1
|
Miyagawa A, Watanabe S, Igarashi M, Nagatomo S, Nakatani K. Intraparticle Diffusion Behavior of Rhodamine 6G in Single Silica Particle Revealed by Fluorescence Correlation Spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:4076-4083. [PMID: 39902491 DOI: 10.1021/acs.langmuir.4c04546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2025]
Abstract
Understanding the intraparticle diffusion mechanism within single particles is crucial for processes such as chromatographic separation, drug delivery, and solid extraction. However, when the time required to reach distribution equilibrium is extremely short (on the order of several seconds), conventional kinetic detection methods pose significant challenges in observing intraparticle diffusion behavior. In this study, we employed fluorescence correlation spectroscopy (FCS)─a technique capable of detecting diffusion behavior at equilibrium─to investigate the intraparticle diffusion of rhodamine 6G (Rh6G) within single porous silica particles of varying pore sizes. The autocorrelation coefficients of Rh6G were fitted using two-component analysis, revealing faster and slower diffusion components associated with the pore diffusion, without and with adsorption/desorption, respectively-behaviors that were not observed by the kinetic method described by our previous study. Further analysis of the slower diffusion component was conducted using pore and surface diffusion models. Our findings indicate that pore diffusion is the primary diffusion mechanism for Rh6G within silica particles. Thus, we demonstrated that the intraparticle diffusion mechanism of Rh6G in silica particles can be elucidated using FCS measurements.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Sana Watanabe
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Moe Igarashi
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kiyoharu Nakatani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
2
|
Das S, Krishnamoorthy J, Kar RK. Estimating the structural and spatial variables of allantoinase enzyme critical for protein adsorption. Biochem Biophys Res Commun 2025; 743:151161. [PMID: 39693939 DOI: 10.1016/j.bbrc.2024.151161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/20/2024]
Abstract
Designing enzyme-based sensors necessitates a comprehensive exploration of macromolecular properties. Integrating enzymes with a suitable transducer involves immobilizing them onto a surface, facilitated through adsorption or entrapment techniques. Allantoin, a stable biomarkers metabolite, holds promise for detecting oxidative stress-related complications through its enzyme. In this study, we examined allantoinase from various taxa, with bacterial origin comprising over 70 % of the dataset. Crucial residues such as Asp, His, and Gly in the active binding site and associated hydrophobic area play a critical role in maintaining binding specificity and sensitivity. In this work, we utilized bioinformatics tools to analyze properties such as pI, solubility index, amino acid hydropathy, stability, disordered regions, solvent-accessible surface area, and hydrodynamic parameters. The stability of allantoinase is assessed through surface Cys residues, hydrophobicity, and thermostability. Furthermore, the compactness and spherical geometry of the enzyme, which are crucial for protein adsorption are evaluated through parameters like spatial conformation, asphericity, and hydrodynamic radius distribution. Among the dataset, bacterial allantoinase demonstrates significant adaptability to environmental changes, as indicated by solvent-accessible surface area and instability index. This study highlights the importance of macromolecular properties underscoring their significance in optimizing, calibrating, and ensuring the stability of enzyme-based sensor design.
Collapse
Affiliation(s)
- Sheetal Das
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Assam, 781039, India
| | | | - Rajiv K Kar
- Jyoti and Bhupat Mehta School of Health Sciences and Technology, Indian Institute of Technology Guwahati, Assam, 781039, India; Centre for Nanotechnology, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
3
|
Miyagawa A, Kuno H, Nagatomo S, Nakatani K. Evolution of myoglobin diffusion mechanisms: exploring pore and surface diffusion in a single silica particle. ANAL SCI 2024; 40:1545-1551. [PMID: 38652419 DOI: 10.1007/s44211-024-00575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
This study elucidates the mass transfer mechanism of myoglobin (Mb) within a single silica particle with a 50 nm pore size at various pH levels (6.0, 6.5, 6.8, and 7.0). Investigation of Mb distribution ratio (R) and distribution kinetics was conducted using absorption microspectroscopy. The highest R was observed at pH 6.8, near the isoelectric point of Mb, as the electrostatic repulsion between Mb molecules on the silica surface decreased. The time-course absorbance of Mb in the silica particle was rigorously analyzed based on a first-order reaction, yielding the intraparticle diffusion coefficient of Mb (Dp). Dp-(1 + R)-1 plots at different pH values were evaluated using the pore and surface diffusion model. Consequently, we found that at pH 6.0, Mb diffused in the silica particle exclusively through surface diffusion, whereas pore diffusion made a more substantial contribution at higher pH. Furthermore, we demonstrated that Mb diffusion was hindered by slow desorption, associated with the electrostatic charge of Mb. This comprehensive analysis provides insights into the diffusion mechanisms of Mb at acidic, neutral, and basic pH conditions.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Hatsuhi Kuno
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Shigenori Nagatomo
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.
| | - Kiyoharu Nakatani
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.
| |
Collapse
|
4
|
Asil SM, Narayan M. Molecular interactions between gelatin-derived carbon quantum dots and Apo-myoglobin: Implications for carbon nanomaterial frameworks. Int J Biol Macromol 2024; 264:130416. [PMID: 38428776 PMCID: PMC11290343 DOI: 10.1016/j.ijbiomac.2024.130416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/20/2023] [Accepted: 02/22/2024] [Indexed: 03/03/2024]
Abstract
Carbon nanomaterials (CNMs), including carbon quantum dots (CQDs), have found widespread use in biomedical research due to their low toxicity, chemical tunability, and tailored applications. Yet, there exists a gap in our understanding of the molecular interactions between biomacromolecules and these novel carbon-centered platforms. Using gelatin-derived CQDs as a model CNM, we have examined the impact of this exemplar nanomaterial on apo-myoglobin (apo-Mb), an oxygen-storage protein. Intrinsic fluorescence measurements revealed that the CQDs induced conformational changes in the tertiary structure of native, partially unfolded, and unfolded states of apo-Mb. Titration with CQDs also resulted in significant changes in the secondary structural elements in both native (holo) and apo-Mb, as evidenced by the circular dichroism (CD) analyses. These changes suggested a transition from isolated helices to coiled-coils during the loss of the helical structure of the apo-protein. Infra-red spectroscopic data further underscored the interactions between the CQDs and the amide backbone of apo-myoglobin. Importantly, the CQDs-driven structural perturbations resulted in compromised heme binding to apo-myoglobin and, therefore, potentially can attenuate oxygen storage and diffusion. However, a cytotoxicity assay demonstrated the continued viability of neuroblastoma cells exposed to these carbon nanomaterials. These results, for the first time, provide a molecular roadmap of the interplay between carbon-based nanomaterial frameworks and biomacromolecules.
Collapse
Affiliation(s)
- Shima Masoudi Asil
- The Environmental Science & Engineering Program, The University of Texas at El Paso, El Paso, TX 79968, USA
| | - Mahesh Narayan
- The Department of Chemistry & Biochemistry, The University of Texas at El Paso, El Paso, TX 79968, USA.
| |
Collapse
|
5
|
Loughlani RI, Gamero-Quijano A, Montilla F. Electroassisted Incorporation of Ferrocene within Sol-Gel Silica Films to Enhance Electron Transfer. Molecules 2023; 28:6845. [PMID: 37836688 PMCID: PMC10574706 DOI: 10.3390/molecules28196845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 10/15/2023] Open
Abstract
The sol-gel method is a straightforward technique that allows electrode modification with silica thin films. Furthermore, the silica pores could be functionalized to enhance the electrical conductivity and reactivity of the silica films. In this context, silica thin films were functionalized with ferrocene species. This functionalization was performed by electroassisted accumulation, generating a micro-structured composite electrode (Fc@SiO2 electrode). These modified electrodes were characterized by electrochemical and spectroelectrochemical methods, pointing out that ferrocene species were confined with high stability within the microporous silica thin film, demonstrating the good adsorption capacity of the silica. While the spectroelectrochemical characterization indicates that only a fraction of the confined species within the silica films were electroactive, the electrochemical results demonstrate that the Fc@SiO2 film enhances the electrochemical response of cytochrome c in a solution, which gives rise to further applications of these films for redox-controlled release and electrochemical detection of other redox-active proteins.
Collapse
Affiliation(s)
| | | | - Francisco Montilla
- Departamento de Química Física and Instituto Universitario de Materiales de Alicante (IUMA), Universidad de Alicante, Carretera San Vicente s/n, 03690 Alicante, Spain; (R.-I.L.); (A.G.-Q.)
| |
Collapse
|
6
|
Miyagawa A, Nagatomo S, Kuno H, Terada T, Nakatani K. Pore Size Dependence of Mass Transfer of Zinc Myoglobin in a Single Mesoporous Silica Particle. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:11329-11336. [PMID: 37523758 DOI: 10.1021/acs.langmuir.3c01017] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
This study investigated the pore size dependence of the mass transfer of zinc myoglobin (ZnMb) in a single mesoporous silica particle through confocal fluorescence microspectroscopy. The ZnMb's fluorescence depth profile in the particle was analyzed by a spherical diffusion model, and the intraparticle diffusion coefficient was obtained. The intraparticle diffusion coefficient in the silica particle with various pore sizes (10, 15, 30, and 50 nm) was furthermore analyzed based on a pore and surface diffusion model. Although the mass transfer mechanism in all silica particles followed the pore and surface diffusion model, the adsorption and desorption of ZnMb affected the mass transfer depending on the pore size. The influence of the slow desorption of ZnMb became pronounced for large pore sizes (30 and 50 nm), which was revealed by simulation using a diffusion equation combined with the adsorption-desorption kinetics. The distribution of ZnMb was suppressed in small pore sizes (10 and 15 nm) owing to the adsorption of ZnMb onto the entrance of the pore. Thus, we revealed the mass transfer mechanism of ZnMb in the silica particle with different pore sizes.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Shigenori Nagatomo
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Hatsuhi Kuno
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Takuto Terada
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kiyoharu Nakatani
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
7
|
Ogunlusi T, Driskell JD. Controlled Temporal Release of Serum Albumin Immobilized on Gold Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:3720-3728. [PMID: 36857653 DOI: 10.1021/acs.langmuir.2c03429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Proteins adsorbed to gold nanoparticles (AuNPs) form bioconjugates and are critical to many emerging technologies for drug delivery, diagnostics, therapies, and other biomedical applications. A thorough understanding of the interaction between the immobilized protein and AuNP is essential for the bioconjugate to perform as designed. Here, we explore a correlation between the number of solvent-accessible thiol groups on a protein and the protein desorption rate from the AuNP surface in the presence of a competing protein. The chemical modification of human serum albumin (HSA) was carried out to install additional free thiols using Traut's reagent and create a library of HSA analogues by tailoring the molar excess of the Traut's reagent. We pre-adsorbed HSA variants onto the AuNP surface, and the resulting bioconjugates were then exposed to IgG antibody, and protein exchange was monitored as a function of time. We found that the rate of HSA displacement from the AuNP correlated with the experimentally measured number of accessible free thiol groups. Additionally, bioconjugates were synthesized using thiolated analogues of bovine serum albumin (BSA) and suspended in serum as a model for a complex sample matrix. Similarly, desorption rates with serum proteins were modulated with solvent-accessible thiols on the immobilized protein. These results further highlight the key role of Au-S bonds in the formation of protein-AuNP conjugates and provide a pathway to systematically control the number of free thiols on a protein, enabling the controlled release of protein from the surface of AuNP.
Collapse
Affiliation(s)
- Tosin Ogunlusi
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| | - Jeremy D Driskell
- Department of Chemistry, Illinois State University, Normal, Illinois 61790, United States
| |
Collapse
|
8
|
Hou Z, Luan M, Zhan L, Wang X, Yuan S, Cao K, Sheng Y, Yin H, Liu Y, Huang G. Native Mass Spectrometry for Peptide–Metal Interaction in Picoliter Cell Lysate. Anal Chem 2022; 94:13829-13833. [DOI: 10.1021/acs.analchem.2c02390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Zhuanghao Hou
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Moujun Luan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Liujuan Zhan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Xinchen Wang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Siming Yuan
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Kaiming Cao
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yaping Sheng
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Hao Yin
- Mass Spectrometry Lab, Instruments Center for Physical Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Yangzhong Liu
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Guangming Huang
- Department of Cardiology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230001, China
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei, Anhui 230001, China
| |
Collapse
|
9
|
Cathcarth M, Picco AS, Mondo GB, Cardoso MB, Longo GS. Competitive protein adsorption on charge regulating silica-like surfaces: the role of protonation equilibrium. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2022; 34:364001. [PMID: 35366656 DOI: 10.1088/1361-648x/ac6388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
We develop a molecular thermodynamic theory to study the interaction of some proteins with a charge regulating silica-like surface under a wide range of conditions, including pH, salt concentration and protein concentration. Proteins are modeled using their three dimensional structure from crystallographic data and the average experimental pKa of amino acid residues. As model systems, we study single-protein and binary solutions of cytochrome c, green fluorescent protein, lysozyme and myoglobin. Our results show that protonation equilibrium plays a critical role in the interactions of proteins with these type of surfaces. The terminal hydroxyl groups on the surface display considerable extent of charge regulation; protein residues with titratable side chains increase protonation according to changes in the local environment and the drop in pH near the surface. This behavior defines protein-surface interactions and leads to the emergence of several phenomena: (i) a complex non-ideal surface charge behavior; (ii) a non-monotonic adsorption of proteins as a function of pH; and (iii) the presence of two spatial regions, a protein-rich and a protein-depleted layer, that occur simultaneously at different distances from the surface when pH is slightly above the isoelectric point of the protein. In binary mixtures, protein adsorption and surface-protein interactions cannot be predicted from single-protein solution considerations.
Collapse
Affiliation(s)
- Marilina Cathcarth
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Agustin S Picco
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Gabriela B Mondo
- Brazilian Synchrotron (LNLS) and Brazilian Nanotechnology Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), Campinas, Brazil
| | - Mateus B Cardoso
- Brazilian Synchrotron (LNLS) and Brazilian Nanotechnology Laboratory (LNNano), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
- Institute of Chemistry (IQ), University of Campinas (UNICAMP), Campinas, Brazil
| | - Gabriel S Longo
- Instituto de Investigaciones Fisicoquímicas, Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| |
Collapse
|
10
|
Ali MS, Uttinger MJ, Romeis S, Schmidt J, Peukert W. Effect of protein adsorption on the dissolution kinetics of silica nanoparticles. Colloids Surf B Biointerfaces 2022; 214:112466. [PMID: 35338965 DOI: 10.1016/j.colsurfb.2022.112466] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/09/2022] [Accepted: 03/15/2022] [Indexed: 12/18/2022]
Abstract
Nanoparticulate systems in the presence of proteins are highly relevant for various biomedical applications such as photo-thermal therapy and targeted drug delivery. These involve a complex interplay between the charge state of nanoparticles and protein, the resulting protein conformation, adsorption equilibrium and adsorption kinetics, as well as particle dissolution. SiO2 is a common constituent of bioactive glasses used in biomedical applications. In this context, the dissolution behavior of silica particles in the presence of a model protein, bovine serum albumin (BSA), at physiologically relevant pH conditions was studied. Sedimentation analysis using an analytical ultracentrifuge showed that BSA in the supernatant solution is not affected by the presence of silica nanoparticles. However, zeta potential measurements revealed that the presence of the protein alters the particles' charge state. Adsorption and dissolution studies demonstrated that the presence of the protein significantly enhances the dissolution kinetics via interactions of positively charged amino acids in the protein with the negative silica surface and interaction of BSA with dissolved silicate species. Our study provides comprehensive insights into the complex interactions between proteins and oxide nanoparticles and establishes a reliable protocol paving the way for future investigations in more complex systems involving biological solutions as well as bioactive materials.
Collapse
Affiliation(s)
- Muhammad Saad Ali
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Particle Technology, Cauerstr. 4, 91058 Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg, Interdisciplinary Center for Functional Particle Systems, Haberstraße 9a, 91058 Erlangen, Germany.
| | - Maximilian J Uttinger
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Particle Technology, Cauerstr. 4, 91058 Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg, Interdisciplinary Center for Functional Particle Systems, Haberstraße 9a, 91058 Erlangen, Germany.
| | - Stefan Romeis
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Particle Technology, Cauerstr. 4, 91058 Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg, Interdisciplinary Center for Functional Particle Systems, Haberstraße 9a, 91058 Erlangen, Germany.
| | - Jochen Schmidt
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Particle Technology, Cauerstr. 4, 91058 Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg, Interdisciplinary Center for Functional Particle Systems, Haberstraße 9a, 91058 Erlangen, Germany.
| | - Wolfgang Peukert
- Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute of Particle Technology, Cauerstr. 4, 91058 Erlangen, Germany; Friedrich-Alexander-Universität Erlangen-Nürnberg, Interdisciplinary Center for Functional Particle Systems, Haberstraße 9a, 91058 Erlangen, Germany.
| |
Collapse
|
11
|
Dong Y, Laaksonen A, Gong M, An R, Ji X. Selective Separation of Highly Similar Proteins on Ionic Liquid-Loaded Mesoporous TiO 2. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:3202-3211. [PMID: 35253426 PMCID: PMC8928471 DOI: 10.1021/acs.langmuir.1c03277] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Separating proteins from their mixtures is an important process in a great variety of applications, but it faces difficult challenges as soon as the proteins are simultaneously of similar sizes and carry comparable net charges. To develop both efficient and sustainable strategies for the selective separation of similar proteins and to understand the underlying molecular mechanisms to enable the separation are crucial. In this work, we propose a novel strategy where the cholinium-based amino acid [Cho][Pro] ionic liquid (IL) is used as the trace additive and loaded physically on a mesoporous TiO2 surface for separating two similar proteins (lysozyme and cytochrome c). The observed selective adsorption behavior is explained by the hydration properties of the [Cho][Pro] loaded on the TiO2 surface and their partially dissociated ions under different pH conditions. As the pH is increased from 5.0 to 9.8, the degree of hydration of IL ions also increases, gradually weakening the interaction strength of the proteins with the substrates, more for lysozymes, leading to their effective separation. These findings were further used to guide the detection of the retention behavior of a binary mixture of proteins in high-performance liquid chromatography, where the introduction of ILs did effectively separate the two similar proteins. Our results should further stimulate the use of ILs in the separation of proteins with a high degree of mutual similarity.
Collapse
Affiliation(s)
- Yihui Dong
- Department
of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Aatto Laaksonen
- Energy
Engineering, Division of Energy Science, Luleå University of Technology, Luleå 97187, Sweden
- Department
of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-10691, Sweden
- Center
of Advanced Research in Bionanoconjugates and Biopolymers, “Petru Poni” Institute of Macromolecular
Chemistry, Iasi 700469, Romania
- State Key
Laboratory of Materials-Oriented and Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Mian Gong
- Herbert
Gleiter Institute of Nanoscience, Department of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, P.R. China
| | - Rong An
- Herbert
Gleiter Institute of Nanoscience, Department of Materials Science
and Engineering, Nanjing University of Science
and Technology, Nanjing 210094, P.R. China
| | - Xiaoyan Ji
- Energy
Engineering, Division of Energy Science, Luleå University of Technology, Luleå 97187, Sweden
| |
Collapse
|
12
|
Caetano DLZ, Metzler R, Cherstvy AG, de Carvalho SJ. Adsorption of lysozyme into a charged confining pore. Phys Chem Chem Phys 2021; 23:27195-27206. [PMID: 34821240 DOI: 10.1039/d1cp03185f] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Several applications arise from the confinement of proteins on surfaces because their stability and biological activity are enhanced. It is also known that the way in which a protein adsorbs on the surface is important for its biological function since its active sites should not be obstructed. In this study, the adsorption properties of hen egg-white lysozyme, HEWL, into a negatively charged silica pore is examined by employing a coarse-grained model and constant-pH Monte Carlo simulations. The role of electrostatic interactions is taken into account via including the Debye-Hückel potentials into the Cα structure-based model. We evaluate the effects of pH, salt concentration, and pore radius on the protein preferential orientation and spatial distribution of its residues regarding the pore surface. By mapping the residues that stay closer to the pore surface, we find that the increase of pH leads to orientational changes of the adsorbed protein when the solution pH gets closer to the HEWL isoelectric point. Under these conditions, the pKa shift of these important residues caused by the adsorption into the charged confining surface results in a HEWL charge distribution that stabilizes the adsorption in the observed protein orientation. We compare our observations to the results of the pKa shift for HEWL available in the literature and to some experimental data.
Collapse
Affiliation(s)
- Daniel L Z Caetano
- Institute of Chemistry, State University of Campinas (UNICAMP), Campinas, Brazil.,Center for Computational Engineering and Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Ralf Metzler
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany
| | - Andrey G Cherstvy
- Institute for Physics & Astronomy, University of Potsdam, 14476 Potsdam-Golm, Germany.,Institut für Physik, Humboldt-Universität zu Berlin, 12489 Berlin, Germany
| | - Sidney J de Carvalho
- Department of Physics, São Paulo State University (UNESP), Institute of Biosciences, Humanities and Exact Sciences, São José do Rio Preto, Brazil.
| |
Collapse
|
13
|
Miyagawa A, Nagatomo S, Kazami H, Terada T, Nakatani K. Kinetic Analysis of the Mass Transfer of Zinc Myoglobin in a Single Mesoporous Silica Particle by Confocal Fluorescence Microspectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:12697-12704. [PMID: 34672614 DOI: 10.1021/acs.langmuir.1c02127] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The adsorption/desorption mechanisms of biomolecules in porous materials have attracted significant attention because of their applications in many fields, including environmental, medical, and industrial sciences. Here, we employ confocal fluorescence microspectroscopy to reveal the diffusion behavior of zinc myoglobin (ZnMb, 4.4 nm × 4.4 nm × 2.5 nm) as a spherical protein in a single mesoporous silica particle (pore size of 15 nm). The measurement of the time course of the fluorescence depth profile of the particle reveals that intraparticle diffusion is the rate-limiting process of ZnMb in the particle. The diffusion coefficients of ZnMb in the particle for the distribution (Ddis) and release (Dre) processes are determined from the rate constants, e.g., Ddis = 1.65 × 10-10 cm2 s-1 and Dre = 3.68 × 10-10 cm2 s-1, for a 10 mM buffer solution. The obtained D values for various buffer concentrations are analyzed using the pore and surface diffusion model. Although surface diffusion is the main distribution process, the release process involves pore and surface diffusion, which have not been observed with small organic molecules; the mechanism of transfer of small molecules is pore diffusion alone. We demonstrate that the mass transfer kinetics of ZnMb in the silica particle can be explained well on the basis of pore and surface diffusion.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Hiroaki Kazami
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Takuto Terada
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| | - Kiyoharu Nakatani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
14
|
Dong Y, Laaksonen A, Gao Q, Ji X. Molecular Mechanistic Insights into the Ionic-Strength-Controlled Interfacial Behavior of Proteins on a TiO 2 Surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:11499-11507. [PMID: 34549968 DOI: 10.1021/acs.langmuir.1c01726] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
By adjusting the ionic strengths through changing the concentration of the buffer ions, the molecular force and the interfacial behavior of cytochrome c (Cyt c) and TiO2 are systematically studied. The molecular forces determined by combining the adhesion force and adsorption capacity are found to first increase and then decrease with the increasing ionic strength, with a peak obtained at an ionic strength between 0.8 and 1.0 M. The mechanism is explained based on the dissociation and hydration of ions at the interfaces, where the buffer ions could be completely dissociated at ionic strengths of <0.8 M but were partially associated when the ionic strength increased to a high value (>1.2 M), and the strongest hydration was observed around 1.0 M. The hydrodynamic size and the zeta potential value representing the effective contact area and protein stability of the Cyt c molecule, respectively, are also affected by the hydration and are proportional to the molecular forces. The interfacial behavior of Cyt c molecules on the TiO2 surface, determined through surface-enhanced Raman scattering (SERS), is extremely affected by the ionic strength of the solution as the ion dissociation and hydration also increase the electron transfer ability, where the best SERS enhancement is observed at the ionic strength of around 1.0 M, corresponding to the largest molecular force. Our results provide a detailed understanding at the nanoscale on controlling the protein interfacial behavior with solid surfaces, adjusted by the buffer ions.
Collapse
Affiliation(s)
- Yihui Dong
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| | - Aatto Laaksonen
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
- Centre of Advanced Research in Bionanoconjugates and Biopolymers, Petru Poni Institute of Macromolecular Chemistry Aleea Grigore Ghica-Voda, No. 41A, 700487 Iasi, Romania
| | - Qingwei Gao
- State Key Laboratory of Chemical Engineering and School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
15
|
Xu H, Su Z, Li Y, Yang G, Pu X, Sun H, Jin J, Xia Y. Electrostatic Effect on Core-Shell Micro-spheres with Mixed Charges as Adaptive Plugging Agents for Enhanced Oil Recovery. ACS OMEGA 2021; 6:25782-25790. [PMID: 34632234 PMCID: PMC8495846 DOI: 10.1021/acsomega.1c04214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Core-shell micro-spheres (MS) with both negative and positive charges in the core and only negative charges in the shell were developed as adaptive plugging agents for in-depth conformance control for enhanced oil recovery. The MS were designed to propagate deeply into the reservoir due to the small particle size and electrostatic repulsion between the MS and the sandstone at the initial stage of injection and form aggregates by electrostatic attraction between the cores with mixed charges when the shells degraded at a given time during transportation, leading to an effective plugging of the highly permeable layers with low residual oil saturation. The self-assembling and plugging behaviors of the MS have been studied by Monte Carlo simulation. The results show that charge density (D charge), fraction of positive charge (F p), MS concentration, temperature, and salinity are the key factors influencing the self-assembling behaviors. The electrostatic interaction would become stronger with the increase in D charge when it is larger than 0.5. The MS are more likely to form aggregates when F p approaches 0.5. The higher the concentration of the MS, the stronger the electrostatic interaction between the MS. In addition, electrostatic interactions between the MS become stronger with the increase in temperature and decrease in salinity. Simulation results prove that the MS with mixed charges can effectively and adaptively plug highly permeable layers with low residual oil saturation through self-assembling by combination of electrostatic interactions along with physical bridging, leading to the improvement of oil recovery. Furthermore, block charge distribution will be helpful for the MS with mixed charges to form larger aggregates than that of the random mode to effectively plug the highly permeable layers.
Collapse
|
16
|
Gondim DR, Cecilia JA, Rodrigues TNB, Vilarrasa-García E, Rodríguez-Castellón E, Azevedo DCS, Silva IJ. Protein Adsorption onto Modified Porous Silica by Single and Binary Human Serum Protein Solutions. Int J Mol Sci 2021; 22:9164. [PMID: 34502072 PMCID: PMC8430731 DOI: 10.3390/ijms22179164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/16/2021] [Accepted: 08/21/2021] [Indexed: 12/17/2022] Open
Abstract
Typical porous silica (SBA-15) has been modified with pore expander agent (1,3,5-trimethylbenzene) and fluoride-species to diminish the length of the channels to obtain materials with different textural properties, varying the Si/Zr molar ratio between 20 and 5. These porous materials were characterized by X-ray Diffraction (XRD), N2 adsorption/desorption isotherms at -196 °C and X-ray Photoelectron Spectroscopy (XPS), obtaining adsorbent with a surface area between 420-337 m2 g-1 and an average pore diameter with a maximum between 20-25 nm. These materials were studied in the adsorption of human blood serum proteins (human serum albumin-HSA and immunoglobulin G-IgG). Generally, the incorporation of small proportions was favorable for proteins adsorption. The adsorption data revealed that the maximum adsorption capacity was reached close to the pI. The batch purification experiments in binary human serum solutions showed that Si sample has considerable adsorption for IgG while HSA adsorption is relatively low, so it is possible its separation.
Collapse
Affiliation(s)
- Diego R. Gondim
- Centro de Tecnologia, Grupo de Pesquisa em Separações por Adsorção—GPSA—Departamento de Engenharia Química, Campus do Pici, Bl. 709, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil; (D.R.G.); (T.N.B.R.); (E.V.-G.); (D.C.S.A.); (I.J.S.J.)
| | - Juan A. Cecilia
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Malaga, Spain;
| | - Thaina N. B. Rodrigues
- Centro de Tecnologia, Grupo de Pesquisa em Separações por Adsorção—GPSA—Departamento de Engenharia Química, Campus do Pici, Bl. 709, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil; (D.R.G.); (T.N.B.R.); (E.V.-G.); (D.C.S.A.); (I.J.S.J.)
| | - Enrique Vilarrasa-García
- Centro de Tecnologia, Grupo de Pesquisa em Separações por Adsorção—GPSA—Departamento de Engenharia Química, Campus do Pici, Bl. 709, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil; (D.R.G.); (T.N.B.R.); (E.V.-G.); (D.C.S.A.); (I.J.S.J.)
| | - Enrique Rodríguez-Castellón
- Departamento de Química Inorgánica, Cristalografía y Mineralogía, Facultad de Ciencias, Campus de Teatinos, Universidad de Málaga, 29071 Malaga, Spain;
| | - Diana C. S. Azevedo
- Centro de Tecnologia, Grupo de Pesquisa em Separações por Adsorção—GPSA—Departamento de Engenharia Química, Campus do Pici, Bl. 709, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil; (D.R.G.); (T.N.B.R.); (E.V.-G.); (D.C.S.A.); (I.J.S.J.)
| | - Ivanildo J. Silva
- Centro de Tecnologia, Grupo de Pesquisa em Separações por Adsorção—GPSA—Departamento de Engenharia Química, Campus do Pici, Bl. 709, Universidade Federal do Ceará, Fortaleza 60455-760, CE, Brazil; (D.R.G.); (T.N.B.R.); (E.V.-G.); (D.C.S.A.); (I.J.S.J.)
| |
Collapse
|
17
|
Banimohamad-Shotorbani B, Rahmani Del Bakhshayesh A, Mehdipour A, Jarolmasjed S, Shafaei H. The efficiency of PCL/HAp electrospun nanofibers in bone regeneration: a review. J Med Eng Technol 2021; 45:511-531. [PMID: 34251971 DOI: 10.1080/03091902.2021.1893396] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Electrospinning is a method which produces various nanofiber scaffolds for different tissues was attractive for researchers. Nanofiber scaffolds could be made from several biomaterials and polymers. Quality and virtues of final scaffolds depend on used biomaterials (even about single substance, the origin is effective), additives (such as some molecules, ions, drugs, and inorganic materials), electrospinning parameter (voltage, injection speed, temperature, …), etc. In addition to its benefits, which makes it more attractive is the possibility of modifications. Common biomaterials in bone tissue engineering such as poly-caprolactone (PCL), hydroxyapatite (HAp), and their important features, electrospinning nanofibers were widely studied. Related investigations indicate the critical role of even small parameters (like the concentration of PCL or HAp) in final product properties. These changes also, cause deference in cell proliferation, adhesion, differentiation, and in vivo repair process. In this review was focussed on PCL/HAp based nanofibers and additives that researchers used for scaffold improvement. Then, reviewing properties of gained nanofibers, their effect on cell behaviour, and finally, their valency in bone tissue engineering studies (in vitro and in vivo).
Collapse
Affiliation(s)
- Behnaz Banimohamad-Shotorbani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Azizeh Rahmani Del Bakhshayesh
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ahmad Mehdipour
- Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyedhosein Jarolmasjed
- Department of Clinical Sciences, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Hajar Shafaei
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Tissue Engineering, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Anatomical Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
18
|
Liang Z, Yang Y, Yu G, Zhu H, Xia X, Chen C, Fu D, Li M, Cheng G, Xue C, Shi L, Zeng H, Sun B. Engineering aluminum hydroxyphosphate nanoparticles with well-controlled surface property to enhance humoral immune responses as vaccine adjuvants. Biomaterials 2021; 275:120960. [PMID: 34147722 DOI: 10.1016/j.biomaterials.2021.120960] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 05/30/2021] [Accepted: 06/02/2021] [Indexed: 12/26/2022]
Abstract
Aluminum phosphate adjuvants play a critical role in human inactivated and subunit prophylactic vaccines. However, a major challenge is that the underlying mechanism of immune stimulation remains poorly understood, which impedes the further optimal design and application of more effective adjuvants in vaccine formulations. To address this, a library of amorphous aluminum hydroxyphosphate nanoparticles (AAHPs) is engineered with defined surface properties to explore the specific mechanism of adjuvanticity at the nano-bio interface. The results demonstrate that AAHPs could induce cell membrane perturbation and downstream inflammatory responses, with positively-charged particles showing the most significantly enhanced immunostimulation potentials compared to the neutral or negatively-charged particles. In a vaccine using Staphylococcus aureus (S. aureus) recombinant protein as antigens, the positively-charged particles elicit long-lasting and enhanced humoral immunity, and provide protection in S. aureus sepsis mice models. In addition, when formulated with human papillomavirus type 18 virus-like particles, it is demonstrated that particles with positive charges outperform in promoting serum antigen-specific antibody productions. This study shows that engineering AAHPs with well-controlled physicochemical properties enable the establishment of a structure-activity relationship that is critical to instruct the design of suitable engineered nanomaterial-based adjuvants within vaccine formulations for the benefits of human health.
Collapse
Affiliation(s)
- Zhihui Liang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Yun Yang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, 400038, Chongqing, China
| | - Ge Yu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Haoru Zhu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Xinyu Xia
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Chen Chen
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China
| | - Duo Fu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China; School of Bioengineering, Dalian University of Technology, 116024, Dalian, China
| | - Min Li
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China
| | - Gang Cheng
- Department of Chemical Engineering, University of Illinois at Chicago, Chicago, IL, 60607, United States
| | - Changying Xue
- School of Bioengineering, Dalian University of Technology, 116024, Dalian, China
| | - Li Shi
- Immune Path Biotechnology (Su Zhou) Co., Ltd., Building A, 8 Chang Ting Road, DaXin Industry Park, 215151, Su Zhou, Jiang Su, China
| | - Hao Zeng
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy and Laboratory Medicine, Third Military Medical University, 400038, Chongqing, China; State Key Laboratory of Trauma, Burn and Combined Injury, Third Military Medical University, 400038, Chongqing, China.
| | - Bingbing Sun
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China; School of Chemical Engineering, Dalian University of Technology, 2 Linggong Road, 116024, Dalian, China.
| |
Collapse
|
19
|
Xiong H, Zou H, Liu H, Wang M, Duan L. Surface Functionalization of a γ-Graphyne-like Carbon Material via Click Chemistry. Chem Asian J 2021; 16:922-925. [PMID: 33729689 DOI: 10.1002/asia.202100125] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/11/2021] [Indexed: 11/05/2022]
Abstract
Surface functionalization of carbon materials is of interest in many research fields, such as electrocatalysis, interfacial engineering, and supercapacitors. As an emerging carbon material, γ-graphyne has attracted broad attention. Herein, we report that the surface functionalization of a γ-graphyne-like carbon material (γ-G1) is achieved by immobilizing functional groups via the click chemistry. Texture analysis of aberration-corrected microscopy, X-ray photoelectron spectroscopy, and electrochemistry confirm the successful surface modification of γ-G1 through a strong covalent linkage 1,2,3-triazole. The direct linkage of functional groups on γ-G1 via the click chemistry represents a general method for preparing other functional materials by using γ-graphyne-like materials as a skeleton.
Collapse
Affiliation(s)
- Huatian Xiong
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Haiyuan Zou
- Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| | - Hong Liu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Mei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Lele Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, P. R. China.,Department of Chemistry and Shenzhen Grubbs Institute, Southern University of Science and Technology, Shenzhen, 518055, P. R. China
| |
Collapse
|
20
|
Gamero-Quijano A, Dossot M, Walcarius A, Scanlon MD, Herzog G. Electrogeneration of a Free-Standing Cytochrome c-Silica Matrix at a Soft Electrified Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4033-4041. [PMID: 33761740 PMCID: PMC8562870 DOI: 10.1021/acs.langmuir.1c00409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 03/16/2021] [Indexed: 06/12/2023]
Abstract
Interactions of a protein with a solid-liquid or a liquid-liquid interface may destabilize its conformation and hence result in a loss of biological activity. We propose here a method for the immobilization of proteins at an electrified liquid-liquid interface. Cytochrome c (Cyt c) is encapsulated in a silica matrix through an electrochemical process at an electrified liquid-liquid interface. Silica condensation is triggered by the interfacial transfer of cationic surfactant, cetyltrimethylammonium, at the lower end of the interfacial potential window. Cyt c is then adsorbed on the previously electrodeposited silica layer, when the interfacial potential, Δowϕ, is at the positive end of the potential window. By cycling of the potential window back and forth, silica electrodeposition and Cyt c adsorption occur sequentially as demonstrated by in situ UV-vis absorbance spectroscopy. After collection from the liquid-liquid interface, the Cyt c-silica matrix is characterized ex situ by UV-vis diffuse reflectance spectroscopy, confocal Raman microscopy, and fluorescence microscopy, showing that the protein maintained its tertiary structure during the encapsulation process. The absence of denaturation is further confirmed in situ by the absence of electrocatalytic activity toward O2 (observed in the case of Cyt c denaturation). This method of protein encapsulation may be used for other proteins (e.g., Fe-S cluster oxidoreductases, copper-containing reductases, pyrroloquinoline quinone-containing enzymes, or flavoproteins) in the development of biphasic bioelectrosynthesis or bioelectrocatalysis applications.
Collapse
Affiliation(s)
- Alonso Gamero-Quijano
- The
Bernal Institute and Department of Chemical Sciences, School of Natural
Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | - Manuel Dossot
- Université
de Lorraine, CNRS, LCPME, F-54000 Nancy, France
| | | | - Micheál D. Scanlon
- The
Bernal Institute and Department of Chemical Sciences, School of Natural
Sciences, University of Limerick (UL), Limerick V94 T9PX, Ireland
| | | |
Collapse
|
21
|
Solin K, Beaumont M, Rosenfeldt S, Orelma H, Borghei M, Bacher M, Opietnik M, Rojas OJ. Self-Assembly of Soft Cellulose Nanospheres into Colloidal Gel Layers with Enhanced Protein Adsorption Capability for Next-Generation Immunoassays. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004702. [PMID: 33215868 DOI: 10.1002/smll.202004702] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/20/2020] [Indexed: 06/11/2023]
Abstract
Soft cationic core/shell cellulose nanospheres can deform and interpenetrate allowing their self-assembly into densely packed colloidal nanogel layers. Taking advantage of their water-swelling capacity and molecular accessibility, the nanogels are proposed as a new and promising type of coating material to immobilize bioactive molecules on thin films and paper. The specific and nonspecific interactions between the cellulosic nanogel and human immunoglobulin G as well as bovine serum albumin (BSA) are investigated. Confocal microscopy, electroacoustic microgravimetry, and surface plasmon resonance are used to access information about the adsorption behavior and viscoelastic properties of self-assembled nanogels. A significant BSA adsorption capacity on nanogel layers (17 mg m-2 ) is measured, 300% higher compared to typical polymer coatings. This high protein affinity further confirms the promise of the introduced colloidal gel layer, in increasing sensitivity and advancing a new generation of substrates for a variety of applications, including immunoassays, as demonstrated in this work.
Collapse
Affiliation(s)
- Katariina Solin
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo, FI-00076, Finland
| | - Marco Beaumont
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo, FI-00076, Finland
- Department of Chemistry, Institute of Chemistry for Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, Tulln, A-3430, Austria
| | - Sabine Rosenfeldt
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth, D-95440, Germany
| | - Hannes Orelma
- VTT - Technical Research Centre of Finland, Tietotie 4E, P.O. Box 1000, Espoo, FI-02044, Finland
| | - Maryam Borghei
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo, FI-00076, Finland
| | - Markus Bacher
- Department of Chemistry, Institute of Chemistry for Renewable Resources, University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Strasse 24, Tulln, A-3430, Austria
| | | | - Orlando J Rojas
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Vuorimiehentie 1, Espoo, FI-00076, Finland
- The Bioproducts Institute, Department of Chemical and Biological Engineering, and Department of Chemistry and Wood Science, University of British Columbia, 2360 East Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
22
|
Yamaguchi A, Kashimura C, Aizawa M, Shibuya Y. Differential Scanning Calorimetry Study on the Adsorption of Myoglobin at Mesoporous Silicas: Effects of Solution pH and Pore Size. ACS OMEGA 2020; 5:22993-23001. [PMID: 32954149 PMCID: PMC7495722 DOI: 10.1021/acsomega.0c02602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 08/19/2020] [Indexed: 06/11/2023]
Abstract
In the present study, pore adsorption behavior of globular myoglobin (Mb) at mesoporous silicas was examined utilizing the low-temperature differential scanning calorimetry (DSC) method. The DSC method relies on a decrease in heat of fusion for the pore water upon adsorption of Mb. The amount and structure of Mb adsorbed into the mesoporous silica were examined by DSC and optical absorption spectroscopy. The results indicated that the pore adsorption behavior of Mb strongly depended on the solution pH and pore size of mesoporous silica. For the adsorption of Mb (diameter = 3.5 nm) into mesoporous silica with narrow pores (pore diameter = 3.3 nm) at a pH ranging from 7.0 to 3.7, the penetration of both folded and denatured Mb molecules was confirmed. The folded Mb could penetrate into large mesoporous silica pores (pore diameter = 5.3 and 7.9 nm), whereas the penetration of the denatured Mb molecules was completely inhibited. The distribution of folded Mb at mesoporous silica depended on the pore size; almost all folded Mb molecules located inside mesoporous silica pores of diameters 3.3 and 5.3 nm, whereas the Mb molecules distributed at bot internal and external pore surfaces of mesoporous silica with 7.9 nm in pore diameter. These pore adsorption behaviors suggest that aggregation or stacking of the Mb molecules at the pore entrance regions of the large pores affected the pore adsorption behavior.
Collapse
Affiliation(s)
- Akira Yamaguchi
- Institute
of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Chiharu Kashimura
- Institute
of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Mami Aizawa
- Institute
of Quantum Beam Science, Ibaraki University, 2-1-1 Bunkyo, Mito, Ibaraki 310-8512, Japan
| | - Yuuta Shibuya
- New
Industry Creation Hatchery Center, Tohoku
University, Sendai 980-8577, Japan
| |
Collapse
|
23
|
Chrzanowska A, Derylo-Marczewska A, Wasilewska M. Mesocellular Silica Foams (MCFs) with Tunable Pore Size as a Support for Lysozyme Immobilization: Adsorption Equilibrium and Kinetics, Biocomposite Properties. Int J Mol Sci 2020; 21:E5479. [PMID: 32751874 PMCID: PMC7432670 DOI: 10.3390/ijms21155479] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/28/2020] [Accepted: 07/29/2020] [Indexed: 11/16/2022] Open
Abstract
The effect of the porous structure of mesocellular silica foams (MCFs) on the lysozyme (LYS) adsorption capacity, as well as the rate, was studied to design the effective sorbent for potential applications as the carriers of biomolecules. The structural (N2 adsorption/desorption isotherms), textural (SEM, TEM), acid-base (potentiometric titration), adsorption properties, and thermal characteristics of the obtained lysozyme/silica composites were studied. The protein adsorption equilibrium and kinetics showed significant dependence on silica pore size. For instance, LYS adsorption uptake on MCF-6.4 support (pore diameter 6.4 nm) was about 0.29 g/g. The equilibrium loading amount of LYS on MCF-14.5 material (pore size 14.5 nm) increased to 0.55 g/g. However, when the pore diameter was larger than 14.5 nm, the LYS adsorption value systematically decreased with increasing pore size (e.g., for MCF-30.1 was only 0.27 g/g). The electrostatic attractive interactions between the positively charged lysozyme (at pH = 7.4) and the negatively charged silica played a significant role in the immobilization process. The differences in protein adsorption and surface morphology for the biocomposites of various pore sizes were found. The thermal behavior of the studied bio/systems was conducted by TG/DSC/FTIR/MS coupled method. It was found that the thermal degradation of lysozyme/silica composites was a double-stage process in the temperature range 165-420-830 °C.
Collapse
Affiliation(s)
- Agnieszka Chrzanowska
- Department of Physical Chemistry, Institute of Chemical Sciences, Faculty of Chemistry, Maria Curie-Sklodowska University in Lublin, M. Curie-Sklodowska Sq. 3, 20-031 Lublin, Poland; (A.D.-M.); (M.W.)
| | | | | |
Collapse
|
24
|
Chen Z, Chen Z, Liu C, Wang X, Zhou Y, Wang R. Optimization of penicillin G acylase immobilized on glutaraldehyde-modified titanium dioxide. Biotechnol Appl Biochem 2019; 66:990-998. [PMID: 31502318 DOI: 10.1002/bab.1817] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 09/05/2019] [Indexed: 11/11/2022]
Abstract
In this work, TiO2 , which was modified by glutaraldehyde, was adopted as the carrier; the penicillin G acylase (PGA) was immobilized and the influence of immobilized conditions, such as pH of solution, the concentration of PGA, the immobilization temperature, and the reaction time, on the catalytic performance of the immobilized PGA was investigated and optimized. During this process, potassium penicillin G (PG) was chosen as substrate, and the quantity of 6-aminopenicillanic acid (6-APA) produced by PG at the temperature of 25 °C for 3 Min in neutral solution was conscripted as the evaluation foundation, indexes, containing the loading capacity (ELC), the activity (EA), and activity retention rate (EAR), were calculated based on quantities of produced 6-APA and compared with finding out the suitable conditions. Results showed that when the solution pH, PGA concentration, immobilization temperature, and reaction time were 8.0, 2.5% (v/v), 35 °C, and 24 H, respectively, ELC, EA, and EAR presented optimal values of 9,190 U, 14,969 U/g, and 88.5% relatedly. After that, the stability and reusability of immobilized PGA were studied, and the results documented that the pH resistance, thermal stability, and storage stability of immobilized PGA were significantly improved. This work provided technique support for the practical application of immobilized PGA carrier.
Collapse
Affiliation(s)
- Zhangjun Chen
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China.,State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou, People's Republic of China
| | - Zhenbin Chen
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China.,State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou, People's Republic of China
| | - Chunli Liu
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China.,State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou, People's Republic of China
| | - Xudong Wang
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China.,State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou, People's Republic of China
| | - Yongshan Zhou
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China.,State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou, People's Republic of China
| | - Runtian Wang
- College of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China.,State Key Laboratory of Gansu Advanced Non-ferrous Metal Materials, Lanzhou University of Technology, Lanzhou, People's Republic of China
| |
Collapse
|
25
|
Fabrication, characterization, stability and in vitro evaluation of nitrendipine nanocrystals by media milling. POWDER TECHNOL 2019. [DOI: 10.1016/j.powtec.2018.08.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
26
|
Chong SL, Cardoso V, Brás JLA, Gomes MZDV, Fontes CMGA, Olsson L. Immobilization of bacterial feruloyl esterase on mesoporous silica particles and enhancement of synthetic activity by hydrophobic-modified surface. BIORESOURCE TECHNOLOGY 2019; 293:122009. [PMID: 31493730 DOI: 10.1016/j.biortech.2019.122009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 08/11/2019] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Here, we demonstrated the immobilization of bacterial feruloyl esterase (FAE) from Butyrivibrio sp. XPD2006, Lactobacillus crispatus, Butyrivibrio sp. AE2015, Ruminococcus albus, Cellulosilyticum ruminicola and Clostridium cellulovorans on SBA-15 and their ability to synthesize butyl ferulate (BFA). The BFae2 from Butyrivibrio sp. XPD2006 showed the best catalytic efficiency. High BFA yield was produced when the immobilization of BFae2 took place with a high protein loading and narrow pore sized SBA-15, suggesting alteration of enzyme behavior due to the crowding environment in SBA-15. Grafting of SBA-15 with octyl moieties led to shrinking pore size and resulted in 2.5-fold increment of BFA activity compared to the free enzyme and 70%mol BFA was achieved. The BFae2 encapsulated in hydrophobic-modified SBA-15 endured up to seven reaction cycles while the BFA activity remained above 60%. This is the first report showing the superior performance of hydrophobic-modified surface to entrap FAE to produce fatty phenolic esters.
Collapse
Affiliation(s)
- Sun Li Chong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Lin'an, 311300 Hangzhou, China; Chalmers University of Technology, Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Kemivägen 10, SE-412 96 Göteborg, Sweden
| | - Vânia Cardoso
- NZYTech Genes & Enzymes, Campus do Lumiar, 1649-038 Lisbon, Portugal; CIISA - Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Joana L A Brás
- NZYTech Genes & Enzymes, Campus do Lumiar, 1649-038 Lisbon, Portugal
| | - Milene Zezzi do Valle Gomes
- Chalmers University of Technology, Department of Chemistry and Chemical Engineering, Applied Chemistry, SE 412 96 Gothenburg, Sweden
| | - Carlos M G A Fontes
- NZYTech Genes & Enzymes, Campus do Lumiar, 1649-038 Lisbon, Portugal; CIISA - Faculty of Veterinary Medicine, University of Lisbon, 1300-477 Lisboa, Portugal
| | - Lisbeth Olsson
- Chalmers University of Technology, Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Kemivägen 10, SE-412 96 Göteborg, Sweden.
| |
Collapse
|
27
|
Huangfu C, Dong Y, Ji X, Wu N, Lu X. Mechanistic Study of Protein Adsorption on Mesoporous TiO 2 in Aqueous Buffer Solutions. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:11037-11047. [PMID: 31378070 DOI: 10.1021/acs.langmuir.9b01354] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein adsorption is of fundamental importance for bioseparation engineering applications. In this work, a series of mesoporous TiO2 with various geometric structures and different aqueous buffer solutions were prepared as platforms to investigate the effects of the surface geometry and ionic strength on the protein adsorptive behavior. The surface geometry of the TiO2 was found to play a dominant role in the protein adsorption capacity when the ionic strength of buffer solutions is very low. With the increase in ionic strength, the effect of the geometric structure on the protein adsorption capacity reduced greatly. The change of ionic strength has the highest significant effect on the mesoporous TiO2 with large pore size compared with that with small pore size. The interaction between the protein and TiO2 measured with atomic force microscopy further demonstrated that the adhesion force induced by the surface geometry reduced with the increase in the ionic strength. These findings were used to guide the detection of the retention behavior of protein by high-performance liquid chromatography, providing a step forward toward understanding the protein adsorption for predicting and controlling the chromatographic separation of proteins.
Collapse
Affiliation(s)
- Changan Huangfu
- State Key Laboratory of Materials-Oriented and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Yihui Dong
- State Key Laboratory of Materials-Oriented and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Xiaoyan Ji
- Energy Engineering, Division of Energy Science , Luleå University of Technology , 97187 Luleå , Sweden
| | - Na Wu
- State Key Laboratory of Materials-Oriented and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented and Chemical Engineering , Nanjing Tech University , Nanjing 210009 , China
| |
Collapse
|
28
|
Gold nanoparticles coated with carbosilane dendrons in protein sample preparation. Mikrochim Acta 2019; 186:508. [DOI: 10.1007/s00604-019-3587-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 06/04/2019] [Indexed: 01/03/2023]
|
29
|
Functionalized mesoporous metal-organic framework PCN-100: An efficient carrier for vitamin E storage and delivery. J IND ENG CHEM 2019. [DOI: 10.1016/j.jiec.2019.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
30
|
Schwaminger SP, Fraga-García P, Blank-Shim SA, Straub T, Haslbeck M, Muraca F, Dawson KA, Berensmeier S. Magnetic One-Step Purification of His-Tagged Protein by Bare Iron Oxide Nanoparticles. ACS OMEGA 2019; 4:3790-3799. [PMID: 31459591 PMCID: PMC6648446 DOI: 10.1021/acsomega.8b03348] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/04/2019] [Indexed: 05/21/2023]
Abstract
Magnetic separation is a promising alternative to conventional methods in downstream processing. This can facilitate easier handling, fewer processing steps, and more sustainable processes. Target materials can be extracted directly from crude cell lysates in a single step by magnetic nanoadsorbents with high-gradient magnetic fishing (HGMF). Additionally, the use of hazardous consumables for reducing downstream processing steps can be avoided. Here, we present proof of principle of one-step magnetic fishing from crude Escherichia coli cell lysate of a green fluorescent protein (GFP) with an attached hexahistidine (His6)-tag, which is used as the model target molecule. The focus of this investigation is the upscale to a liter scale magnetic fishing process in which a purity of 91% GFP can be achieved in a single purification step from cleared cell lysate. The binding through the His6-tag can be demonstrated, since no significant binding of nontagged GFP toward bare iron oxide nanoparticles (BIONs) can be observed. Nonfunctionalized BIONs with primary particle diameters of around 12 nm, as used in the process, can be produced with a simple and low-cost coprecipitation synthesis. Thus, HGMF with BIONs might pave the way for a new and greener era of downstream processing.
Collapse
Affiliation(s)
- Sebastian P. Schwaminger
- Bioseparation
Engineering Group, Department of Mechanical Engineering and Department of
Chemistry, Technical University of Munich, Garching 85748, Germany
- Centre
for BioNano Interactions, School of Chemistry and Chemical Biology
and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D14 YH57, Ireland
| | - Paula Fraga-García
- Bioseparation
Engineering Group, Department of Mechanical Engineering and Department of
Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Silvia A. Blank-Shim
- Bioseparation
Engineering Group, Department of Mechanical Engineering and Department of
Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Tamara Straub
- Bioseparation
Engineering Group, Department of Mechanical Engineering and Department of
Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Martin Haslbeck
- Bioseparation
Engineering Group, Department of Mechanical Engineering and Department of
Chemistry, Technical University of Munich, Garching 85748, Germany
| | - Francesco Muraca
- Centre
for BioNano Interactions, School of Chemistry and Chemical Biology
and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D14 YH57, Ireland
| | - Kenneth A. Dawson
- Centre
for BioNano Interactions, School of Chemistry and Chemical Biology
and Conway Institute for Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D14 YH57, Ireland
| | - Sonja Berensmeier
- Bioseparation
Engineering Group, Department of Mechanical Engineering and Department of
Chemistry, Technical University of Munich, Garching 85748, Germany
| |
Collapse
|
31
|
Determination of the small amount of proteins interacting with TiO2 nanotubes by AFM-measurement. Biomaterials 2019; 192:368-376. [DOI: 10.1016/j.biomaterials.2018.11.013] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 11/07/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022]
|
32
|
Ramalingam S, Le Bourdon G, Pouget E, Scalabre A, Rao JR, Perro A. Adsorption of Proteins on Dual Loaded Silica Nanocapsules. J Phys Chem B 2019; 123:1708-1717. [DOI: 10.1021/acs.jpcb.8b12028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Sathya Ramalingam
- Inorganic and Physical Chemistry Laboratory, Council of Scientific & Industrial Research-Central Leather Research Institute, Adyar, Chennai-6000 20, India
| | - Gwenaelle Le Bourdon
- Institut des Sciences Moléculaires (ISM) - CNRS - Université de Bordeaux - Bordeaux INP, UMR 5255, 351 cours de la libération, 33405 Talence, France
| | - Emilie Pouget
- Chimie et Biologie des Membranes et des Nanoobjets (CBMN), CNRS - Université Bordeaux - Bordeaux INP, UMR 5248, Allée St Hilaire, Bat B14, 33607 Pessac, France
| | - Antoine Scalabre
- Chimie et Biologie des Membranes et des Nanoobjets (CBMN), CNRS - Université Bordeaux - Bordeaux INP, UMR 5248, Allée St Hilaire, Bat B14, 33607 Pessac, France
| | - Jonnalagadda Raghava Rao
- Inorganic and Physical Chemistry Laboratory, Council of Scientific & Industrial Research-Central Leather Research Institute, Adyar, Chennai-6000 20, India
| | - Adeline Perro
- Université de Bordeaux, Bordeaux INP, ISM, UMR 5255, Site ENSCBP, 16 avenue Pey Berland, 33607 Pessac, France
| |
Collapse
|
33
|
Hagemann A, Giussi JM, Longo GS. Use of pH Gradients in Responsive Polymer Hydrogels for the Separation and Localization of Proteins from Binary Mixtures. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01876] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Annika Hagemann
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Juan M. Giussi
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| | - Gabriel S. Longo
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), UNLP-CONICET, La Plata, Argentina
| |
Collapse
|
34
|
Tan X, Liu X, Zhang Y, Zhang H, Lin X, Pu C, Gou J, He H, Yin T, Zhang Y, Tang X. Silica nanoparticles on the oral delivery of insulin. Expert Opin Drug Deliv 2018; 15:805-820. [DOI: 10.1080/17425247.2018.1503250] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xinyi Tan
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaolin Liu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Yan Zhang
- Department of Chemistry, Normal College, Shenyang University, Shenyang, China
| | - Hongjuan Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xiaoyang Lin
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Chenguang Pu
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Jingxin Gou
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Haibing He
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Tian Yin
- Department of Wine, School of Functional food and Wine, Shenyang Pharmaceutical University, Shenyang, China
| | - Yu Zhang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| |
Collapse
|
35
|
Liu D, Lipponen K, Quan P, Wan X, Zhang H, Mäkilä E, Salonen J, Kostiainen R, Hirvonen J, Kotiaho T, Santos HA. Impact of Pore Size and Surface Chemistry of Porous Silicon Particles and Structure of Phospholipids on Their Interactions. ACS Biomater Sci Eng 2018; 4:2308-2313. [PMID: 30159385 PMCID: PMC6108535 DOI: 10.1021/acsbiomaterials.8b00343] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
![]()
By exploiting its porous structure
and high loading capacity, porous
silicon (PSi) is a promising biomaterial to fabricate protocells and
biomimetic reactors. Here, we have evaluated the impact of physicochemical
properties of PSi particles [thermally oxidized PSi, TOPSi; annealed
TOPSi, AnnTOPSi; (3-aminopropyl) triethoxysilane functionalized thermally
carbonized PSi, APTES-TCPSi; and thermally hydrocarbonized PSi, THCPSi]
on their surface interactions with different phospholipids. All of
the four phospholipids were similarly adsorbed by the surface of PSi
particles, except for TOPSi. Among four PSi particles, TOPSi with
hydrophilic surface and smaller pore size showed the weakest adsorption
toward phosphatidylcholines. By increasing the pore size from roughly
12.5 to 18.0 nm (TOPSi vs AnnTOPSi), the quantity of phosphatidylcholines
adsorbed by TOPSi was enhanced to the same level of hydrophilic APTES-TCPSi
and hydrophobic THCPSi. The 1,2-dioleoyl-sn-glycero-3-phosphocholine
(DOPC) exhibited the highest release ratio of phospholipids from all
four PSi particles, and phosphatidylserine (DPPS) showed the lowest
release ratio of phospholipids from PSi particles, except for TOPSi,
which adsorbed less phospholipids due to the small pore size. There
is consistency in the release extent of phospholipids from PSi particles
and the isosteric heat of adsorption. Overall, our study demonstrates
the importance of pore size and surface chemistry of PSi particles
as well as the structure of phospholipids on their interactions. The
obtained information can be employed to guide the selection of PSi
particles and phospholipids to fabricate highly ordered structures,
for example, protocells, or biomimetic reactors.
Collapse
Affiliation(s)
- Dongfei Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland.,Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Katriina Lipponen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Peng Quan
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland.,Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Xiaocao Wan
- Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang, Liaoning 110016, China
| | - Hongbo Zhang
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland.,Department of Pharmaceutical Science, Åbo Akademi University, Turku FI-20520, Finland
| | - Ermei Mäkilä
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku FI-20014, Finland
| | - Jarno Salonen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku, Turku FI-20014, Finland
| | - Risto Kostiainen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Tapio Kotiaho
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland.,Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland.,Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, Helsinki Institute of Life Science, HiLIFE, and Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki FI-00014, Finland
| |
Collapse
|
36
|
Preparation, characterization, and evaluation of azoxystrobin nanosuspension produced by wet media milling. APPLIED NANOSCIENCE 2018. [DOI: 10.1007/s13204-018-0745-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
To improve the bioavailability of the poorly water-soluble fungicide, an azoxystrobin nanosuspension was prepared by the wet media milling method. Due to their reduced mean particle size and polydispersity index, 1-Dodecanesulfonic acid sodium salt and polyvinylpyrrolidone K30 were selected from six conventional surfactants, the content only accounting for 15% of the active compound. The mean particle size, polydispersity index, and
$$\zeta$$
ζ
potential of the nanosuspension were determined to be 238.1 ± 1.5 nm, 0.17 ± 0.02 and − 31.8 ± 0.3 mV, respectively. The lyophilized nanosuspension mainly retained crystalline state, with only a little amorphous content as determined by powder X-ray diffraction. Compared to conventional fungicide formulations, the nanosuspension presented an increased retention volume and a reduced contact angle, indicating enhanced wettability and adhesion. In addition, the azoxystrobin nanosuspension showed the highest antifungal activity, with a medial lethal concentration of 1.4243 μg/mL against Fusarium oxysporum. In optical micrographs, hyphal deformations of thinner and intertwined hyphae were detected in the exposed group. Compared to the control group, the total soluble protein content, superoxide dismutase, and catalase activities were initially increased and then decreased with prolonged exposure time. The azoxystrobin nanosuspension reduced the defensive antioxidant capability of Fusarium oxysporum and resulted in the generation of excessive reactive oxygen species. This study provides a novel method for preparing nanosuspension formulation of poorly soluble antifungal agents to enhance the biological activity and decrease the negative environmental impact.
Collapse
|
37
|
Enzyme@silica hybrid nanoflowers shielding in polydopamine layer for the improvement of enzyme stability. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.01.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
38
|
Guo ZY, Hai X, Wang YT, Shu Y, Chen XW, Wang JH. Core–Corona Magnetic Nanospheres Functionalized with Zwitterionic Polymer Ionic Liquid for Highly Selective Isolation of Glycoprotein. Biomacromolecules 2017; 19:53-61. [DOI: 10.1021/acs.biomac.7b01231] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi-Yong Guo
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Xin Hai
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yi-Ting Wang
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Yang Shu
- Institute
of Biotechnology, College of Life and Health Sciences, Northeastern University, Box H006, Shenyang 110169, China
| | - Xu-Wei Chen
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| | - Jian-Hua Wang
- Research
Center for Analytical Sciences, Department of Chemistry, College of
Sciences, Northeastern University, Box 332, Shenyang 110819, China
| |
Collapse
|
39
|
Dong Y, An R, Zhao S, Cao W, Huang L, Zhuang W, Lu L, Lu X. Molecular Interactions of Protein with TiO 2 by the AFM-Measured Adhesion Force. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:11626-11634. [PMID: 28772074 DOI: 10.1021/acs.langmuir.7b02024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Understanding the interactions between porous materials and biosystems is of great important in biomedical and environmental sciences. Upon atomic force microscopy (AFM) adhesion measurement, a new experimental approach was presented here to determine the molecular interaction force between proteins and mesoporous TiO2 of various surface roughnesses. The interaction force between each protein molecule and the pure anatase TiO2 surface was characterized by fitting the adhesion and adsorption capacity per unit contact area, and it was found that the adhesion forces were approximately 0.86, 2.63, and 4.41 nN for lysozyme, myoglobin, and BSA, respectively. Moreover, we reported that the molecular interaction force was independent of the surface topography of the material but the protein type is a factor of the interaction. These experimental results on the molecular level provide helpful insights for stimulating model calculation and molecular simulation studies of protein interaction with surfaces.
Collapse
Affiliation(s)
- Yihui Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Rong An
- Herbert Gleiter Institute of Nanoscience, Nanjing University of Science & Technology , Nanjing 210094, P. R. China
| | - Shuangliang Zhao
- School of Chemical Engineering, East China University of Science and Technology , Shanghai 200237, P. R. China
| | - Wei Cao
- State Key Laboratory of Tribology, Tsinghua University , Beijing 100084, China
| | - Liangliang Huang
- School of Chemical, Biological & Materials Engineering, University of Oklahoma , Norman, Oklahoma 73019, United States
| | - Wei Zhuang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Linghong Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| | - Xiaohua Lu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University , Nanjing 210009, P. R. China
| |
Collapse
|
40
|
Chen C, Zheng H, Xu J, Shi X, Li F, Wang X. Sustained-release study on Exenatide loaded into mesoporous silica nanoparticles: in vitro characterization and in vivo evaluation. ACTA ACUST UNITED AC 2017; 25:20. [PMID: 28870261 PMCID: PMC5583966 DOI: 10.1186/s40199-017-0186-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 08/24/2017] [Indexed: 12/29/2022]
Abstract
BACKGROUND Exenatide (EXT), the first glucagon-like peptide-1 receptor agonist, has been approved as an adjunctive therapy for patients with type 2 diabetes. Due to EXT's short half-life, EXT must be administrated by continuous subcutaneous (s.c.) injection twice daily. In previous studies, many studies on EXT loaded into polymer materials carriers for sustained release had been reported. However, these carriers have some defects, such as hydrophobicity, low surface energy, low mechanical strength, and poor chemical stability. Therefore, this study aims to develop a novel drug delivery system, which is EXT loaded into well-ordered hexagonal mesoporous silica structures (EXT-SBA-15), to control the sustainability of EXT. METHODS SBA-15 was prepared by hydrothermal method with uniform size. Morphology of SBA-15 was employed by transmission electron microscopy. The pore size of SBA-15 was characterized by N2 adsorption-desorption isotherms. The in vitro drug release behavior and pharmacokinetics of EXT-SBA-15 were investigated. Furthermore, the blood glucose levels of diabetic mice were monitored after subcutaneous injection of EXT-Sol and EXT-SBA-15 to evaluate further the stable hypoglycemic effect of EXT-SBA-15. RESULTS EXT-SBA-15 showed a higher drug loading efficiency (15.2 ± 2.0%) and sustained-release features in vitro. In addition, pharmacokinetic studies revealed that the EXT-SBA-15 treatment group extended the half-life t 1/2(β) to 14.53 ± 0.70 h compared with that of the EXT solution (EXT-Sol) treatment group (0.60 ± 0.08 h) in vivo. Results of the pharmacodynamics study show that the EXT-SBA-15 treatment group had inhibited blood glucose levels below 20 mmol/L for 25 days, and the lowest blood glucose level was 13 mmol/L on the 10th day. CONCLUSIONS This study demonstrates that the EXT-SBA-15 delivery system can control the sustainability of EXT and contribute to improve EXT clinical use.
Collapse
Affiliation(s)
- Cuiwei Chen
- Department of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou, 311042, China
| | - Hongyue Zheng
- Libraries of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, 310053, China
| | - Junjun Xu
- Department of Pharmacy, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310052, China
| | - Xiaowei Shi
- Department of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou, 311042, China
| | - Fanzhu Li
- Department of Pharmaceutics, Zhejiang Chinese Medical University, Hangzhou, 311042, China.
| | - Xuanshen Wang
- Department of Pharmacy, The Second Hospital of Dalian Medical University, Dalian, 116027, China.
| |
Collapse
|
41
|
Yu H, Chen C, Cao X, Liu Y, Zhou S, Wang P. Ratiometric fluorescent pH nanoprobes based on in situ assembling of fluorescence resonance energy transfer between fluorescent proteins. Anal Bioanal Chem 2017; 409:5073-5080. [PMID: 28687887 DOI: 10.1007/s00216-017-0453-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 05/23/2017] [Accepted: 06/06/2017] [Indexed: 11/25/2022]
Abstract
pH-dependent protein adsorption on mesoporous silica nanoparticle (MSN) was examined as a unique means for pH monitoring. Assuming that the degree of protein adsorption determines the distance separating protein molecules, we examined the feasibility of nanoscale pH probes based on fluorescence resonance energy transfer (FRET) between two fluorescent proteins (mTurquoise2 and mNeonGreen, as donor and acceptor, respectively). Since protein adsorption on MSN is pH-sensitive, both fluorescent proteins were modified to make their isoelectric points (pIs) identical, thus achieving comparable adsorption between the proteins and enhancing FRET signals. The adsorption behaviors of such modified fluorescent proteins were examined along with ratiometric FRET signal generation. Results demonstrated that the pH probes could be manipulated to show feasible sensitivity and selectivity for pH changes in hosting solutions, with a good linearity observed in the pH range of 5.5-8.0. In a demonstration test, the pH probes were successfully applied to monitor progress of enzymatic reactions. Such an "in situ-assembling" pH sensor demonstrates a promising strategy in developing nanoscale fluorescent protein probes. Graphical abstract Working principle of the developed pH sensor TNS; and FRET Ratio (I528/I460) as a function of pH under different protein feed ratios (mNeonGreen to mTurquoise2).
Collapse
Affiliation(s)
- Haijun Yu
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Xiaodan Cao
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Yueling Liu
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China
| | - Shengmin Zhou
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
| | - Ping Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Center, School of Biotechnology, East China University of Science and Technology, Shanghai, 200237, China.
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, MN, 55108, USA.
| |
Collapse
|
42
|
Clemments AM, Botella P, Landry CC. Spatial Mapping of Protein Adsorption on Mesoporous Silica Nanoparticles by Stochastic Optical Reconstruction Microscopy. J Am Chem Soc 2017; 139:3978-3981. [PMID: 28260375 PMCID: PMC7445356 DOI: 10.1021/jacs.7b01118] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Exposure to biological fluid envelops a nanoparticle in layers of proteins and biomolecules, which has a profound impact on the nanoparticle's biological fate. Although the identities and amounts of the proteins in this "corona" have been thoroughly examined, the spatial arrangement of the proteins is unclear, a problem that is compounded on porous nanoparticles due to penetration of proteins within the porous network. To address this problem, we have developed a procedure based on information derived from stochastic optical reconstruction microscopy. We employed a mathematical model to reveal the penetration depth of several proteins within porous nanoparticles. Understanding protein penetration depth provides an explanation for the composition of the protein corona, aiding in the development of safe and effective particle-based therapies.
Collapse
Affiliation(s)
- Alden M. Clemments
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| | - Pablo Botella
- Instituto de Tecnología Química (Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas), Avenida de, Los Naranjos s/n, 46022 Valencia, Spain
| | - Christopher C. Landry
- Department of Chemistry, University of Vermont, 82 University Place, Burlington, Vermont 05405, United States
| |
Collapse
|
43
|
Henry N, Clouet J, Le Visage C, Weiss P, Gautron E, Renard D, Cordonnier T, Boury F, Humbert B, Terrisse H, Guicheux J, Le Bideau J. Silica nanofibers as a new drug delivery system: a study of the protein–silica interactions. J Mater Chem B 2017; 5:2908-2920. [DOI: 10.1039/c7tb00332c] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Drug delivery from silica nanofiber based materials for intervertebral disc regenerative medicine.
Collapse
Affiliation(s)
- Nina Henry
- INSERM
- UMRS 1229
- RMeS “Regenerative Medicine and Skeleton”
- Team STEP “Physiopathology and joint regenerative medicine”
- Nantes
| | - Johann Clouet
- INSERM
- UMRS 1229
- RMeS “Regenerative Medicine and Skeleton”
- Team STEP “Physiopathology and joint regenerative medicine”
- Nantes
| | - Catherine Le Visage
- INSERM
- UMRS 1229
- RMeS “Regenerative Medicine and Skeleton”
- Team STEP “Physiopathology and joint regenerative medicine”
- Nantes
| | - Pierre Weiss
- INSERM
- UMRS 1229
- RMeS “Regenerative Medicine and Skeleton”
- Team STEP “Physiopathology and joint regenerative medicine”
- Nantes
| | - Eric Gautron
- Institut des Matériaux Jean Rouxel (IMN)
- UMR 6502 CNRS – Université de Nantes
- Nantes
- France
| | - Denis Renard
- INRA
- UR 1268 Biopolymères Interactions Assemblages
- F-44300 Nantes
- France
| | | | | | - Bernard Humbert
- Institut des Matériaux Jean Rouxel (IMN)
- UMR 6502 CNRS – Université de Nantes
- Nantes
- France
| | - Hélène Terrisse
- Institut des Matériaux Jean Rouxel (IMN)
- UMR 6502 CNRS – Université de Nantes
- Nantes
- France
| | - Jérôme Guicheux
- INSERM
- UMRS 1229
- RMeS “Regenerative Medicine and Skeleton”
- Team STEP “Physiopathology and joint regenerative medicine”
- Nantes
| | - Jean Le Bideau
- Institut des Matériaux Jean Rouxel (IMN)
- UMR 6502 CNRS – Université de Nantes
- Nantes
- France
| |
Collapse
|
44
|
ARAFUNE H, HOTTA K, ITOH T, TERAMAE N, YAMAGUCHI A. Nanoporous Waveguide Spectroscopy for the Estimation of Enzyme Adsorption on Mesoporous Silica. ANAL SCI 2017; 33:473-476. [DOI: 10.2116/analsci.33.473] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Hiroyuki ARAFUNE
- Department of Creative Engineering, National Institute of Technology, Tsuruoka College
| | - Kazuhiro HOTTA
- Department of Chemistry, Graduate School of Science, Tohoku University
| | - Tetsuji ITOH
- Research Center for Compact Chemical System, National Institute of Advanced Industrial Science and Technology (AIST)
| | - Norio TERAMAE
- Department of Chemistry, Graduate School of Science, Tohoku University
| | | |
Collapse
|
45
|
Hofmann T, Wallacher D, Perlich J, Koyiloth Vayalil S, Huber P. Formation of Periodically Arranged Nanobubbles in Mesopores: Capillary Bridge Formation and Cavitation during Sorption and Solidification in an Hierarchical Porous SBA-15 Matrix. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:2928-2936. [PMID: 26940230 DOI: 10.1021/acs.langmuir.5b04560] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We report synchrotron-based small-angle X-ray scattering experiments on a template-grown porous silica matrix (Santa Barbara Amorphous-15) upon in situ sorption of fluorinated pentane C5F12 along with volumetric gas sorption isotherm measurements. Within the mean-field model of Saam and Cole for vapor condensation in cylindrical pores, a nitrogen and C5F12 sorption isotherm is well described by a bimodal pore radius distribution dominated by meso- and micropores with 3.4 and 1.6 nm mean radius, respectively. In the scattering experiments, two different periodicities become evident. One of them (d1 = 11.5 nm) reflects the next nearest neighbor distance in a 2D-hexagonal lattice of tubular mesopores. A second periodicity (d2 = 11.4 nm) found during in situ sorption and freezing experiments is traced back to a superstructure along the cylindrical mesopores. It is compatible with periodic pore corrugations found in electron tomograms of empty SBA-15 by Gommes et al. ( Chem. Mater. 2009, 21, 1311 - 1317). A Rayleigh-Plateau instability occurring at the cylindrical blockcopolymer micelles characteristic of the SBA-15 templating process quantitatively accounts for the superstructure and thus the spatial periodicity of the pore wall corrugation. The consequences of this peculiar morphological feature on the spatial arrangement of C5F12, in particular the formation of periodically arranged nanobubbles (or voids) upon adsorption, desorption, and freezing of liquids, are discussed in terms of capillary bridge formation and cavitation in tubular but periodically corrugated pores.
Collapse
Affiliation(s)
- Tommy Hofmann
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , D-12489 Berlin, Germany
| | - Dirk Wallacher
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH , D-12489 Berlin, Germany
| | - Jan Perlich
- Deutsches Elektronen Synchrotron , D-22607 Hamburg, Germany
| | | | - Patrick Huber
- Technische Universität Hamburg , D-21073 Hamburg, Germany
| |
Collapse
|
46
|
Jurašin DD, Ćurlin M, Capjak I, Crnković T, Lovrić M, Babič M, Horák D, Vinković Vrček I, Gajović S. Surface coating affects behavior of metallic nanoparticles in a biological environment. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:246-62. [PMID: 26977382 PMCID: PMC4778536 DOI: 10.3762/bjnano.7.23] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Accepted: 02/04/2016] [Indexed: 05/17/2023]
Abstract
Silver (AgNPs) and maghemite, i.e., superparamagnetic iron oxide nanoparticles (SPIONs) are promising candidates for new medical applications, which implies the need for strict information regarding their physicochemical characteristics and behavior in a biological environment. The currently developed AgNPs and SPIONs encompass a myriad of sizes and surface coatings, which affect NPs properties and may improve their biocompatibility. This study is aimed to evaluate the effects of surface coating on colloidal stability and behavior of AgNPs and SPIONs in modelled biological environments using dynamic and electrophoretic light scattering techniques, as well as transmission electron microscopy to visualize the behavior of the NP. Three dispersion media were investigated: ultrapure water (UW), biological cell culture medium without addition of protein (BM), and BM supplemented with common serum protein (BMP). The obtained results showed that different coating agents on AgNPs and SPIONs produced different stabilities in the same biological media. The combination of negative charge and high adsorption strength of coating agents proved to be important for achieving good stability of metallic NPs in electrolyte-rich fluids. Most importantly, the presence of proteins provided colloidal stabilization to metallic NPs in biological fluids regardless of their chemical composition, surface structure and surface charge. In addition, an assessment of AgNP and SPION behavior in real biological fluids, rat whole blood (WhBl) and blood plasma (BlPl), revealed that the composition of a biological medium is crucial for the colloidal stability and type of metallic NP transformation. Our results highlight the importance of physicochemical characterization and stability evaluation of metallic NPs in a variety of biological systems including as many NP properties as possible.
Collapse
Affiliation(s)
- Darija Domazet Jurašin
- Division of Physical Chemistry, Ruđer Bošković Institute, Bijenička cesta 54, 10 000 Zagreb, Croatia
| | - Marija Ćurlin
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Ivona Capjak
- Croatian Institute of Transfusion Medicine, Petrova 3, 10 000 Zagreb, Croatia
| | - Tea Crnković
- Faculty for Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10 000 Zagreb, Croatia
| | - Marija Lovrić
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| | - Michal Babič
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Academy of Sciences of the Czech Republic, Heyrovský Sq. 2, 162 06 Prague 6, Czech Republic
| | - Ivana Vinković Vrček
- Institute for Medical Research and Occupational Health, Ksaverska cesta 2, 10 000 Zagreb, Croatia
| | - Srećko Gajović
- School of Medicine, Croatian Institute for Brain Research, University of Zagreb, Šalata 3, 10 000 Zagreb, Croatia
| |
Collapse
|
47
|
Ghogare AA, Miller JM, Mondal B, Lyons AM, Cengel KA, Busch TM, Greer A. Fluorinated Photodynamic Therapy Device Tips and their Resistance to Fouling for In Vivo Sensitizer Release. Photochem Photobiol 2016; 92:166-72. [PMID: 26451683 PMCID: PMC4839978 DOI: 10.1111/php.12538] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Accepted: 09/17/2015] [Indexed: 01/10/2023]
Abstract
We describe progress on a one-step photodynamic therapy (PDT) technique that is simple: device tip delivery of sensitizer, oxygen and light simultaneously. Control is essential for their delivery to target sites to generate singlet oxygen. One potential problem is the silica device tip may suffer from biomaterial fouling and the pace of sensitizer photorelease is slowed. Here, we have used biomaterial (e.g. proteins, cells, etc.) from SQ20B head and neck tumors and whole blood for an assessment of fouling of the silica tips by adsorption. It was shown that by exchanging the native silica tip for a fluorinated tip, a better nonstick property led to an increased sensitizer output by ~10%. The fluorinated tip gave a sigmoidal photorelease where singlet oxygen is stabilized to physical quenching, whereas the native silica tip with unprotected SiO-H groups gave a slower (pseudolinear) photorelease. A further benefit from fluorinated silica is that 15% less biomaterial adheres to its surface compared to native silica based on a bicinchoninic acid assay (BCA) and X-ray photoelectron spectroscopy (XPS) measurements. We discuss how the fluorination of the device tip increases biofouling resistance and can contribute to a new pointsource PDT tool.
Collapse
Affiliation(s)
- Ashwini A. Ghogare
- Department of Chemistry and Graduate Center, Brooklyn College, City University of New York, Brooklyn, New York, 11210, United States
| | - Joann M. Miller
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Bikash Mondal
- Department of Chemistry and Graduate Center, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - Alan M. Lyons
- Department of Chemistry and Graduate Center, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - Keith A. Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Theresa M. Busch
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexander Greer
- Department of Chemistry and Graduate Center, Brooklyn College, City University of New York, Brooklyn, New York, 11210, United States
| |
Collapse
|
48
|
Moerz ST, Kraegeloh A, Chanana M, Kraus T. Formation Mechanism for Stable Hybrid Clusters of Proteins and Nanoparticles. ACS NANO 2015; 9:6696-705. [PMID: 26030129 DOI: 10.1021/acsnano.5b01043] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Citrate-stabilized gold nanoparticles (AuNP) agglomerate in the presence of hemoglobin (Hb) at acidic pH. The extent of agglomeration strongly depends on the concentration ratio [Hb]/[AuNP]. Negligible agglomeration occurs at very low and very high [Hb]/[AuNP]. Full agglomeration and precipitation occur at [Hb]/[AuNP] corresponding to an Hb monolayer on the AuNP. Ratios above and below this value lead to the formation of an unexpected phase: stable, microscopic AuNP-Hb agglomerates. We investigated the kinetics of agglomeration with dynamic light scattering and the adsorption kinetics of Hb on planar gold with surface-acoustic wave-phase measurements. Comparing agglomeration and adsorption kinetics leads to an explanation of the complex behavior of this nanoparticle-protein mixture. Agglomeration is initiated either when Hb bridges AuNP or when the electrostatic repulsion between AuNP is neutralized by Hb. It is terminated when Hb has been depleted or when Hb forms multilayers on the agglomerates that stabilize microscopic clusters indefinitely.
Collapse
Affiliation(s)
- Sebastian T Moerz
- †INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Annette Kraegeloh
- †INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| | - Munish Chanana
- ‡Physikalische Chemie II, Universität Bayreuth, 95440 Bayreuth, Germany
| | - Tobias Kraus
- †INM - Leibniz Institute for New Materials, Campus D2 2, 66123 Saarbrücken, Germany
| |
Collapse
|
49
|
Huber P. Soft matter in hard confinement: phase transition thermodynamics, structure, texture, diffusion and flow in nanoporous media. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:103102. [PMID: 25679044 DOI: 10.1088/0953-8984/27/10/103102] [Citation(s) in RCA: 130] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Spatial confinement in nanoporous media affects the structure, thermodynamics and mobility of molecular soft matter often markedly. This article reviews thermodynamic equilibrium phenomena, such as physisorption, capillary condensation, crystallisation, self-diffusion, and structural phase transitions as well as selected aspects of the emerging field of spatially confined, non-equilibrium physics, i.e. the rheology of liquids, capillarity-driven flow phenomena, and imbibition front broadening in nanoporous materials. The observations in the nanoscale systems are related to the corresponding bulk phenomenologies. The complexity of the confined molecular species is varied from simple building blocks, like noble gas atoms, normal alkanes and alcohols to liquid crystals, polymers, ionic liquids, proteins and water. Mostly, experiments with mesoporous solids of alumina, gold, carbon, silica, and silicon with pore diameters ranging from a few up to 50 nm are presented. The observed peculiarities of nanopore-confined condensed matter are also discussed with regard to applications. A particular emphasis is put on texture formation upon crystallisation in nanoporous media, a topic both of high fundamental interest and of increasing nanotechnological importance, e.g. for the synthesis of organic/inorganic hybrid materials by melt infiltration, the usage of nanoporous solids in crystal nucleation or in template-assisted electrochemical deposition of nano structures.
Collapse
Affiliation(s)
- Patrick Huber
- Hamburg University of Technology (TUHH), Institute of Materials Physics and Technology, Eißendorfer Str. 42, D-21073 Hamburg-Harburg (Germany
| |
Collapse
|
50
|
Kaasalainen M, Rytkönen J, Mäkilä E, Närvänen A, Salonen J. Electrostatic interaction on loading of therapeutic peptide GLP-1 into porous silicon nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:1722-9. [PMID: 25604519 DOI: 10.1021/la5047047] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Porous silicon (PSi) nanoparticles' tunable properties are facilitating their use at highly challenging medical tasks such as peptide delivery. Because of many different mechanisms that are affecting the interaction between the peptide and the particle, the drug incorporation into the mesoporous delivery system is not straightforward. We have studied the adsorption and loading of incretin hormone glucagon like peptide 1 (GLP-1) on PSi nanoparticles. The results show that the highest loading degree can be achieved in pH values near the isoelectric point of peptide, and the phenomenon is independent of the surface's zeta potential. In order to study the interaction between the peptide and the nanoparticle, we studied the adsorption with lower concentrations and noticed that also non-Coulombic forces have a big role in adsorption of GLP-1. Adsorption is effective and pH-independent especially on low peptide concentrations and onto more hydrophobic nanoparticles. Reversibility of adsorption was studied as a function of buffer pH. When the loading is compared to the total mass of the formulation, the loading degree is 29%, and during desorption experiments 25% is released in 4 h and can be considered as a reversible loading degree. Thus, the peptides adsorbed first seem to create irreversibly adsorbed layer that facilitates reversible adsorption of following peptides.
Collapse
Affiliation(s)
- Martti Kaasalainen
- Laboratory of Industrial Physics, Department of Physics and Astronomy, University of Turku , FI-20014 Turku, Finland
| | | | | | | | | |
Collapse
|