1
|
Alexiev U, Rühl E. Visualization of Nanocarriers and Drugs in Cells and Tissue. Handb Exp Pharmacol 2024; 284:153-189. [PMID: 37566121 DOI: 10.1007/164_2023_684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
In this chapter, the visualization of nanocarriers and drugs in cells and tissue is reviewed. This topic is tightly connected to modern drug delivery, which relies on nanoscopic drug formulation approaches and the ability to probe nanoparticulate systems selectively in cells and tissue using advanced spectroscopic and microscopic techniques. We first give an overview of the breadth of this research field. Then, we mainly focus on topical drug delivery to the skin and discuss selected visualization techniques from spectromicroscopy, such as scanning transmission X-ray microscopy and fluorescence lifetime imaging. These techniques rely on the sensitive and quantitative detection of the topically applied drug delivery systems and active substances, either by exploiting their molecular properties or by introducing environmentally sensitive probes that facilitate their detection.
Collapse
Affiliation(s)
- Ulrike Alexiev
- Fachbereich Physik, Freie Universität Berlin, Berlin, Germany.
| | - Eckart Rühl
- Physikalische Chemie, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Wypysek SK, Centeno SP, Gronemann T, Wöll D, Richtering W. Hollow, pH-Sensitive Microgels as Nanocontainers for the Encapsulation of Proteins. Macromol Biosci 2023; 23:e2200456. [PMID: 36605024 DOI: 10.1002/mabi.202200456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/22/2022] [Indexed: 01/07/2023]
Abstract
Depending on their architectural and chemical design, microgels can selectively take up and release small molecules by changing the environmental properties, or capture and protect their cargo from the surrounding conditions. These outstanding properties make them promising candidates for use in biomedical applications as delivery or carrier systems. In this study, hollow anionic p(N-isopropylacrylamid-e-co-itaconic acid) microgels are synthesized and analyzed regarding their size, charge, and charge distribution. Furthermore, interactions between these microgels and the model protein cytochrome c are investigated as a function of pH. In this system, pH serves as a switch for the electrostatic interactions to alternate between no interaction, attraction, and repulsion. UV-vis spectroscopy is used to quantitatively study the encapsulation of cytochrome c and possible leakage. Additionally, fluorescence-lifetime images unravel the spatial distribution of the protein within the hollow microgels as a function of pH. These analyses show that cytochrome c mainly remains entrapped in the microgel, with pH controlling the localization of the protein - either in the microgel's cavity or in its network. This significantly differentiates these hollow microgels from microgels with similar chemical composition but without a solvent filled cavity.
Collapse
Affiliation(s)
- Sarah K Wypysek
- Institute of Physical Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Silvia P Centeno
- DWI Leibniz Institute for Interactive Materials, 52074, Aachen, Germany
| | - Till Gronemann
- Institute of Physical Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Dominik Wöll
- Institute of Physical Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| | - Walter Richtering
- Institute of Physical Chemistry, RWTH Aachen University, 52056, Aachen, Germany
| |
Collapse
|
3
|
Liu L, Zhao W, Ma Q, Gao Y, Wang W, Zhang X, Dong Y, Zhang T, Liang Y, Han S, Cao J, Wang X, Sun W, Ma H, Sun Y. Functional nano-systems for transdermal drug delivery and skin therapy. NANOSCALE ADVANCES 2023; 5:1527-1558. [PMID: 36926556 PMCID: PMC10012846 DOI: 10.1039/d2na00530a] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/27/2022] [Indexed: 06/18/2023]
Abstract
Transdermal drug delivery is one of the least intrusive and patient-friendly ways for therapeutic agent administration. Recently, functional nano-systems have been demonstrated as one of the most promising strategies to treat skin diseases by improving drug penetration across the skin barrier and achieving therapeutically effective drug concentrations in the target cutaneous tissues. Here, a brief review of functional nano-systems for promoting transdermal drug delivery is presented. The fundamentals of transdermal delivery, including skin biology and penetration routes, are introduced. The characteristics of functional nano-systems for facilitating transdermal drug delivery are elucidated. Moreover, the fabrication of various types of functional transdermal nano-systems is systematically presented. Multiple techniques for evaluating the transdermal capacities of nano-systems are illustrated. Finally, the advances in the applications of functional transdermal nano-systems for treating different skin diseases are summarized.
Collapse
Affiliation(s)
- Lijun Liu
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Wenbin Zhao
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Qingming Ma
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Yang Gao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Weijiang Wang
- School of Pharmacy, Qingdao University Qingdao 266071 China
- The Shandong Consortium in the Yellow River Basin for Prevention, Treatment and Drug Development for Primary Diseases Related to Alcoholism, Qingdao University Qingdao 266021 China
| | - Xuan Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yunxia Dong
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Tingting Zhang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Yan Liang
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Shangcong Han
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Jie Cao
- School of Pharmacy, Qingdao University Qingdao 266071 China
| | - Xinyu Wang
- Institute of Thermal Science and Technology, Shandong University Jinan 250061 China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences Qingdao 266113 China
| | - Haifeng Ma
- Department of Geriatrics, Zibo Municipal Hospital Zibo 255400 China
| | - Yong Sun
- School of Pharmacy, Qingdao University Qingdao 266071 China
| |
Collapse
|
4
|
Graff P, Hönzke S, Joshi AA, Yealland G, Fleige E, Unbehauen M, Schäfer-Korting M, Hocke A, Haag R, Hedtrich S. Preclinical Testing of Dendritic Core-Multishell Nanoparticles in Inflammatory Skin Equivalents. Mol Pharm 2022; 19:1795-1802. [PMID: 35266720 DOI: 10.1021/acs.molpharmaceut.1c00734] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Human skin equivalents emerged as novel tools in preclinical dermatological research. It is being claimed that they may bridge the translational gap between preclinical and clinical research, yet only a few studies have investigated their suitability for preclinical drug testing so far. Therefore, we investigated if inflammatory skin equivalents, which emulate hallmarks of atopic dermatitis (AD), are suitable to assess the anti-inflammatory effects of dexamethasone (DXM) in a cream formulation or loaded onto dendritic core-multishell nanoparticles. Topical DXM application resulted in significantly decreased expression of the proinflammatory cytokine TSLP, increased expression of the skin barrier protein involucrin, and facilitated glucocorticoid receptor translocation in a dose-dependent manner. Further, DXM treatment inhibited gene expression of extracellular matrix components, potentially indicative of the known skin atrophy-inducing side effects of glucocorticoids. Overall, we were able to successfully assess the anti-inflammatory effects of DXM and the superiority of the nanoparticle formulation. Nevertheless the identification of robust readout parameters proved challenging and requires careful study design.
Collapse
Affiliation(s)
- Patrick Graff
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Center of Biological Design, 13125 Berlin, Germany
| | - Stefan Hönzke
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany.,Research Unit for Photodermatology, Department of Dermatology and Venereology, Medical University of Graz, 8036 Graz, Austria
| | - Aaroh Anand Joshi
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany.,Department of Nephrology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Guy Yealland
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Emanuel Fleige
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Michael Unbehauen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Monika Schäfer-Korting
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, 14195 Berlin, Germany
| | - Andreas Hocke
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, 14195 Berlin, Germany
| | - Sarah Hedtrich
- Department of Internal Medicine/Infectious Diseases and Pulmonary Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany.,Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Center of Biological Design, 13125 Berlin, Germany.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
5
|
Madeira do O J, Foralosso R, Yilmaz G, Mastrotto F, King PJS, Xerri RM, He Y, van der Walle CF, Fernandez-Trillo F, Laughton CA, Styliari I, Stolnik S, Mantovani G. Poly(triazolyl methacrylate) glycopolymers as potential targeted unimolecular nanocarriers. NANOSCALE 2019; 11:21155-21166. [PMID: 31663091 DOI: 10.1039/c9nr05836b] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Synthetic glycopolymers are increasingly investigated as multivalent ligands for a range of biological and biomedical applications. This study indicates that glycopolymers with a fine-tuned balance between hydrophilic sugar pendant units and relatively hydrophobic polymer backbones can act as single-chain targeted nanocarriers for low molecular weight hydrophobic molecules. Non-covalent complexes formed from poly(triazolyl methacrylate) glycopolymers and low molecular weight hydrophobic guest molecules were characterised through a range of analytical techniques - DLS, SLS, TDA, fluorescence spectroscopy, surface tension analysis - and molecular dynamics (MD) modelling simulations provided further information on the macromolecular characteristics of these single chain complexes. Finally, we show that these nanocarriers can be utilised to deliver a hydrophobic guest molecule, Nile red, to both soluble and surface-immobilised concanavalin A (Con A) and peanut agglutinin (PNA) model lectins with high specificity, showing the potential of non-covalent complexation with specific glycopolymers in targeted guest-molecule delivery.
Collapse
Affiliation(s)
- J Madeira do O
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - R Foralosso
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - G Yilmaz
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - F Mastrotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Via F. Marzolo 5, 35131 Padova, Italy
| | - P J S King
- Malvern Panalytical Ltd, Malvern, WR14 1XZ, UK
| | - R M Xerri
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - Y He
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | | | | | - C A Laughton
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - I Styliari
- University of Hertfordshire, Hatfield, Hertfordshire, UK.
| | - S Stolnik
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| | - G Mantovani
- Molecular Therapeutics and Formulation Division, School of Pharmacy, University of Nottingham, NG7 2RD, Nottingham, UK.
| |
Collapse
|
6
|
Ober K, Volz-Rakebrand P, Stellmacher J, Brodwolf R, Licha K, Haag R, Alexiev U. Expanding the Scope of Reporting Nanoparticles: Sensing of Lipid Phase Transitions and Nanoviscosities in Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11422-11434. [PMID: 31378067 DOI: 10.1021/acs.langmuir.9b01372] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Biological membrane fluidity and thus the local viscosity in lipid membranes are of vital importance for many life processes and implicated in various diseases. Here, we introduce a novel viscosity sensor design for lipid membranes based on a reporting nanoparticle, a sulfated dendritic polyglycerol (dPGS), conjugated to a fluorescent molecular rotor, indocarbocyanine (ICC). We show that dPGS-ICC provides high affinity to lipid bilayers, enabling viscosity sensing in the lipid tail region. The systematic characterization of viscosity- and temperature-dependent photoisomerization properties of ICC and dPGS-ICC allowed us to determine membrane viscosities in different model systems and in living cells using fluorescence lifetime imaging (FLIM). dPGS-ICC distinguishes between ordered lipids and the onset of membrane defects in small unilamellar single lipid vesicles and is highly sensitive in the fluid phase to small changes in viscosity introduced by cholesterol. In microscopy-based viscosity measurements of large multilamellar vesicles, we observed an order of magnitude more viscous environments by dPGS-ICC, lending support to the hypothesis of heterogeneous nanoviscosity environments even in single lipid bilayers. The existence of such complex viscosity structures could explain the large variation in the apparent membrane viscosity values found in the literature, depending on technique and probe, both for model membranes and live cells. In HeLa cells, a tumor-derived cell line, our nanoparticle-based viscosity sensor detects a membrane viscosity of ∼190 cP and is able to discriminate between cell membrane and intracellular vesicle localization. Thus, our results show the versatility of the dPGS-ICC nano-conjugate in physicochemical and biomedical applications by adding a new analytical functionality to its medical properties.
Collapse
Affiliation(s)
- Katja Ober
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Pierre Volz-Rakebrand
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Johannes Stellmacher
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Robert Brodwolf
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Kai Licha
- Mivenion GmbH , Robert-Koch-Platz 4 , 10115 Berlin , Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie , Freie Universität Berlin , Takustraße 3 , 14195 Berlin , Germany
| | - Ulrike Alexiev
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| |
Collapse
|
7
|
Frombach J, Unbehauen M, Kurniasih IN, Schumacher F, Volz P, Hadam S, Rancan F, Blume-Peytavi U, Kleuser B, Haag R, Alexiev U, Vogt A. Core-multishell nanocarriers enhance drug penetration and reach keratinocytes and antigen-presenting cells in intact human skin. J Control Release 2019; 299:138-148. [PMID: 30797867 DOI: 10.1016/j.jconrel.2019.02.028] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2018] [Revised: 02/18/2019] [Accepted: 02/19/2019] [Indexed: 11/30/2022]
Abstract
In reconstructed skin and diffusion cell studies, core-multishell nanocarriers (CMS-NC) showed great potential for drug delivery across the skin barrier. Herein, we investigated penetration, release of dexamethasone (DXM), in excised full-thickness human skin with special focus on hair follicles (HF). Four hours and 16 h after topical application of clinically relevant dosages of 10 μg DXM/cm2 skin encapsulated in CMS-NC (12 nm diameter, 5.8% loading), presence of DXM in the tissue as assessed by fluorescence microscopy of anti-DXM-stained tissue sections as well as ELISA and HPLC-MS/MS in tissue extracts was enhanced compared to standard LAW-creme but lower compared to DXM aqueous/alcoholic solution. Such enhanced penetration compared to conventional cremes offers high potential for topical therapies, as recurrent applications of corticosteroid solutions face limitations with regard to tolerability and fast drainage. The findings encourage more detailed investigations on where and how the nanocarrier and drug dissociate within the skin and what other factors, e.g. thermodynamic activity, influence the penetration of this formulations. Microscopic studies on the spatial distribution within the skin revealed accumulation in HF and furrows accompanied by limited cellular uptake assessed by flow cytometry (up to 9% of total epidermal cells). FLIM clearly visualized the presence of CMS-NC in the viable epidermis and dermis. When exposed in situ a fraction of up to 25% CD1a+ cells were found within the epidermal CMS-NC+ population compared to approximately 3% CD1a+/CMS-NC+ cells after in vitro exposure in short-term cultures of epidermal cell suspensions. The latter reflects the natural percentage of Langerhans cells (LC) in epidermis suspensions and indicated that CMS-NC were not preferentially internalized by one cell type. The increased CMS-NC+ LC proportion after exposure within the tissue is in accordance with the strategic suprabasal LC-localization. More specifically we postulate that the extensive dendrite meshwork, their position around HF orifices and their capacity to modulate tight junctions facilitated a preferential uptake of CMS-NC by LC within the skin. This newly identified aspect of CMS-NC penetration underlines the potential of CMS-NC for dermatotherapy and encourages further investigations of CMS-NC for the delivery of other molecule classes for which intracellular delivery is even more crucial.
Collapse
Affiliation(s)
- Janna Frombach
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michael Unbehauen
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Indah N Kurniasih
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Fabian Schumacher
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany; Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Pierre Volz
- Department of Physics, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Sabrina Hadam
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Fiorenza Rancan
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ulrike Blume-Peytavi
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Rainer Haag
- Organic Chemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ulrike Alexiev
- Department of Physics, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Annika Vogt
- Clinical Research Center for Hair and Skin Science, Department of Dermatology and Allergy, Charité-Universitaetsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.
| |
Collapse
|
8
|
Edlich A, Volz P, Brodwolf R, Unbehauen M, Mundhenk L, Gruber AD, Hedtrich S, Haag R, Alexiev U, Kleuser B. Crosstalk between core-multishell nanocarriers for cutaneous drug delivery and antigen-presenting cells of the skin. Biomaterials 2018; 162:60-70. [PMID: 29438881 DOI: 10.1016/j.biomaterials.2018.01.058] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 01/15/2023]
Abstract
Owing their unique chemical and physical properties core-multishell (CMS) nanocarriers are thought to underlie their exploitable biomedical use for a topical treatment of skin diseases. This highlights the need to consider not only the efficacy of CMS nanocarriers but also the potentially unpredictable and adverse consequences of their exposure thereto. As CMS nanocarriers are able to penetrate into viable layers of normal and stripped human skin ex vivo as well as in in vitro skin disease models the understanding of nanoparticle crosstalk with components of the immune system requires thorough investigation. Our studies highlight the biocompatible properties of CMS nanocarriers on Langerhans cells of the skin as they did neither induce cytotoxicity and genotoxicity nor cause reactive oxygen species (ROS) or an immunological response. Nevertheless, CMS nanocarriers were efficiently taken up by Langerhans cells via divergent endocytic pathways. Bioimaging of CMS nanocarriers by fluorescence lifetime imaging microscopy (FLIM) and flow cytometry indicated not only a localization within the lysosomes but also an energy-dependent exocytosis of unmodified CMS nanocarriers into the extracellular environment.
Collapse
Affiliation(s)
- Alexander Edlich
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany
| | - Pierre Volz
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Robert Brodwolf
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Michael Unbehauen
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Achim D Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Berlin, Germany
| | - Sarah Hedtrich
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - Ulrike Alexiev
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany.
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Potsdam, Germany.
| |
Collapse
|
9
|
Volz P, Brodwolf R, Zoschke C, Haag R, Schäfer-Korting M, Alexiev U. White-Light Supercontinuum Laser-Based Multiple Wavelength Excitation for TCSPC-FLIM of Cutaneous Nanocarrier Uptake. ACTA ACUST UNITED AC 2018. [DOI: 10.1515/zpch-2017-1050] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Abstract
We report here on a custom-built time-correlated single photon-counting (TCSPC)-based fluorescence lifetime imaging microscopy (FLIM) setup with a continuously tunable white-light supercontinuum laser combined with acousto-optical tunable filters (AOTF) as an excitation source for simultaneous excitation of multiple spectrally separated fluorophores. We characterized the wavelength dependence of the white-light supercontinuum laser pulse properties and demonstrated the performance of the FLIM setup, aiming to show the experimental setup in depth together with a biomedical application. We herein summarize the physical-technical parameters as well as our approach to map the skin uptake of nanocarriers using FLIM with a resolution compared to spectroscopy. As an example, we focus on the penetration study of indocarbocyanine-labeled dendritic core-multishell nanocarriers (CMS-ICC) into reconstructed human epidermis. Unique fluorescence lifetime signatures of indocarbocyanine-labeled nanocarriers indicate nanocarrier-tissue interactions within reconstructed human epidermis, bringing FLIM close to spectroscopic analysis.
Collapse
Affiliation(s)
- Pierre Volz
- Institute of Experimental Physics , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Robert Brodwolf
- Institute of Experimental Physics , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
- Helmholtz Virtual Institute – Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht , Kantstr. 55 , 14513 Teltow , Germany
| | - Christian Zoschke
- Institute of Pharmacy (Pharmacology and Toxicology) , Freie Universität Berlin , Königin-Luise-Str. 2+4 , 14195 Berlin , Germany
| | - Rainer Haag
- Helmholtz Virtual Institute – Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht , Kantstr. 55 , 14513 Teltow , Germany
- Institute of Chemistry and Biochemistry , Freie Universität Berlin , Takustr. 3 , 14195 Berlin , Germany
| | - Monika Schäfer-Korting
- Helmholtz Virtual Institute – Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht , Kantstr. 55 , 14513 Teltow , Germany
- Institute of Pharmacy (Pharmacology and Toxicology) , Freie Universität Berlin , Königin-Luise-Str. 2+4 , 14195 Berlin , Germany
| | - Ulrike Alexiev
- Institute of Experimental Physics , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
- Helmholtz Virtual Institute – Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht , Kantstr. 55 , 14513 Teltow , Germany
| |
Collapse
|
10
|
Radbruch M, Pischon H, Ostrowski A, Volz P, Brodwolf R, Neumann F, Unbehauen M, Kleuser B, Haag R, Ma N, Alexiev U, Mundhenk L, Gruber AD. Dendritic Core-Multishell Nanocarriers in Murine Models of Healthy and Atopic Skin. NANOSCALE RESEARCH LETTERS 2017; 12:64. [PMID: 28116609 PMCID: PMC5256633 DOI: 10.1186/s11671-017-1835-0] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 12/23/2016] [Indexed: 05/22/2023]
Abstract
Dendritic hPG-amid-C18-mPEG core-multishell nanocarriers (CMS) represent a novel class of unimolecular micelles that hold great potential as drug transporters, e.g., to facilitate topical therapy in skin diseases. Atopic dermatitis is among the most common inflammatory skin disorders with complex barrier alterations which may affect the efficacy of topical treatment.Here, we tested the penetration behavior and identified target structures of unloaded CMS after topical administration in healthy mice and in mice with oxazolone-induced atopic dermatitis. We further examined whole body distribution and possible systemic side effects after simulating high dosage dermal penetration by subcutaneous injection.Following topical administration, CMS accumulated in the stratum corneum without penetration into deeper viable epidermal layers. The same was observed in atopic dermatitis mice, indicating that barrier alterations in atopic dermatitis had no influence on the penetration of CMS. Following subcutaneous injection, CMS were deposited in the regional lymph nodes as well as in liver, spleen, lung, and kidney. However, in vitro toxicity tests, clinical data, and morphometry-assisted histopathological analyses yielded no evidence of any toxic or otherwise adverse local or systemic effects of CMS, nor did they affect the severity or course of atopic dermatitis.Taken together, CMS accumulate in the stratum corneum in both healthy and inflammatory skin and appear to be highly biocompatible in the mouse even under conditions of atopic dermatitis and thus could potentially serve to create a depot for anti-inflammatory drugs in the skin.
Collapse
Affiliation(s)
- Moritz Radbruch
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| | - Hannah Pischon
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| | - Anja Ostrowski
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| | - Pierre Volz
- Institute of Experimental Physics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Robert Brodwolf
- Institute of Experimental Physics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Falko Neumann
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Michael Unbehauen
- Institute of Chemistry and Biochemistry, Organic Chemistry, Freie Universität Berlin, Berlin, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Organic Chemistry, Freie Universität Berlin, Berlin, Germany
| | - Nan Ma
- Institute of Biomaterial Science and Berlin-Brandenburg Centre for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Ulrike Alexiev
- Institute of Experimental Physics, Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| | - Achim D. Gruber
- Institute of Veterinary Pathology, Freie Universität Berlin, Robert-von-Ostertag-Str. 15, 14163 Berlin, Germany
| |
Collapse
|
11
|
Volz P, Schilrreff P, Brodwolf R, Wolff C, Stellmacher J, Balke J, Morilla MJ, Zoschke C, Schäfer-Korting M, Alexiev U. Pitfalls in using fluorescence tagging of nanomaterials: tecto-dendrimers in skin tissue as investigated by Cluster-FLIM. Ann N Y Acad Sci 2017; 1405:202-214. [DOI: 10.1111/nyas.13473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 12/16/2022]
Affiliation(s)
- Pierre Volz
- Institute of Experimental Physics; Freie Universität Berlin; Berlin Germany
| | - Priscila Schilrreff
- Nanomedicine Research Program (Departamento de Ciencia y Tecnologia); Universidad Nacional de Quilmes; Buenos Aires Argentina
| | - Robert Brodwolf
- Institute of Experimental Physics; Freie Universität Berlin; Berlin Germany
| | - Christopher Wolff
- Institute for Pharmacy (Pharmacology and Toxicology); Freie Universität Berlin; Berlin Germany
| | | | - Jens Balke
- Institute of Experimental Physics; Freie Universität Berlin; Berlin Germany
| | - Maria J. Morilla
- Nanomedicine Research Program (Departamento de Ciencia y Tecnologia); Universidad Nacional de Quilmes; Buenos Aires Argentina
| | - Christian Zoschke
- Institute for Pharmacy (Pharmacology and Toxicology); Freie Universität Berlin; Berlin Germany
| | - Monika Schäfer-Korting
- Institute for Pharmacy (Pharmacology and Toxicology); Freie Universität Berlin; Berlin Germany
| | - Ulrike Alexiev
- Institute of Experimental Physics; Freie Universität Berlin; Berlin Germany
| |
Collapse
|
12
|
Jager J, Obst K, Lohan SB, Viktorov J, Staufenbiel S, Renz H, Unbehauen M, Haag R, Hedtrich S, Teutloff C, Meinke MC, Danker K, Dommisch H. Characterization of hyperbranched core-multishell nanocarriers as an innovative drug delivery system for the application at the oral mucosa. J Periodontal Res 2017; 53:57-65. [PMID: 28898420 DOI: 10.1111/jre.12487] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/01/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND OBJECTIVES In the oral cavity, the mucosal tissues may develop a number of different pathological conditions, such as inflammatory diseases (gingivitis, periodontitis) and autoimmune disorders (eg, oral lichen planus) that require therapy. The application of topical drugs is one common therapeutic approach. However, their efficacy is limited. Dilution effects due to saliva hinder the adherence and the penetration of drug formulations. Therefore, the bioavailability of oral topical drugs is insufficient, and patients may suffer from disease over years, if not life-long. MATERIAL AND METHODS In the present study, we characterized core-multishell (CMS) nanocarriers for their potential use as drug delivery systems at oral mucosal tissues. For this purpose, we prepared porcine masticatory as well as buccal mucosa and performed Franz cell diffusion experiments. Penetration of fluorescently labeled CMS nanocarriers into the mucosal tissue was analyzed using confocal laser scanning microscopy. Upon exposure to CMS nanocarriers, the metabolic and proliferative activity of gingival epithelial cells was determined by MTT and sulforhodamine B assays, respectively. RESULTS Here, we could show that the carriers penetrate into both mucosal tissues, while particles penetrate deeper into the masticatory mucosa. Electron paramagnetic resonance spectroscopy revealed that the 3-carboxy-2,2,5,5-tetramethyl-1-pyrrolidinyloxy-labeled glucocorticoid dexamethasone loaded on to the CMS nanocarriers was released from the carriers in both mucosal tissues but with a higher efficiency in the buccal mucosa. The release from the nanocarriers is in both cases superior compared to the release from a conventional cream, which is normally used for the treatment of inflammatory conditions in the oral cavity. The CMS nanocarriers exhibited neither cytotoxic nor proliferative effects in vitro. CONCLUSION These findings suggested that CMS nanocarriers might be an innovative approach for topical drug delivery in the treatment of oral inflammatory diseases.
Collapse
Affiliation(s)
- J Jager
- Institute for Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - K Obst
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - S B Lohan
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - J Viktorov
- Department of Periodontology and Synoptic Dentistry, Charité - Medical University Berlin, Berlin, Germany
| | - S Staufenbiel
- Institute of Pharmacy, Pharmaceutical Technology, Freie Universität Berlin, Berlin, Germany
| | - H Renz
- Department of Craniofacial Developmental Biology, Charité - Medical University Berlin, Berlin, Germany
| | - M Unbehauen
- Institute for Organic Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - R Haag
- Institute for Organic Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany
| | - S Hedtrich
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - C Teutloff
- Department of Physics, Freie Universität Berlin, Berlin, Germany
| | - M C Meinke
- Department of Dermatology, Venerology and Allergology, Center of Experimental and Applied Cutaneous Physiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - K Danker
- Institute for Biochemistry, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - H Dommisch
- Department of Periodontology and Synoptic Dentistry, Charité - Medical University Berlin, Berlin, Germany.,Department of Oral Health Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
13
|
Localization of dexamethasone within dendritic core-multishell (CMS) nanoparticles and skin penetration properties studied by multi-frequency electron paramagnetic resonance (EPR) spectroscopy. Eur J Pharm Biopharm 2017; 116:94-101. [DOI: 10.1016/j.ejpb.2016.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/30/2016] [Accepted: 10/12/2016] [Indexed: 12/27/2022]
|
14
|
Time-resolved fluorescence microscopy (FLIM) as an analytical tool in skin nanomedicine. Eur J Pharm Biopharm 2017; 116:111-124. [DOI: 10.1016/j.ejpb.2017.01.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 01/09/2017] [Accepted: 01/19/2017] [Indexed: 12/22/2022]
|
15
|
Pischon H, Radbruch M, Ostrowski A, Volz P, Gerecke C, Unbehauen M, Hönzke S, Hedtrich S, Fluhr JW, Haag R, Kleuser B, Alexiev U, Gruber AD, Mundhenk L. Stratum corneum targeting by dendritic core-multishell-nanocarriers in a mouse model of psoriasis. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2017; 13:317-327. [DOI: 10.1016/j.nano.2016.09.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 08/08/2016] [Accepted: 09/05/2016] [Indexed: 12/23/2022]
|
16
|
Boreham A, Volz P, Peters D, Keck CM, Alexiev U. Determination of nanostructures and drug distribution in lipid nanoparticles by single molecule microscopy. Eur J Pharm Biopharm 2017; 110:31-38. [DOI: 10.1016/j.ejpb.2016.10.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/11/2023]
|
17
|
Löwenau LJ, Zoschke C, Brodwolf R, Volz P, Hausmann C, Wattanapitayakul S, Boreham A, Alexiev U, Schäfer-Korting M. Increased permeability of reconstructed human epidermis from UVB-irradiated keratinocytes. Eur J Pharm Biopharm 2016; 116:149-154. [PMID: 28034807 DOI: 10.1016/j.ejpb.2016.12.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/25/2016] [Accepted: 12/23/2016] [Indexed: 01/08/2023]
Abstract
Extrinsic (photo) aging accelerates chronologically aging in the skin due to cumulative UV irradiation. Despite recent insights into the molecular mechanisms of fibroblast aging, age-related changes of the skin barrier function have been understudied. In contrast, the constantly increasing subpopulation of aged patients causes a clinical need for effective and safe (dermatological) treatment. Herein, we reconstructed human epidermis from UVB-irradiated keratinocytes (UVB-RHE). UVB-irradiated keratinocytes show higher activity of senescence associated β-galactosidase, less cell proliferation, and reduced viability. Higher amounts of β-galactosidase are also detectable in UVB-RHE. Moreover, UVB-RHE release more interleukin-1α and -8 into the culture medium and present altered differentiation with a thinner stratum corneum compared to normal RHE. For the first time, the permeation of testosterone and caffeine through UVB-irradiated RHE indicate a clear influence of the UVB stress on the skin barrier function. Impaired barrier function was confirmed by the increased permeation of testosterone and caffeine as well as by the increased penetration of dendritic core-multishell nanocarriers into the constructs. Taken together, UVB-RHE emulate hallmarks of skin aging and might contribute to an improved non-clinical development of medicinal or cosmetic products.
Collapse
Affiliation(s)
- Lilian Julia Löwenau
- Institute for Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Christian Zoschke
- Institute for Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Robert Brodwolf
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Pierre Volz
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Christian Hausmann
- Institute for Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Suvara Wattanapitayakul
- Institute for Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany
| | - Alexander Boreham
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Ulrike Alexiev
- Institute of Experimental Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Monika Schäfer-Korting
- Institute for Pharmacy, Freie Universität Berlin, Königin-Luise-Str. 2+4, 14195 Berlin, Germany.
| |
Collapse
|
18
|
Boreham A, Brodwolf R, Walker K, Haag R, Alexiev U. Time-Resolved Fluorescence Spectroscopy and Fluorescence Lifetime Imaging Microscopy for Characterization of Dendritic Polymer Nanoparticles and Applications in Nanomedicine. Molecules 2016; 22:molecules22010017. [PMID: 28029135 PMCID: PMC6155873 DOI: 10.3390/molecules22010017] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 12/11/2022] Open
Abstract
The emerging field of nanomedicine provides new approaches for the diagnosis and treatment of diseases, for symptom relief and for monitoring of disease progression. One route of realizing this approach is through carefully constructed nanoparticles. Due to the small size inherent to the nanoparticles a proper characterization is not trivial. This review highlights the application of time-resolved fluorescence spectroscopy and fluorescence lifetime imaging microscopy (FLIM) for the analysis of nanoparticles, covering aspects ranging from molecular properties to particle detection in tissue samples. The latter technique is particularly important as FLIM allows for distinguishing of target molecules from the autofluorescent background and, due to the environmental sensitivity of the fluorescence lifetime, also offers insights into the local environment of the nanoparticle or its interactions with other biomolecules. Thus, these techniques offer highly suitable tools in the fields of particle development, such as organic chemistry, and in the fields of particle application, such as in experimental dermatology or pharmaceutical research.
Collapse
Affiliation(s)
- Alexander Boreham
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
| | - Robert Brodwolf
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.
| | - Karolina Walker
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
| | - Rainer Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustrasse 3, 14195 Berlin, Germany.
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.
| | - Ulrike Alexiev
- Institut für Experimentalphysik, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany.
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht, Kantstr. 55, 14513 Teltow, Germany.
| |
Collapse
|
19
|
Vogt A, Wischke C, Neffe AT, Ma N, Alexiev U, Lendlein A. Nanocarriers for drug delivery into and through the skin — Do existing technologies match clinical challenges? J Control Release 2016; 242:3-15. [DOI: 10.1016/j.jconrel.2016.07.027] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 07/13/2016] [Accepted: 07/17/2016] [Indexed: 12/31/2022]
|
20
|
Zhang N, Said A, Wischke C, Kral V, Brodwolf R, Volz P, Boreham A, Gerecke C, Li W, Neffe AT, Kleuser B, Alexiev U, Lendlein A, Schäfer-Korting M. Poly[acrylonitrile-co-(N-vinyl pyrrolidone)] nanoparticles - Composition-dependent skin penetration enhancement of a dye probe and biocompatibility. Eur J Pharm Biopharm 2016; 116:66-75. [PMID: 27989766 DOI: 10.1016/j.ejpb.2016.10.019] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 10/20/2016] [Accepted: 10/23/2016] [Indexed: 12/18/2022]
Abstract
Nanoparticles can improve topical drug delivery: size, surface properties and flexibility of polymer nanoparticles are defining its interaction with the skin. Only few studies have explored skin penetration for one series of structurally related polymer particles with systematic alteration of material composition. Here, a series of rigid poly[acrylonitrile-co-(N-vinyl pyrrolidone)] model nanoparticles stably loaded with Nile Red or Rhodamin B, respectively, was comprehensively studied for biocompatibility and functionality. Surface properties were altered by varying the molar content of hydrophilic NVP from 0 to 24.1% and particle size ranged from 35 to 244nm. Whereas irritancy and genotoxicity were not revealed, lipophilic and hydrophilic nanoparticles taken up by keratinocytes affected cell viability. Skin absorption of the particles into viable skin ex vivo was studied using Nile Red as fluorescent probe. Whilst an intact stratum corneum efficiently prevented penetration, almost complete removal of the horny layer allowed nanoparticles of smaller size and hydrophilic particles to penetrate into viable epidermis and dermis. Hence, systematic variations of nanoparticle properties allows gaining insights into critical criteria for biocompatibility and functionality of novel nanocarriers for topical drug delivery and risks associated with environmental exposure.
Collapse
Affiliation(s)
- Nan Zhang
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - André Said
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Christian Wischke
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany; Helmholtz Virtual Institute Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Vivian Kral
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Robert Brodwolf
- Helmholtz Virtual Institute Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht, Teltow, Germany; Institute of Physics, Freie Universität Berlin, Berlin, Germany
| | - Pierre Volz
- Institute of Physics, Freie Universität Berlin, Berlin, Germany
| | | | | | - Wenzhong Li
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Axel T Neffe
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany; Helmholtz Virtual Institute Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Burkhard Kleuser
- Institute of Nutritional Science, University of Potsdam, Germany
| | - Ulrike Alexiev
- Helmholtz Virtual Institute Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht, Teltow, Germany; Institute of Physics, Freie Universität Berlin, Berlin, Germany
| | - Andreas Lendlein
- Institute of Biomaterial Science and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Geesthacht, Teltow, Germany; Helmholtz Virtual Institute Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht, Teltow, Germany
| | - Monika Schäfer-Korting
- Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany; Helmholtz Virtual Institute Multifunctional Biomaterials for Medicine, Helmholtz-Zentrum Geesthacht, Teltow, Germany.
| |
Collapse
|
21
|
Yamamoto K, Klossek A, Flesch R, Ohigashi T, Fleige E, Rancan F, Frombach J, Vogt A, Blume-Peytavi U, Schrade P, Bachmann S, Haag R, Hedtrich S, Schäfer-Korting M, Kosugi N, Rühl E. Core-multishell nanocarriers: Transport and release of dexamethasone probed by soft X-ray spectromicroscopy. J Control Release 2016; 242:64-70. [PMID: 27568290 DOI: 10.1016/j.jconrel.2016.08.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/16/2016] [Accepted: 08/23/2016] [Indexed: 11/26/2022]
Abstract
Label-free detection of core-multishell (CMS) nanocarriers and the anti-inflammatory drug dexamethasone is reported. Selective excitation by tunable soft X-rays in the O 1s-regime is used for probing either the CMS nanocarrier or the drug. Furthermore, the drug loading efficiency into CMS nanocarriers is determined by X-ray spectroscopy. The drug-loaded nanocarriers were topically applied to human skin explants providing insights into the penetration and drug release processes. It is shown that the core-multishell nanocarriers remain in the stratum corneum when applied for 100min to 1000min. Dexamethasone, if applied topically to human ex vivo skin explants using different formulations, shows a vehicle-dependent penetration behavior. Highest local drug concentrations are found in the stratum corneum as well as in the viable epidermis. If the drug is loaded to core-multishell nanocarriers, the concentration of the free drug is low in the stratum corneum and is enhanced in the viable epidermis as compared to other drug formulations. The present results provide insights into the penetration of drug nanocarriers as well as the mechanisms of controlled drug release from CMS nanocarriers in human skin. They are also compared to related work using dye-labeled nanocarriers and dyes that were used as model drugs.
Collapse
Affiliation(s)
- K Yamamoto
- Physikalische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - A Klossek
- Physikalische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - R Flesch
- Physikalische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - T Ohigashi
- UVSOR Synchrotron Facility, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - E Fleige
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - F Rancan
- Klinisches Forschungszentrum für Haut- und Haarforschung, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - J Frombach
- Klinisches Forschungszentrum für Haut- und Haarforschung, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - A Vogt
- Klinisches Forschungszentrum für Haut- und Haarforschung, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - U Blume-Peytavi
- Klinisches Forschungszentrum für Haut- und Haarforschung, Charité Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - P Schrade
- Abteilung für Elektronenmikroskopie at CVK, 13353 Berlin, Germany
| | - S Bachmann
- Abteilung für Elektronenmikroskopie at CVK, 13353 Berlin, Germany
| | - R Haag
- Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - S Hedtrich
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| | - M Schäfer-Korting
- Institut für Pharmazie, Freie Universität Berlin, Königin-Luise-Str. 2-4, 14195 Berlin, Germany
| | - N Kosugi
- UVSOR Synchrotron Facility, Institute for Molecular Science, Okazaki 444-8585, Japan
| | - E Rühl
- Physikalische Chemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany.
| |
Collapse
|
22
|
Lohan S, Icken N, Teutloff C, Saeidpour S, Bittl R, Lademann J, Fleige E, Haag R, Haag S, Meinke M. Investigation of cutaneous penetration properties of stearic acid loaded to dendritic core-multi-shell (CMS) nanocarriers. Int J Pharm 2016; 501:271-7. [DOI: 10.1016/j.ijpharm.2016.02.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Revised: 02/01/2016] [Accepted: 02/02/2016] [Indexed: 01/02/2023]
|
23
|
Mou Q, Ma Y, Jin X, Yan D, Zhu X. Host–guest binding motifs based on hyperbranched polymers. Chem Commun (Camb) 2016; 52:11728-43. [DOI: 10.1039/c6cc03643k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Host–guest systems based on hyperbranched polymers together with their unique properties and various applications have been summarized.
Collapse
Affiliation(s)
- Quanbing Mou
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Yuan Ma
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xin Jin
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Deyue Yan
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| | - Xinyuan Zhu
- School of Chemistry and Chemical Engineering
- State Key Laboratory of Metal Matrix Composites
- Shanghai Jiao Tong University
- Shanghai 200240
- P. R. China
| |
Collapse
|
24
|
Detecting and Quantifying Biomolecular Interactions of a Dendritic Polyglycerol Sulfate Nanoparticle Using Fluorescence Lifetime Measurements. Molecules 2015; 21:E22. [PMID: 26712722 PMCID: PMC6273356 DOI: 10.3390/molecules21010022] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 12/16/2015] [Accepted: 12/17/2015] [Indexed: 01/08/2023] Open
Abstract
Interactions of nanoparticles with biomaterials determine the biological activity that is key for the physiological response. Dendritic polyglycerol sulfates (dPGS) were found recently to act as an inhibitor of inflammation by blocking selectins. Systemic application of dPGS would present this nanoparticle to various biological molecules that rapidly adsorb to the nanoparticle surface or lead to adsorption of the nanoparticle to cellular structures such as lipid membranes. In the past, fluorescence lifetime measurements of fluorescently tagged nanoparticles at a molecular and cellular/tissue level have been proven to reveal valuable information on the local nanoparticle environment via characteristic fluorescent lifetime signatures of the nanoparticle bound dye. Here, we established fluorescence lifetime measurements as a tool to determine the binding affinity to fluorescently tagged dPGS (dPGS-ICC; ICC: indocarbocyanine). The binding to a cell adhesion molecule (L-selectin) and a human complement protein (C1q) to dPGS-ICC was evaluated by the concentration dependent change in the unique fluorescence lifetime signature of dPGS-ICC. The apparent binding affinity was found to be in the nanomolar range for both proteins (L-selectin: 87 ± 4 nM and C1q: 42 ± 12 nM). Furthermore, the effect of human serum on the unique fluorescence lifetime signature of dPGS-ICC was measured and found to be different from the interactions with the two proteins and lipid membranes. A comparison between the unique lifetime signatures of dPGS-ICC in different biological environments shows that fluorescence lifetime measurements of unique dPGS-ICC fluorescence lifetime signatures are a versatile tool to probe the microenvironment of dPGS in cells and tissue.
Collapse
|
25
|
Abstract
Dendritic molecules are an exciting research topic because of their highly branched architecture, multiple functional groups on the periphery, and very pertinent features for various applications. Self-assembling dendritic amphiphiles have produced different nanostructures with unique morphologies and properties. Since their self-assembly in water is greatly relevant for biomedical applications, researchers have been looking for a way to rationally design dendritic amphiphiles for the last few decades. We review here some recent developments from investigations on the self-assembly of dendritic amphiphiles into various nanostructures in water on the molecular level. The main content of the review is divided into sections according to the different nanostructure morphologies resulting from the dendritic amphiphiles' self-assembly. Finally, we conclude with some remarks that highlight the self-assembling features of these dendritic amphiphiles.
Collapse
Affiliation(s)
- Bala N S Thota
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin 14195, Germany
| | - Leonhard H Urner
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin 14195, Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry, Freie Universität Berlin , Berlin 14195, Germany
| |
Collapse
|
26
|
Impact of structural differences in hyperbranched polyglycerol–polyethylene glycol nanoparticles on dermal drug delivery and biocompatibility. Eur J Pharm Biopharm 2015; 88:625-34. [PMID: 25445303 DOI: 10.1016/j.ejpb.2014.10.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2014] [Revised: 10/23/2014] [Accepted: 10/27/2014] [Indexed: 12/30/2022]
Abstract
Polyglycerol scaffolds and nanoparticles emerged as prominent material for various biomedical applications including topical drug delivery. The impact of slight structural modifications on the nanoparticles' properties, drug delivery potential, and biocompatibility, however, is still not fully understood.Hence, we explored the influence of structural modifications of five structurally related polyglycerol-based nanoparticles (PG-PEG, SK1-SK5) on dermal drug delivery efficiency and biocompatibility. The PG-PEG particles were synthesized via randomly and controlled alkylated chemo-enzymatic approaches resulting in significantly varying particle sizes and interactions with guest molecules. Furthermore, weobserved considerably improved dermal drug delivery with the smallest particles SK4 and SK5 (11 nm and 14 nm) which also correlated with well-defined surface properties achieved by the controlled alkylated synthesis approach. The consistently good biocompatibility for all PG-PEG particles was mainly attributed to the neutral surface charge. No irritation potential, major cytotoxicity or genotoxicity was observed. Nevertheless, slightly better biocompatibility was again seen for the particles characterized by alkyl chain substitution in the core and not on the particle surface.Despite the high structural similarity of the PG-PEG particles, the synthesis and the functionalization significantly influenced particle properties, biocompatibility, and most significantly the drug delivery efficiency.
Collapse
|
27
|
Witting M, Boreham A, Brodwolf R, Vávrová K, Alexiev U, Friess W, Hedtrich S. Interactions of hyaluronic Acid with the skin and implications for the dermal delivery of biomacromolecules. Mol Pharm 2015; 12:1391-401. [PMID: 25871518 DOI: 10.1021/mp500676e] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Hyaluronic acid (HA) hydrogels are interesting delivery systems for topical applications. Besides moisturizing the skin and improving wound healing, HA facilitates topical drug absorption and is highly compatible with labile biomacromolecules. Hence, in this study we investigated the influence of HA hydrogels with different molecular weights (5 kDa, 100 kDa, 1 MDa) on the skin absorption of the model protein bovine serum albumin (BSA) using fluorescence lifetime imaging microscopy (FLIM). To elucidate the interactions of HA with the stratum corneum and the skin absorption of HA itself, we combined FLIM and Fourier-transform infrared (FTIR) spectroscopy. Our results revealed distinct formulation and skin-dependent effects. In barrier deficient (tape-stripped) skin, BSA alone penetrated into dermal layers. When BSA and HA were applied together, however, penetration was restricted to the epidermis. In normal skin, penetration enhancement of BSA into the epidermis was observed when applying low molecular weight HA (5 kDa). Fluorescence resonance energy transfer analysis indicated close interactions between HA and BSA under these conditions. FTIR spectroscopic analysis of HA interactions with stratum corneum constituents showed an α-helix to β-sheet interconversion of keratin in the stratum corneum, increased skin hydration, and intense interactions between 100 kDa HA and the skin lipids resulting in a more disordered arrangement of the latter. In conclusion, HA hydrogels restricted the delivery of biomacromolecules to the stratum corneum and viable epidermis in barrier deficient skin, and therefore seem to be potential topical drug vehicles. In contrast, HA acted as an enhancer for delivery in normal skin, probably mediated by a combination of cotransport, increased skin hydration, and modifications of the stratum corneum properties.
Collapse
Affiliation(s)
- Madeleine Witting
- †Department of Pharmaceutical Sciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Alexander Boreham
- ‡Department of Physics, Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Robert Brodwolf
- ‡Department of Physics, Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Kateřina Vávrová
- §Department of Inorganic and Organic Chemistry, Faculty of Pharmacy, Charles University in Prague, Hradec Kralove, Czech Republic
| | - Ulrike Alexiev
- ‡Department of Physics, Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
| | - Wolfgang Friess
- †Department of Pharmaceutical Sciences, Ludwig-Maximilians-Universität, Munich, Germany
| | - Sarah Hedtrich
- †Department of Pharmaceutical Sciences, Ludwig-Maximilians-Universität, Munich, Germany.,∥Institute for Pharmaceutical Sciences, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
28
|
Kurniasih IN, Liang H, Mohr PC, Khot G, Rabe JP, Mohr A. Nile red dye in aqueous surfactant and micellar solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2639-48. [PMID: 25671716 DOI: 10.1021/la504378m] [Citation(s) in RCA: 102] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The solubilization behavior of nile red dye in aqueous surfactant and micellar solutions was studied by optical spectroscopic techniques, dynamic light scattering, and atomic force microscopy. Nile red exhibits considerable absorption in the submicellar concentration region. When dispersed in aqueous surfactant and/or micellar solution, nile red molecules tend to form nonemissive dimers and/or H-type aggregates through π-π stacking interactions. This phenomenon may limit the use of nile red in solubilization studies. In the presence of ionic SDS and CTAB micelles, the solubilization of nile red appears to take place primarily at the charged micellar surface within the interfacial region. Similarly, spectra in micellar solution of nonionic Triton X-100 revealed that nile red dye penetrates the hydrophilic, interfacial poly(oxyethylene) region of the micelles but cannot reach the hydrophobic, innermost core. Our results therefore suggest that nile red dye must be chosen carefully when probing (micellar) hydrophobic environments and (micro)domains.
Collapse
Affiliation(s)
- Indah Nurita Kurniasih
- Institut für Chemie und Biochemie, Freie Universität Berlin , Takustraße 3, D-14195 Berlin, Germany
| | | | | | | | | | | |
Collapse
|
29
|
Kannan RM, Nance E, Kannan S, Tomalia DA. Emerging concepts in dendrimer-based nanomedicine: from design principles to clinical applications. J Intern Med 2014; 276:579-617. [PMID: 24995512 DOI: 10.1111/joim.12280] [Citation(s) in RCA: 365] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Dendrimers are discrete nanostructures/nanoparticles with 'onion skin-like' branched layers. Beginning with a core, these nanostructures grow in concentric layers to produce stepwise increases in size that are similar to the dimensions of many in vivo globular proteins. These branched tree-like concentric layers are referred to as 'generations'. The outer generation of each dendrimer presents a precise number of functional groups that may act as a monodispersed platform for engineering favourable nanoparticle-drug and nanoparticle-tissue interactions. These features have attracted significant attention in medicine as nanocarriers for traditional small drugs, proteins, DNA/RNA and in some instances as intrinsically active nanoscale drugs. Dendrimer-based drugs, as well as diagnostic and imaging agents, are emerging as promising candidates for many nanomedicine applications. First, we will provide a brief survey of recent nanomedicines that are either approved or in the clinical approval process. This will be followed by an introduction to a new 'nanoperiodic' concept which proposes nanoparticle structure control and the engineering of 'critical nanoscale design parameters' (CNDPs) as a strategy for optimizing pharmocokinetics, pharmocodynamics and site-specific targeting of disease. This paradigm has led to the emergence of CNDP-directed nanoperiodic property patterns relating nanoparticle behaviour to critical in vivo clinical translation issues such as cellular uptake, transport, elimination, biodistribution, accumulation and nanotoxicology. With a focus on dendrimers, these CNDP-directed nanoperiodic patterns are used as a strategy for designing and optimizing nanoparticles for a variety of drug delivery and imaging applications, including a recent dendrimer-based theranostic nanodevice for imaging and treating cancer. Several emerging preclinical dendrimer-based nanotherapy concepts related to inflammation, neuro-inflammatory disorders, oncology and infectious and ocular diseases are reviewed. Finally we will consider challenges and opportunities anticipated for future clinical translation, nanotoxicology and the commercialization of nanomedicine.
Collapse
Affiliation(s)
- R M Kannan
- Department of Ophthalmology, Center for Nanomedicine, Baltimore, MD, USA
| | | | | | | |
Collapse
|
30
|
Boreham A, Brodwolf R, Pfaff M, Kim TY, Schlieter T, Mundhenk L, Gruber AD, Gröger D, Licha K, Haag R, Alexiev U. Temperature and environment dependent dynamic properties of a dendritic polyglycerol sulfate. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3355] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Alexander Boreham
- Physics Department; Freie Universität Berlin; Arnimallee 14 D-14195 Berlin Germany
| | - Robert Brodwolf
- Physics Department; Freie Universität Berlin; Arnimallee 14 D-14195 Berlin Germany
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine; Helmholtz-Zentrum Geesthacht; Teltow Germany
| | - Marcus Pfaff
- Physics Department; Freie Universität Berlin; Arnimallee 14 D-14195 Berlin Germany
- Faculty of Engineering and Computer Science; BTU Cottbus-Senftenberg; Großenhainer Str. 57 D-01968 Senftenberg Germany
| | - Tai-Yang Kim
- Physics Department; Freie Universität Berlin; Arnimallee 14 D-14195 Berlin Germany
| | - Thomas Schlieter
- Physics Department; Freie Universität Berlin; Arnimallee 14 D-14195 Berlin Germany
| | - Lars Mundhenk
- Institute of Veterinary Pathology; Freie Universität Berlin; Robert-von-Ostertag-Straße 15 D-14163 Berlin Germany
| | - Achim D. Gruber
- Institute of Veterinary Pathology; Freie Universität Berlin; Robert-von-Ostertag-Straße 15 D-14163 Berlin Germany
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine; Helmholtz-Zentrum Geesthacht; Teltow Germany
| | - Dominic Gröger
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustr. 3 D-14195 Berlin Germany
| | - Kai Licha
- mivenion GmbH; Robert-Koch-Platz 4 D-10115 Berlin Germany
| | - Rainer Haag
- Institut für Chemie und Biochemie; Freie Universität Berlin; Takustr. 3 D-14195 Berlin Germany
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine; Helmholtz-Zentrum Geesthacht; Teltow Germany
| | - Ulrike Alexiev
- Physics Department; Freie Universität Berlin; Arnimallee 14 D-14195 Berlin Germany
- Helmholtz Virtual Institute-Multifunctional Biomaterials for Medicine; Helmholtz-Zentrum Geesthacht; Teltow Germany
| |
Collapse
|