL handedness inversion was achieved by regulating the pH value.
Collapse
Affiliation(s)
- Pan Jiang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
22
|
Role of molecular chirality and solvents in directing the self-assembly of peptide into an ultra-pH-sensitive hydrogel. J Colloid Interface Sci 2020; 577:388-396. [DOI: 10.1016/j.jcis.2020.05.087] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/18/2022]
|
23
|
Mijiddorj B, Shirakata H, Nakagawa T, Ueda K, Yokoyama Y, Kawamura I. Stereochemical Effects on the Self-Assembly of Pyrenylalanine-Phenylalanine Dipeptide. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20190376] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Batsaikhan Mijiddorj
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
- School of Engineering and Applied Sciences, National University of Mongolia, Ulaanbaatar 14201, Mongolia
| | - Hiroki Shirakata
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Tetsuya Nakagawa
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Kazuyoshi Ueda
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Yasushi Yokoyama
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| | - Izuru Kawamura
- Graduate School of Engineering, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
- Graduate School of Engineering Science, Yokohama National University, Yokohama, Kanagawa 240-8501, Japan
| |
Collapse
|
24
|
Panda SS, Shmilovich K, Ferguson AL, Tovar JD. Computationally Guided Tuning of Amino Acid Configuration Influences the Chiroptical Properties of Supramolecular Peptide-π-Peptide Nanostructures. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:6782-6792. [PMID: 32491857 DOI: 10.1021/acs.langmuir.0c00961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Self-assembled supramolecular materials derived from peptidic macromolecules with π-conjugated building blocks are of enormous interest because of their aqueous solubility and biocompatibility. The design rules to achieve tailored optoelectronic properties from these types of materials can be guided by computation and virtual screening rather than intuition-based experimental trial-and-error. Using machine learning, we reported previously that the supramolecular chirality in self-assembled aggregates from VEVAG-π-GAVEV type peptidic materials was most strongly influenced by hydrogen bonding and hydrophobic packing of the alanine and valine residues. Herein, we build upon this idea to demonstrate through molecular-level experimental characterization and all-atom molecular modeling that varying the stereogenic centers of these residues has a profound impact on the optoelectronic properties of the supramolecular aggregates, whereas the variation of stereogenic centers of other residues has only nominal influence on these properties. This study highlights the synergy between computational and experimental insight relevant to the control of chiroptical or other electronic properties associated with supramolecular materials.
Collapse
Affiliation(s)
| | - Kirill Shmilovich
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | - Andrew L Ferguson
- Pritzker School of Molecular Engineering, University of Chicago, 5640 South Ellis Avenue, Chicago, Illinois 60637, United States
| | | |
Collapse
|
25
|
Zheng C, Lin S, Hu C, Li Y, Li B, Yang Y. Chirality-driven molecular packing structure difference and potential application for 3D printing of a series of bola-type Ala–Phe dipeptides. NEW J CHEM 2020. [DOI: 10.1039/d0nj04745g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
For bola-type dipeptides based on Ala–Phe building block, the chirality of Phe residue at C-terminal determined the handedness of self-assemblies and stacking chirality of carbonyl groups.
Collapse
Affiliation(s)
- Cheng Zheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Shuwei Lin
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, School of Optoelectronics Science and Engineering
- Suzhou
- China
| | - Chuanjiang Hu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
- Soochow University
- Suzhou 215123
| |
Collapse
|
26
|
Liu C, Ding W, Liu Y, Zhao H, Cheng X. Self-assembled star-shaped aza-BODIPY mesogen affords white-light emission. NEW J CHEM 2020. [DOI: 10.1039/c9nj04755g] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A star-shaped aza-BODIPY mesogen exhibits LC, gel, WLE and chemosensor properties.
Collapse
Affiliation(s)
- Chao Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources
- Chemistry School of Chemical Science and Technology
- Yunnan University
- Kunming
- P. R. China
| | - Wei Ding
- Key Laboratory of Medicinal Chemistry for Natural Resources
- Chemistry School of Chemical Science and Technology
- Yunnan University
- Kunming
- P. R. China
| | - Yuantao Liu
- Key Laboratory of Medicinal Chemistry for Natural Resources
- Chemistry School of Chemical Science and Technology
- Yunnan University
- Kunming
- P. R. China
| | - Hongmei Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resources
- Chemistry School of Chemical Science and Technology
- Yunnan University
- Kunming
- P. R. China
| | - Xiaohong Cheng
- Key Laboratory of Medicinal Chemistry for Natural Resources
- Chemistry School of Chemical Science and Technology
- Yunnan University
- Kunming
- P. R. China
| |
Collapse
|
27
|
Liu C, Gao H, Li T, Xiao Y, Cheng X. Bisthiophene/triazole based 4,6-diamino-1,3,5-triazine triblock polyphiles: Synthesis, self-assembly and metal binding properties. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.05.038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
28
|
Mason ML, Lalisse RF, Finnegan TJ, Hadad CM, Modarelli DA, Parquette JR. pH-Controlled Chiral Packing and Self-Assembly of a Coumarin Tetrapeptide. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12460-12468. [PMID: 31469284 DOI: 10.1021/acs.langmuir.9b01939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A coumarin-tetrapeptide conjugate, EFEK(DAC)-NH2 (1), is reported to undergo a pH-dependent interconversion between nanotubes and nanoribbons. An examination of zeta potential measurements, circular dichroism (CD) spectra, and microscopy imaging (transmission electron microscopy and atomic force microscopy) identified three different self-assembly regimes based on pH: (1) pH 2-5, positively charged, left-handed helical nanotubes; (2) pH 6-8, negatively charged, right-handed helical nanoribbons; and (3) pH ≥ 9.0, a monomeric/disassembled peptide. The nanotubes exhibited uniform diameters of 41 ± 5 nm and wall thicknesses of 4.8 ± 0.8 nm, whereas the nanoribbons existed as either flat or twisted sheets ranging in width from 11 to 60 nm with heights of 8 ± 1 nm. The UV-vis and CD spectra of the most common antiparallel, β-sheet conformation of 1-dimer were simulated at the B3LYP/def2svpd level of theory in implicit water. These studies indicated that the transition from nanotubes to nanoribbons was coupled to an M → P helical inversion of the coumarin packing orientation, respectively, within the nanostructures. The assembly process was driven by β-sheet aggregation and π-π interactions, leading to the formation of nanoribbons, which progressively wound into helical ribbons and laterally grew into smooth nanotubes as the pH decreased.
Collapse
Affiliation(s)
- McKensie L Mason
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Remy F Lalisse
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Tyler J Finnegan
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - Christopher M Hadad
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| | - David A Modarelli
- Department of Chemistry and The Center for Laser and Optical Spectroscopy, Knight Chemical Laboratory , The University of Akron , Akron , Ohio 44325-3601 , United States
| | - Jon R Parquette
- Department of Chemistry and Biochemistry , The Ohio State University , 100 W. 18th Avenue , Columbus , Ohio 43210 , United States
| |
Collapse
|
29
|
McAulay K, Dietrich B, Su H, Scott MT, Rogers S, Al-Hilaly YK, Cui H, Serpell LC, Seddon AM, Draper ER, Adams DJ. Using chirality to influence supramolecular gelation. Chem Sci 2019; 10:7801-7806. [PMID: 31588329 PMCID: PMC6761870 DOI: 10.1039/c9sc02239b] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/03/2019] [Indexed: 11/21/2022] Open
Abstract
Most low molecular weight gelators are chiral, with racemic mixtures often unable to form gels. Here, we show an example where all enantiomers, diastereomers and racemates of a single functionalized dipeptide can form gels. At high pH, different self-assembled aggregates are formed and these directly template the structures formed in the gel. Hence, solutions and gels with different properties can be accessed simply by varying the chirality. This opens up new design rules for the field.
Collapse
Affiliation(s)
- Kate McAulay
- School of Chemistry , University of Glasgow , Glasgow , G12 8QQ , UK .
| | - Bart Dietrich
- School of Chemistry , University of Glasgow , Glasgow , G12 8QQ , UK .
| | - Hao Su
- Department of Chemical and Biomolecular Engineering , Whiting School of Engineering , Johns Hopkins University , 3400 North Charles Street , Baltimore , MD 21218 , USA
| | - Michael T Scott
- School of Chemistry , University of Glasgow , Glasgow , G12 8QQ , UK .
| | - Sarah Rogers
- ISIS Pulsed Neutron Source , Rutherford Appleton Laboratory , Didcot , OX11 0QX , UK
| | - Youssra K Al-Hilaly
- School of Life Sciences , University of Sussex , Falmer , UK
- Chemistry Department , College of Science , Mustansiriyah University , Baghdad , Iraq
| | - Honggang Cui
- Department of Chemical and Biomolecular Engineering , Whiting School of Engineering , Johns Hopkins University , 3400 North Charles Street , Baltimore , MD 21218 , USA
| | | | - Annela M Seddon
- School of Physics , HH Wills Physics Laboratory , University of Bristol , Tyndall Avenue , Bristol , BS8 1TL , UK
- Bristol Centre for Functional Nanomaterials , HH Wills Physics Laboratory , University of Bristol , Tyndall Avenue , Bristol , BS8 1TL , UK
| | - Emily R Draper
- School of Chemistry , University of Glasgow , Glasgow , G12 8QQ , UK .
| | - Dave J Adams
- School of Chemistry , University of Glasgow , Glasgow , G12 8QQ , UK .
| |
Collapse
|
30
|
Zhang L, Lin S, Tong Q, Li Y, Wang Y, Li Y, Li B, Yang Y. Helicity of perfluoroalkyl chains controlled by the self-assembly of the Ala-Ala dipeptides. Chirality 2019; 31:992-1000. [PMID: 31468590 DOI: 10.1002/chir.23130] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2019] [Revised: 07/26/2019] [Accepted: 08/12/2019] [Indexed: 01/04/2023]
Abstract
Four Ala-Ala dipeptides with a perfluoroalkyl chain at the N-terminal were synthesized. They were able to self-assemble into helical nanofibers and/or twisted nanobelts in a mixture of DMSO/H2 O. The handedness of nanofibers and nanobelts was controlled by the chirality of the alanine at the N-terminal. The stacking handedness of the phenylene groups and the helicity of the perfluoroalkyl chain were studied using circular dichroism spectroscopy and vibrational circular dichroism, respectively. The chirality of the alanine at N-terminal controlled the stacking handedness of the neighboring phenylene groups. Moreover, due to the low potential barrier between M- and P-helices of the perfluorocarbon chain, the handedness of the organic self-assemblies eventually controlled the helicity of the perfluorocarbon chain. X-ray diffraction indicated that a lamellar structure was formed by the dimers of the dipeptides.
Collapse
Affiliation(s)
- Lianglin Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Shuwei Lin
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, School of Optoelectronics Science and Engineering & Collaborative Innovation, Center of Suzhou Nano Science and Technology, Soochow University, Suzhou, China
| | - Qiyun Tong
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yan Li
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, China
| | - Yong Wang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Baozong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| |
Collapse
|
31
|
Guo K, Zhang L, Lin S, Li Y, Li B, Yang Y. A “center-determination” phenomenon of C 13H 27CO-Gly-Ala-Ala lipotripetides: relationship between the molecular chirality and handedness of organic self-assemblies. NEW J CHEM 2019. [DOI: 10.1039/c9nj01693g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The chirality of the central alanine residue dominates the handedness of molecular packing and that of organic self-assemblies.
Collapse
Affiliation(s)
- Kexiao Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Lianglin Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Shuwei Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Baozong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
32
|
Jiang H, Fan H, Jiang Y, Zhang L, Liu M. Chiral nanostructures self-assembled from nitrocinnamic amide amphiphiles: substituent and solvent effects. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2019; 10:1608-1617. [PMID: 31467823 PMCID: PMC6693415 DOI: 10.3762/bjnano.10.156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 07/09/2019] [Indexed: 05/20/2023]
Abstract
Chiral nanostructures, such as α-helical proteins and double helix DNA, are widely found in biological systems and play a significant role in the biofunction of life. These structures are essentially fabricated through the covalent or noncovalent bonds between small chiral molecules. It is thus an important issue to understand how small chiral molecules can form chiral nanostructures. Here, using a series of isomeric nitrocinnamic amide derivatives, we have investigated the self-assembly behavior and the effect of the substituent position as well as the solvent on the formation of chiral nanostructures. It was found that totally different chiral nanostructures were formed due to the different positions of the nitro group on the cinnamic amide. Moreover, it was found that the chiral sense of the self-assembled nanostructures can be regulated by the solvent whereby helicity inversion was observed. This work provides a simple way to regulate the self-assembly pathway via molecular design and choice of solvent for the controlled creation of chiral nanostructures.
Collapse
Affiliation(s)
- Hejin Jiang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huahua Fan
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqian Jiang
- Laboratory for Nanosystem and Hierarchical Fabrication, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Xing Q, Zhang J, Xie Y, Wang Y, Qi W, Rao H, Su R, He Z. Aromatic Motifs Dictate Nanohelix Handedness of Tripeptides. ACS NANO 2018; 12:12305-12314. [PMID: 30452865 DOI: 10.1021/acsnano.8b06173] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Self-assembly of peptides and amyloid fibrils offers an appealing approach for creating chiral nanostructures, which has promising applications in the fields of biology and materials science. Although numerous self-assembled chiral materials have been designed, the precise control of their twisting tendency and their handedness is still a challenge. Herein, we report the self-assembly of chiral nanostructures with precisely tailored architectures by changing the amino acid sequences of the peptides. We designed a series of self-assembling tripeptides bearing different l-amino acid sequences. The peptide with l-Phe-l-Phe sequence preferred to self-assemble into left-handed nanohelices, while with l-Phe-l-Trp right-handed nanohelices would be formed. Moreover, the diameter of the self-assembled nanohelices could be tailored by changing the terminal amino acids (His, Arg, Ser, Glu, and Asp). Circular dichroism (CD) and molecular dynamics simulations (MDSs) revealed that both of the right- and left-handed nanohelices formed by the tripeptides showed negative Cotton effects in the peptide adsorption region but exhibited nearly opposite CD Cotton effects in the aromatic regions. These results indicated that the handedness of the self-assembled helical nanofibers was not only determined by the chirality of the peptide backbone but also closely related to the aromatic stacking, hydrogen bonding and steric interactions induced by the side chains. The findings deepen our understanding on the chiral self-assembly of peptide and offer opportunities for the creation of highly functional chiral nanomaterials.
Collapse
Affiliation(s)
- Qiguo Xing
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P.R. China
| | - Jiaxing Zhang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P.R. China
| | - Yanyan Xie
- Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, School of Biotechnology , Tianjin University of Science and Technology , Tianjin 300457 , P.R. China
| | - Yuefei Wang
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P.R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin University , Tianjin 300072 , P.R. China
| | - Wei Qi
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P.R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin University , Tianjin 300072 , P.R. China
| | - Hengjun Rao
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P.R. China
| | - Rongxin Su
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P.R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300072 , P.R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology , Tianjin University , Tianjin 300072 , P.R. China
| | - Zhimin He
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology , Tianjin University , Tianjin 300072 , P.R. China
| |
Collapse
|
34
|
Liu J, Yuan F, Ma X, Auphedeous DY, Zhao C, Liu C, Shen C, Feng C. The Cooperative Effect of Both Molecular and Supramolecular Chirality on Cell Adhesion. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201801462] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jinying Liu
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Feng Yuan
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Xiaoyu Ma
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Dang‐i Y. Auphedeous
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Changli Zhao
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University Shanghai 200240 China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing TechnologiesZhengzhou University Zhengzhou China
| | - Changyu Shen
- National Engineering Research Center for Advanced Polymer Processing TechnologiesZhengzhou University Zhengzhou China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix CompositesSchool of Materials Science and EngineeringShanghai Jiao Tong University Shanghai 200240 China
| |
Collapse
|
35
|
Liu J, Yuan F, Ma X, Auphedeous DIY, Zhao C, Liu C, Shen C, Feng C. The Cooperative Effect of Both Molecular and Supramolecular Chirality on Cell Adhesion. Angew Chem Int Ed Engl 2018; 57:6475-6479. [PMID: 29644777 DOI: 10.1002/anie.201801462] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2018] [Revised: 04/04/2018] [Indexed: 11/11/2022]
Abstract
Although helical nanofibrous structures have great influence on cell adhesion, the role played by chiral molecules in these structures on cells behavior has usually been ignored. The chirality of helical nanofibers is inverted by the odd-even effect of methylene units from homochiral l-phenylalanine derivative during assembly. An increase in cell adhesion on left-handed nanofibers and weak influence of cell behaviors on right-handed nanofibers are observed, even though both were derived from l-phenylalanine derivatives. Weak and negative influences on cell behavior was also observed for left- and right-handed nanofibers derived from d-phenylalanine, respectively. The effect on cell adhesion of single chiral molecules and helical nanofibers may be mutually offset.
Collapse
Affiliation(s)
- Jinying Liu
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Feng Yuan
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xiaoyu Ma
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Dang-I Y Auphedeous
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Changli Zhao
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chuntai Liu
- National Engineering Research Center for Advanced Polymer Processing Technologies, Zhengzhou University, Zhengzhou, China
| | - Changyu Shen
- National Engineering Research Center for Advanced Polymer Processing Technologies, Zhengzhou University, Zhengzhou, China
| | - Chuanliang Feng
- State Key Lab of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|
36
|
Li J, Li Y, Li B, Yang Y. Left-handed helical polymer resin nanotubes prepared by using N-palmitoyl glucosamine. Chirality 2017; 30:439-444. [PMID: 29266451 DOI: 10.1002/chir.22804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
Abstract
Although the preparation of single-handed helical inorganic and hybrid organic-inorganic nanotubes is well developed, approaches to the formation of single-handed organopolymeric nanotubes are limited. Here, left-handed helical m-phenylenediamine-formaldehyde resin and 3-aminophenol-formaldehyde resin nanotubes were prepared by using N-palmitoyl glucosamine that can self-assemble into left-handed twisted nanoribbons in a mixture of methanol and water. In the reaction mixture, the helical pitch of the nanoribbons decreased with increasing reaction time. The resin nanotubes were obtained after removing the N-palmitoyl glucosamine template, and circular dichroism spectroscopy indicated that the organopolymeric nanotubes had optical activity. Carbonaceous nanotubes were then prepared by carbonization of the 3-aminophenol-formaldehyde resin nanotubes.
Collapse
Affiliation(s)
- Jiangang Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yi Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Baozong Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yonggang Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| |
Collapse
|
37
|
Li S, Zhang L, Jiang J, Meng Y, Liu M. Self-Assembled Polydiacetylene Vesicle and Helix with Chiral Interface for Visualized Enantioselective Recognition of Sulfinamide. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37386-37394. [PMID: 28972781 DOI: 10.1021/acsami.7b10353] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An l-glutamic acid terminated amphiphilic diacetylene was designed and found to self-assemble into vesicles in water and supramolecular gel with helical structures in mixed methanol/water solvent. Both the vesicles and the helices underwent topochemical photopolymerization under UV irradiation and changed to a blue color. During the self-assembly and photopolymerization, the chirality of localized l-glutamic acid was successfully transferred to polydiacetylene (PDA), which resulted in obvious CD signals in the PDA blue phase. Interestingly, the CD signals for PDA vesicles and helices were opposite due to the different packing modes in the PDA skeleton. However, although these two assembly systems own opposite supramolecular chirality, both of them showed the same enantioselective recognition of sulfinamide enantiomers, in which the assemblies with S-enantiomer turned red while the other remained blue in the presence of the R-enantiomer. It is suggested that the chiral interface composed of l-glutamic acid played an important role in the enantioselective recognition. This work revealed the function of molecular and supramolecular chirality in the supramolecular self-assembly system.
Collapse
Affiliation(s)
- Shuai Li
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
| | - Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Jian Jiang
- National Center for Nanoscience and Technology , Beijing 100190, China
| | - Yan Meng
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
- University of Chinese Academy of Sciences , Beijing 100049, China
- National Center for Nanoscience and Technology , Beijing 100190, China
- Collaborative Innovation Center of Chemical Science and Engineering , Tianjin 300072, China
| |
Collapse
|
38
|
Zhang L, Qin J, Lin S, Li Y, Li B, Yang Y. Aggregation-Induced Chirality: Twist and Stacking Handedness of the Biphenylene Groups of n-C 12H 25O-BP-CO-Ala-Ala Dipeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:10951-10957. [PMID: 28942645 DOI: 10.1021/acs.langmuir.7b02576] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In mixtures of water and dimethyl sulfoxide, 4'-(n-dodecyloxy)-1,1'-biphenyl-4-carbonyl Ala-Ala dipeptides can self-assemble into tubular structures that are formed by coiled nanoribbons. The twist and stacking handedness of biphenylene groups were studied using circular dichroism and confirmed by theoretical chemical calculations. The handedness of the coiled nanoribbons and the stacking handedness of biphenylene groups are controlled by the chirality of alanine at the C-terminus, whereas the twist handedness of biphenylene groups is determined by the chirality of alanine at the N-terminus. 1H NMR spectra indicated that the hydrogen bond formed by the N-H group of alanine at the N-terminus plays an important role in the formation of organic self-assemblies. On the basis of small-angle X-ray scattering characterization, a dimer structure was proposed to form through the terminal COOH groups.
Collapse
Affiliation(s)
- Lianglin Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Jiaming Qin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Shuwei Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Baozong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| |
Collapse
|
39
|
Lin S, Qin J, Li Y, Li B, Yang Y. Chirality-Driven Parallel and Antiparallel β-Sheet Secondary Structures of Phe-Ala Lipodipeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:8246-8252. [PMID: 28763619 DOI: 10.1021/acs.langmuir.7b01942] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Four Phe-Ala lipodipeptides with different stereochemical structures are observed to self-assemble into twisted nanoribbons in water. The handedness of the twisted nanoribbons is controlled by the chirality of the phenylalanine near the alkyl chain, while the stacking handedness of the phenyl and carbonyl groups is determined by the alanine at the C-terminal. The homochiral and heterochiral lipodipeptides self-assemble into parallel and antiparallel β-sheet structures, respectively. The 1H NMR, FTIR, X-ray diffraction, and circular dichroism characterizations indicate that these phenomena are mainly driven by the interaction between neighboring phenyl groups and H-bonding among the amide groups.
Collapse
Affiliation(s)
- Shuwei Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Jiaming Qin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Baozong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , Suzhou 215123, P. R. China
| |
Collapse
|
40
|
Li Y, Yang Y. Single-Handed Helical Carbonaceous Nanotubes: Preparation, Optical Activity, and Applications. CHEM REC 2017; 18:55-64. [PMID: 28675550 DOI: 10.1002/tcr.201700031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Indexed: 01/17/2023]
Abstract
Carbon-based nanomaterials have been widely studied in the past decade. Three approaches have been developed for the preparation of single-handed helical carbonaceous nanotubes. The first approach uses the carbonization of organopolymeric nanotubes, where the organic polymers are polypyrrole, 3-aminophenol-formaldehyde resin, and m-diaminobenzene-formaldehyde resin. The second approach uses the carbonization of aromatic ring-bridged polybissilsesquioxane followed by the removal of silica. Micropores exist within the walls of the carbonaceous nanotubes. The third approach uses the carbonization of organic compounds within silica nanotubes. This hard-templating approach drives the formation of helical carbonaceous nanotubes containing twisted carbonaceous nanoribbons. All of these helical carbonaceous nanotubes exhibit optical activity, which is believed to originate from the chiral π-π stacking of aromatic rings. They can be used as chirality inducers, and for lithium-ion storage.
Collapse
Affiliation(s)
- Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| |
Collapse
|
41
|
Li Y, Duan P, Liu M. Solvent-Regulated Self-Assembly of an Achiral Donor-Acceptor Complex in Confined Chiral Nanotubes: Chirality Transfer, Inversion and Amplification. Chemistry 2017; 23:8225-8231. [DOI: 10.1002/chem.201700613] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Yuangang Li
- College of Chemistry and Chemical Engineering; Xi'an University of Science and Technology; No. 58, Yanta Road 710054 Xi'an P. R. China
| | - Pengfei Duan
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao 100190 Beijing P. R. China
| | - Minghua Liu
- CAS Key Laboratory of Nanosystem and Hierarchical Fabrication; CAS Center for Excellence in Nanoscience; Division of Nanophotonics; National Center for Nanoscience and Technology (NCNST); No. 11 ZhongGuanCun BeiYiTiao 100190 Beijing P. R. China
- Beijing National Laboratory for Molecular Science; CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics; Institute of Chemistry; Chinese Academy of Sciences; No. 2 ZhongGuanCun BeiYiJie 100190 Beijing P. R. China
| |
Collapse
|
42
|
He Y, Yang Y. Helical Mesoporous Tantalum Oxide Nanotubes: Formation, Optical Activity, and Applications. CHEM REC 2017; 17:1146-1155. [PMID: 28480626 DOI: 10.1002/tcr.201700012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 11/10/2022]
Abstract
Nanomaterials with helical morphologies have attracted much attention owing to their potential applications as nanosprings, chirality sensors and in chiral optics. Single-handed helical Ta2 O5 nanotubes prepared through a supramolecular templating approach are described. The handedness is controlled by that of the organic self-assemblies of chiral low-molecular-weight gelators (LMWGs). The chiral LMWGs self-assemble into single-handed twisted nanoribbons through H-bonding, hydrophobic association, and π-π stacking. The Ta2 O5 nanotubes are formed by the adsorption and polycondensation of Ta2 O5 oligomers on the surfaces and edges of the twisted organic nanoribbons followed by removal of the template. The optical activity of the nanotubes is proposed to originate from the chiral defects on the inner surfaces of the tubular structures. Single-handed twisted LiTaO3 nanotubes can also be prepared using Ta2 O5 nanotubes.
Collapse
Affiliation(s)
- Yangyang He
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| |
Collapse
|
43
|
Yuan C, Li S, Zou Q, Ren Y, Yan X. Multiscale simulations for understanding the evolution and mechanism of hierarchical peptide self-assembly. Phys Chem Chem Phys 2017; 19:23614-23631. [DOI: 10.1039/c7cp01923h] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Multiscale molecular simulations that combine and systematically link several hierarchies can provide insights into the evolution and dynamics of hierarchical peptide self-assembly from the molecular level to the mesoscale.
Collapse
Affiliation(s)
- Chengqian Yuan
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Shukun Li
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Qianli Zou
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Ying Ren
- Center for Mesoscience
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| | - Xuehai Yan
- State Key Laboratory of Biochemical Engineering
- Institute of Process Engineering
- Chinese Academy of Sciences
- Beijing 100190
- China
| |
Collapse
|
44
|
Lin S, Li Y, Li B, Yang Y. Molecular packing and the handedness of the self-assemblies of C17H35CO-Ala-Phe sodium salts. NEW J CHEM 2017. [DOI: 10.1039/c7nj02553j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Molecular packing structure dominates the handedness of the self-assemblies of a series of lipodipeptide sodium salts.
Collapse
Affiliation(s)
- Shuwei Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Baozong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
45
|
Single-Handed Helical Polybissilsesquioxane Nanotubes and Mesoporous Nanofibers Prepared by an External Templating Approach Using Low-Molecular-Weight Gelators. Gels 2017; 3:gels3010002. [PMID: 30920499 PMCID: PMC6318642 DOI: 10.3390/gels3010002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/09/2016] [Accepted: 12/15/2016] [Indexed: 01/04/2023] Open
Abstract
Chiral low-molecular-weight gelators (LMWGs) derived from amino acids can self-assemble into helical fibers and twisted/coiled nanoribbons by H-bonding and π⁻π interaction. Silica nanotubes with single-handed helices have been prepared using chiral LMWGs through sol⁻gel transcription. Molecular-scale chirality exists at the inner surfaces. Here, we discuss single-handed helical aromatic ring-bridged polybissilsesquioxane nanotubes and mesoporous nanofibers prepared using chiral LMWGs. This review aims at describing the formation mechanisms of the helical nanostructures, the origination of optical activity, and the applications for other helical nanomaterial preparation, mainly based on our group's results. The morphology and handedness can be controlled by changing the chirality and kinds of LMWGs and tuning the reaction conditions. The aromatic rings arrange in a partially crystalline structure. The optical activity of the polybissilsesquioxane nanotubes and mesoporous nanofibers originates from chiral defects, including stacking and twisting of aromatic groups, on the inner surfaces. They can be used as the starting materials for preparation of silica, silicon, carbonaceous, silica/carbon, and silicon carbide nanotubes.
Collapse
|
46
|
Zhou X, Jin Q, Zhang L, Shen Z, Jiang L, Liu M. Self-Assembly of Hierarchical Chiral Nanostructures Based on Metal-Benzimidazole Interactions: Chiral Nanofibers, Nanotubes, and Microtubular Flowers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:4743-52. [PMID: 27248367 DOI: 10.1002/smll.201600842] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 05/04/2016] [Indexed: 05/15/2023]
Abstract
Controlled hierarchical self-assembly of synthetic molecules into chiral nanoarchitectures to mimic those biological chiral structures is of great importance. Here, a low-molecular-weight organogelator containing a benzimidazole moiety conjugated with an amphiphilic l-glutamic amide has been designed and its self-assembly into various hierarchical chiral nanostructures is investigated. Upon gel formation in organic solvents, 1D chiral nanostructure such as nanofiber and nanotube are obtained depending on the solvents. In the presence of transition and rare earth metal ions, hierarchical chiral nanostructures are formed. Specifically, the addition of TbCl3 , EuCl3 , and AgNO3 leads to nanofiber structures, while the addition of Cu(NO3 )2 , Tb(NO3 )3 , or Eu(NO3 )3 provides the microflower structures and microtubular flower structures, respectively. While Eu(III) and Tb(III)-containing microtubular flowers keep the chirality, the Cu(II)-coordinated microflowers lose chirality. More interestingly, the nanofibers formed by the gelator coordinated with Eu(III) or Tb(III) ions show not only the supramolecular chirality but also the circularly polarized luminescence.
Collapse
Affiliation(s)
- Xiaoqin Zhou
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Qingxian Jin
- Henan Provincial Key Laboratory of Surface and Interface Science, Zhengzhou University of Light Industry, Zhengzhou, Henan, 450002, P. R. China
| | - Li Zhang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China.
| | - Zhaocun Shen
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Long Jiang
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Sciences CAS Key Laboratory of Colloid Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Science, Beijing, 100190, P. R. China.
- Collaborative Innovation Centre of Chemical Science and Engineering, Tianjin, 300072, P. R. China.
| |
Collapse
|
47
|
Lin S, Li Y, Li B, Yang Y. Control of the Handedness of Self-assemblies of Dipeptides by the Chirality of Phenylalanine and Steric Hindrance of Phenylglycine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:7420-7426. [PMID: 27389603 DOI: 10.1021/acs.langmuir.6b01874] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Eight dipeptides, composed of phenylalanine and phenylglycine, that are able to self-assemble into twisted nanoribbons in deionized water are synthesized. The handedness of the nanoribbons is controlled by the chirality of the phenylalanine and the steric hindrance owing to the phenyl group of the phenylglycine. When the phenylalanine is at the C-terminal, π-π stacking by the phenyl groups, hydrogen bonding by the NH group of the phenylalanine, and hydrophobic associations of the alkyl chains control the stacking of the molecules. When phenylglycine is at the C-terminal, the chiral π-π stacking by the phenyl groups of the phenylalanines is suppressed. The hydrogen bonds formed by the NH groups of the phenylalanines had a greater contribution on forming organic self-assemblies than those formed by the NH groups of the phenylglycines.
Collapse
Affiliation(s)
- Shuwei Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Baozong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Department of Polymer Science and Engineering, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering, and Materials Science, Soochow University , Suzhou 215123, People's Republic of China
| |
Collapse
|
48
|
Reddy SMM, Shanmugam G. Role of Intramolecular Aromatic π-π Interactions in the Self-Assembly of Di-l-Phenylalanine Dipeptide Driven by Intermolecular Interactions: Effect of Alanine Substitution. Chemphyschem 2016; 17:2897-907. [DOI: 10.1002/cphc.201600364] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 06/13/2016] [Indexed: 01/19/2023]
Affiliation(s)
- Samala Murali Mohan Reddy
- Bioorganic Chemistry Laboratory; Council of Scientific and Industrial Research (CSIR); Central Leather Research Institute (CLRI), Adyar; Chennai 600020 India), Fax: (+91) 44 24911589
- Academy of Scientific and Innovative Research (AcSIR); CSIR-CLRI Campus; Chennai 600020 India
| | - Ganesh Shanmugam
- Bioorganic Chemistry Laboratory; Council of Scientific and Industrial Research (CSIR); Central Leather Research Institute (CLRI), Adyar; Chennai 600020 India), Fax: (+91) 44 24911589
- Academy of Scientific and Innovative Research (AcSIR); CSIR-CLRI Campus; Chennai 600020 India
| |
Collapse
|
49
|
Basu K, Baral A, Basak S, Dehsorkhi A, Nanda J, Bhunia D, Ghosh S, Castelletto V, Hamley IW, Banerjee A. Peptide based hydrogels for cancer drug release: modulation of stiffness, drug release and proteolytic stability of hydrogels by incorporating d-amino acid residue(s). Chem Commun (Camb) 2016; 52:5045-8. [PMID: 26987440 DOI: 10.1039/c6cc01744d] [Citation(s) in RCA: 82] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Synthetic tripeptide based noncytotoxic hydrogelators have been discovered for releasing an anticancer drug at physiological pH and temparature. Interestingly, gel stiffness, drug release capacity and proteolytic stability of these hydrogels have been successfully modulated by incorporating d-amino acid residues, indicating their potential use for drug delivery in the future.
Collapse
Affiliation(s)
- Kingshuk Basu
- Department of Biological Chemistry, Indian Association for The Cultivation of Science, Jadavpur, Kolkata, 700032, India.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Zhang H, Yu M, Song A, Song Y, Xin X, Shen J, Yuan S. Modulating hierarchical self-assembly behavior of a peptide amphiphile/nonionic surfactant mixed system. RSC Adv 2016. [DOI: 10.1039/c5ra25437j] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The self-assembly behavior of a nonionic surfactant (n-dodecyl tetraethylene monoether, C12E4) and a peptide amphiphile (PA, C16-GK-3) mixed system was investigated using a combination of microscopic, scattering and spectroscopic techniques.
Collapse
Affiliation(s)
- Han Zhang
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan
- P. R. China
| | - Menghong Yu
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan
- P. R. China
| | - Aixin Song
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan
- P. R. China
| | - Yawen Song
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan
- P. R. China
| | - Xia Xin
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan
- P. R. China
- National Engineering Technology Research Center for Colloidal Materials
| | - Jinglin Shen
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan
- P. R. China
| | - Shiling Yuan
- Key Laboratory of Colloid and Interface Chemistry (Shandong University)
- Ministry of Education
- Jinan
- P. R. China
| |
Collapse
|