1
|
Abutalebi A, Christopher GF. Creating High Yield Stress Particle-Laden Oil/Water Interfaces Using Charge Bidispersity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21086-21096. [PMID: 39325636 DOI: 10.1021/acs.langmuir.4c02513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
Interfacial engineering has been increasingly used to stabilize Pickering emulsions in commercial products and biomedical applications. Pickering emulsion stabilization is aided by interfacial viscoelasticity; however, typically the primary means of stabilization are steric hindrances between high surface concentration shells of particles around the drops. In this work, the concept of creating large interfacial viscoelastic yield stresses with low particle surface concentrations (<50%) using bidisperse charged particle systems is tested to evaluate their potential efficacy in emulsion stabilization. To explore this hypothesis, interfacial rheology and visualization experiments are conducted at o/w interfaces using positively charged amidine, negatively charged carboxylate, and negatively charged sulfate-coated latex spheres and compared to a model based on interparticle forces. Bidisperse particle systems have been observed to create more networked structures than monodisperse systems. For surface concentrations of <50%, bidisperse interfaces created measurable viscoelastic moduli ∼1 order of magnitude larger than monodisperse interfaces. Furthermore, these interfaces have measurable yield stresses on the order of 10-4 Pa·m when monodisperse systems have none. Bidispersity impacts surface viscoelasticity primarily by increasing the overall magnitude of attraction between particles at the interface and not due to changes in the microstructure. The developed model predicts the relative surface fraction that creates the largest moduli and shows good agreement with the experimental data. The results demonstrate the ability to create large viscoelastic moduli for small surface fractions of particles, which may enable stabilization using fewer particles in future applications.
Collapse
Affiliation(s)
- Arsalan Abutalebi
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| | - Gordon F Christopher
- Department of Mechanical Engineering, Whitacre College of Engineering, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
2
|
van Baalen C, Vialetto J, Isa L. Tuning Electrostatic Interactions of Colloidal Particles at Oil-Water Interfaces with Organic Salts. PHYSICAL REVIEW LETTERS 2023; 131:128202. [PMID: 37802948 DOI: 10.1103/physrevlett.131.128202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 08/23/2023] [Indexed: 10/08/2023]
Abstract
Monolayers of colloidal particles at oil-water interfaces readily crystallize owing to electrostatic repulsion, which is often mediated through the oil. However, little attempts exist to control it using oil-soluble electrolytes. We probe the interactions among charged hydrophobic microspheres confined at a water-hexadecane interface and show that repulsion can be continuously tuned over orders of magnitude upon introducing nanomolar amounts of an organic salt into the oil. Our results are compatible with an associative discharging mechanism of surface groups at the particle-oil interface, similar to the charge regulation observed for charged colloids in nonpolar solvents.
Collapse
Affiliation(s)
- Carolina van Baalen
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Jacopo Vialetto
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| | - Lucio Isa
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Vladimir-Prelog-Weg 5, 8093 Zürich, Switzerland
| |
Collapse
|
3
|
Lobel BT, Hobson MJ, Ireland PM, Webber GB, Thomas CA, Ogino H, Fujii S, Wanless EJ. Interparticle Repulsion of Microparticles Delivered to a Pendent Drop by an Electric Field. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:670-679. [PMID: 34968053 DOI: 10.1021/acs.langmuir.1c02507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
We report an unusually large spacing observed between microparticles after delivery to the surface of a pendent water droplet using a DC nonuniform electrostatic field, primarily via dielectrophoresis. The influence of particle properties was investigated using core particles, which were either coated or surface-modified to alter their wettability and conductivity. Particles that exhibited this spacing were both hydrophobic and possessed some dielectric material exposed to the external field, such as a coating or exposed dielectric core. The origin of this behavior is proposed to be the induced dipole-dipole repulsion between particles, which increases with particle size and decreases when the magnitude of the electric field is reduced. When the particles were no longer subjected to an external field, this large interparticle repulsion ceased and the particles settled to the bottom of the droplet under the force of gravity. We derive a simple model to predict this spacing, with the dipole-dipole repulsion balanced against particle weight. The external electric field was calculated using the existing electric field models. The spacing was found to be dependent on particle density and the induced dipole moment as well as the number of particles present on the droplet interface. As the number of particles increased, a decrease in interparticle spacing was observed.
Collapse
Affiliation(s)
- Benjamin T Lobel
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Matthew J Hobson
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Peter M Ireland
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Grant B Webber
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Casey A Thomas
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| | - Haruka Ogino
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Syuji Fujii
- Department of Applied Chemistry, Faculty of Engineering, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
- Nanomaterials Microdevices Research Center, Osaka Institute of Technology, 5-16-1 Omiya, Asahi-ku, Osaka 535-8585, Japan
| | - Erica J Wanless
- College of Science, Engineering and Environment, University of Newcastle, Callaghan, New South Wales 2308, Australia
| |
Collapse
|
4
|
Vialetto J, Anyfantakis M. Exploiting Additives for Directing the Adsorption and Organization of Colloid Particles at Fluid Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:9302-9335. [PMID: 34327999 DOI: 10.1021/acs.langmuir.1c01029] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The self-assembly of colloids at fluid interfaces is a well-studied research field both for gaining fundamental insights and for material fabrication. The fluid interface allows the confinement of particles in two dimensions and may act as a template for guiding their organization into soft and reconfigurable structures. Additives (e.g., surfactants, salts, and polymers) in the colloidal suspension are routinely used as a practical and effective tool to drive particle adsorption and tune their interfacial organization. However, some phenomena lying at the heart of the accumulation and self-assembly of particles at fluid interfaces remain poorly understood. This Feature Article aims to critically analyze the mechanisms involved in the adsorption and self-organization of micro- and nanoparticles at various fluid interfaces. In particular, we address the role of additives in both promoting the adsorption of particles from the bulk suspension to the fluid interface and in mediating the interactions between interfacial particles. We emphasize how different types of additives play a crucial role in controlling the interactions between suspended particles and the fluid interface as well as the interactions between adsorbed particles, thus dictating the final self-assembled structure. We also critically summarize the main experimental protocols developed for the complete adsorption of particles initially suspended in the bulk. Furthermore, we highlight some special properties (e.g., reconfigurability upon external stimulation and dissipative self-assembly) and the application potential of structures formed by colloid self-organization at fluid interfaces mediated/promoted by additives. We believe our contribution serves both as a practical roadmap to scientists coming from other fields and as a valuable information resource for all researchers interested in this exciting research field.
Collapse
Affiliation(s)
- Jacopo Vialetto
- Laboratory for Soft Materials and Interfaces, Department of Materials, ETH Zürich, Zürich, Switzerland
| | - Manos Anyfantakis
- Department of Physics and Materials Science, University of Luxembourg, Luxembourg L-1511, Luxembourg
| |
Collapse
|
5
|
Pattern detection in colloidal assembly: A mosaic of analysis techniques. Adv Colloid Interface Sci 2020; 284:102252. [PMID: 32971396 DOI: 10.1016/j.cis.2020.102252] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 01/19/2023]
Abstract
Characterization of the morphology, identification of patterns and quantification of order encountered in colloidal assemblies is essential for several reasons. First of all, it is useful to compare different self-assembly methods and assess the influence of different process parameters on the final colloidal pattern. In addition, casting light on the structures formed by colloidal particles can help to get better insight into colloidal interactions and understand phase transitions. Finally, the growing interest in colloidal assemblies in materials science for practical applications going from optoelectronics to biosensing imposes a thorough characterization of the morphology of colloidal assemblies because of the intimate relationship between morphology and physical properties (e.g. optical and mechanical) of a material. Several image analysis techniques developed to investigate images (acquired via scanning electron microscopy, digital video microscopy and other imaging methods) provide variegated and complementary information on the colloidal structures under scrutiny. However, understanding how to use such image analysis tools to get information on the characteristics of the colloidal assemblies may represent a non-trivial task, because it requires the combination of approaches drawn from diverse disciplines such as image processing, computational geometry and computational topology and their application to a primarily physico-chemical process. Moreover, the lack of a systematic description of such analysis tools makes it difficult to select the ones more suitable for the features of the colloidal assembly under examination. In this review we provide a methodical and extensive description of real-space image analysis tools by explaining their principles and their application to the investigation of two-dimensional colloidal assemblies with different morphological characteristics.
Collapse
|
6
|
Cuetos A, Morillo N, Martı Nez Haya B. Coadsorption of Counterionic Colloids at Fluid Interfaces: A Coarse-Grained Simulation Study of Gibbs Monolayers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:2877-2885. [PMID: 32118442 DOI: 10.1021/acs.langmuir.9b03886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Monolayers of oppositely charged colloids form versatile self-organizing substrates, with a recognized potential to tailor functional interfaces. In this study, a coarse-grained Monte Carlo simulation approach is laid out to assess the structural properties of Gibbs monolayers, in which one of the counterionic species is partially soluble. It is shown that the composition of this type of monolayer varies in a nontrivial way with surface coverage, as a result of a subtle competition between steric and attractive forces. In the regime of weak electrostatic interactions, the monolayer is depleted of soluble colloids as the surface coverage is increased. At sufficiently strong interactions, the incorporation of soluble colloids is favored at high surface coverage, leading to a re-entrant-type behavior in the expansion/compression isotherms. Strong electrostatic interactions also favor the clustering of the colloids, leading to a range of aggregated configurations, qualitatively resembling those obtained in previous experimental studies. At sufficiently high surface coverage, the clusters collapse into a gel-like percolated mesoscopic structure and eventually into a square crystal lattice configuration. Such interfacial structures are in good agreement with the ones observed in the few experimental investigations available for these systems, showing that the simple methodology introduced in this study provides a valuable predictive framework to anticipate the landscape of interfacial structures that may be produced with oppositely charged colloids, through the modulation of pair interactions and thermodynamical conditions.
Collapse
Affiliation(s)
- Alejandro Cuetos
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Neftali Morillo
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| | - Bruno Martı Nez Haya
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, 41013 Seville, Spain
| |
Collapse
|
7
|
Hayakawa H. Simulation of dense non-Brownian suspensions with the lattice Boltzmann method: shear jammed and fragile states. SOFT MATTER 2020; 16:945-959. [PMID: 31845696 DOI: 10.1039/c9sm00850k] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Dense non-Brownian suspensions, including both hydrodynamic interactions and frictional contacts between particles, are numerically studied under simple and oscillatory shears in terms of the lattice Boltzmann method. We successfully reproduce the discontinuous shear thickening (DST) under a simple shear for bulk three-dimensional systems. For our simulation of an oscillatory shear in a quasi-two-dimensional system, we measure the mechanical response after the reduction of the strain amplitude from the initial oscillations. Here, we find the existence of a shear-jammed state under this protocol in which the storage modulus G' is only finite for high initial strain amplitude γI0. We also find the existence of a fragile state in which both fluid-like and solid-like responses can be detected for an identical area fraction and an initial strain amplitude γI0 depending on the initial phase Θ (or the asymmetricity of the applied strain) of the oscillatory shear. We also observe a DST-like behavior under the oscillatory shear in the fragile state. Moreover, we find that the stress anisotropy becomes large in the fragile state. Finally, we confirm that a stress formula based on the angular distribution of the contact force recovers the contact contributions to the stress tensors for both simple and oscillatory shears with large strains.
Collapse
Affiliation(s)
- Hisao Hayakawa
- Yukawa Institute for Theoretical Physics, Kyoto University, Kitashirakawaoiwake-cho, Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
8
|
Zhao Q, Wang Q, Li Y, Ning P, Tian S. Influence of volatile organic compounds (VOCs) on pulmonary surfactant monolayers at air-water interface: Implication for the pulmonary health. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2018.11.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
|
9
|
Karnieli A, Markovich T, Andelman D. Surface Pressure of Charged Colloids at the Air/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:13322-13332. [PMID: 30266068 DOI: 10.1021/acs.langmuir.8b02926] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Charged colloidal monolayers at the interface between water and air (or oil) are used in a large number of chemical, physical, and biological applications. Although considerable experimental and theoretical effort has been devoted in the past few decades to the investigation of such monolayers, some of their fundamental properties are not yet fully understood. In this article, we model charged colloidal monolayers as a continuum layer of finite thickness, with a separate charge distribution on the water and air sides. The electrostatic surface free energy and surface pressure are calculated via the charging method and within the Debye-Hückel approximation. We obtain the dependence of surface pressure on several system parameters: the monolayer thickness, its distinct dielectric permittivity, and the ionic strength of the aqueous subphase. The surface pressure scaling with the area per particle, a, is found to be between a-2 in the close-packing limit and a-5/2 in the loose-packing limit. In general, it is found that the surface pressure is strongly influenced by charges on the air side of the colloids. However, when the larger charge resides on the water side, a more subtle dependence on salt concentration emerges. This corrects a common assumption that the charges on the water side can always be neglected due to screening. Finally, using a single fit parameter, our theory is found to fit the experimental data well for strong- to intermediate-strength electrolytes. We postulate that an anomalous scaling of a-3/2, recently observed in low ionic concentrations, cannot be accounted for within a linear theory, and its explanation requires a fully nonlinear analysis.
Collapse
Affiliation(s)
- Aviv Karnieli
- Raymond and Beverly Sackler School of Physics and Astronomy , Tel Aviv University , Ramat Aviv 69978 , Tel Aviv , Israel
| | - Tomer Markovich
- Raymond and Beverly Sackler School of Physics and Astronomy , Tel Aviv University , Ramat Aviv 69978 , Tel Aviv , Israel
- DAMTP, Centre for Mathematical Sciences , University of Cambridge , Cambridge CB3 0WA , United Kingdom
| | - David Andelman
- Raymond and Beverly Sackler School of Physics and Astronomy , Tel Aviv University , Ramat Aviv 69978 , Tel Aviv , Israel
| |
Collapse
|
10
|
Gabovich AM, Voitenko AI. Electrostatic interaction near the interface between dielectric media taking into account the nonlocality of the Coulomb field screening. J Mol Liq 2018. [DOI: 10.1016/j.molliq.2017.09.044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
11
|
Majee A, Schmetzer T, Bier M. Electrostatic interaction between dissimilar colloids at fluid interfaces. Phys Rev E 2018; 97:042611. [PMID: 29758658 DOI: 10.1103/physreve.97.042611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2018] [Indexed: 06/08/2023]
Abstract
The electrostatic interaction between two nonidentical, moderately charged colloids situated in close proximity of each other at a fluid interface is studied. By resorting to a well-justified model system, this problem is analytically solved within the framework of linearized Poisson-Boltzmann density functional theory. The resulting interaction comprises a surface and a line part, both of which, as functions of the interparticle separation, show a rich behavior including monotonic as well as nonmonotonic variations. In almost all cases, these variations cannot be captured correctly by using the superposition approximation. Moreover, expressions for the surface tensions, the line tensions and the fluid-fluid interfacial tension, which are all independent of the interparticle separation, are obtained. Our results are expected to be particularly useful for emulsions stabilized by oppositely charged particles.
Collapse
Affiliation(s)
- Arghya Majee
- Max-Planck-Institut für Intelligente Systeme, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Timo Schmetzer
- Max-Planck-Institut für Intelligente Systeme, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, 70569 Stuttgart, Germany
| | - Markus Bier
- Max-Planck-Institut für Intelligente Systeme, 70569 Stuttgart, Germany and IV. Institut für Theoretische Physik, Universität Stuttgart, 70569 Stuttgart, Germany
| |
Collapse
|
12
|
Georgiev MT, Danov KD, Kralchevsky PA, Gurkov TD, Krusteva DP, Arnaudov LN, Stoyanov SD, Pelan EG. Rheology of particle/water/oil three-phase dispersions: Electrostatic vs. capillary bridge forces. J Colloid Interface Sci 2018; 513:515-526. [PMID: 29179092 DOI: 10.1016/j.jcis.2017.11.057] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/16/2017] [Accepted: 11/17/2017] [Indexed: 01/16/2023]
Abstract
HYPOTHESIS Particle/water/oil three-phase capillary suspensions possess the remarkable property to solidify upon the addition of minimal amount of the second (dispersed) liquid. The hardening of these suspensions is due to capillary bridges, which interconnect the particles (pendular state). Electrostatic repulsion across the oily phase, where Debye screening by electrolyte is missing, could also influence the hardness of these suspensions. EXPERIMENTS We present data for oil-continuous suspensions with aqueous capillary bridges between hydrophilic SiO2 particles at particle volume fractions 35-45%. The hardness is characterized by the yield stress Y for two different oils: mineral (hexadecane) and vegetable (soybean oil). FINDINGS AND MODELLING The comparison of data for the "mirror" systems of water- and oil-continuous capillary suspensions shows that Y is lower for the oil-continuous ones. The theoretical model of yield stress is upgraded by including a contribution from electrostatic repulsion, which partially counterbalances the capillary-bridge attraction and renders the suspensions softer. The particle charge density determined from data fits is close to that obtained in experiments with monolayers from charged colloid particles at oil/water interfaces. The results could contribute for better understanding, quantitative prediction and control of the mechanical properties of solid/liquid/liquid capillary suspensions.
Collapse
Affiliation(s)
- Mihail T Georgiev
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Krassimir D Danov
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Peter A Kralchevsky
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria.
| | - Theodor D Gurkov
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Denitsa P Krusteva
- Department of Chemical & Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Luben N Arnaudov
- Unilever Research & Development Vlaardingen, 3133AT Vlaardingen, The Netherlands
| | - Simeon D Stoyanov
- Unilever Research & Development Vlaardingen, 3133AT Vlaardingen, The Netherlands; Laboratory of Physical Chemistry and Colloid Science, Wageningen University, 6703 HB Wageningen, The Netherlands; Department of Mechanical Engineering, University College London, WC1E 7JE, UK
| | - Eddie G Pelan
- Unilever Research & Development Vlaardingen, 3133AT Vlaardingen, The Netherlands
| |
Collapse
|
13
|
Danov KD, Georgiev MT, Kralchevsky PA, Radulova GM, Gurkov TD, Stoyanov SD, Pelan EG. Hardening of particle/oil/water suspensions due to capillary bridges: Experimental yield stress and theoretical interpretation. Adv Colloid Interface Sci 2018; 251:80-96. [PMID: 29174116 DOI: 10.1016/j.cis.2017.11.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2017] [Revised: 11/11/2017] [Accepted: 11/12/2017] [Indexed: 01/19/2023]
Abstract
Suspensions of colloid particles possess the remarkable property to solidify upon the addition of minimal amount of a second liquid that preferentially wets the particles. The hardening is due to the formation of capillary bridges (pendular rings), which connect the particles. Here, we review works on the mechanical properties of such suspensions and related works on the capillary-bridge force, and present new rheological data for the weakly studied concentration range 30-55 vol% particles. The mechanical strength of the solidified capillary suspensions, characterized by the yield stress Y, is measured at the elastic limit for various volume fractions of the particles and the preferentially wetting liquid. A quantitative theoretical model is developed, which relates Y with the maximum of the capillary-bridge force, projected on the shear plane. A semi-empirical expression for the mean number of capillary bridges per particle is proposed. The model agrees very well with the experimental data and gives a quantitative description of the yield stress, which increases with the rise of interfacial tension and with the volume fractions of particles and capillary bridges, but decreases with the rise of particle radius and contact angle. The quantitative description of capillary force is based on the exact theory and numerical calculation of the capillary bridge profile at various bridge volumes and contact angles. An analytical formula for Y is also derived. The comparison of the theoretical and experimental strain at the elastic limit reveals that the fluidization of the capillary suspension takes place only in a deformation zone of thickness up to several hundred particle diameters, which is adjacent to the rheometer's mobile plate. The reported experimental results refer to water-continuous suspension with hydrophobic particles and oily capillary bridges. The comparison of data for bridges from soybean oil and hexadecane surprisingly indicate that the yield strength is greater for the suspension with soybean oil despite its lower interfacial tension against water. The result can be explained with the different contact angles of the two oils in agreement with the theoretical predictions. The results could contribute for a better understanding, quantitative prediction and control of the mechanical properties of three-phase capillary suspensions solid/liquid/liquid.
Collapse
|
14
|
Lotito V, Zambelli T. Approaches to self-assembly of colloidal monolayers: A guide for nanotechnologists. Adv Colloid Interface Sci 2017; 246:217-274. [PMID: 28669390 DOI: 10.1016/j.cis.2017.04.003] [Citation(s) in RCA: 103] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/04/2017] [Accepted: 04/05/2017] [Indexed: 01/08/2023]
Abstract
Self-assembly of quasi-spherical colloidal particles in two-dimensional (2D) arrangements is essential for a wide range of applications from optoelectronics to surface engineering, from chemical and biological sensing to light harvesting and environmental remediation. Several self-assembly approaches have flourished throughout the years, with specific features in terms of complexity of the implementation, sensitivity to process parameters, characteristics of the final colloidal assembly. Selecting the proper method for a given application amidst the vast literature in this field can be a challenging task. In this review, we present an extensive classification and comparison of the different techniques adopted for 2D self-assembly in order to provide useful guidelines for scientists approaching this field. After an overview of the main applications of 2D colloidal assemblies, we describe the main mechanisms underlying their formation and introduce the mathematical tools commonly used to analyse their final morphology. Subsequently, we examine in detail each class of self-assembly techniques, with an explanation of the physical processes intervening in crystallization and a thorough investigation of the technical peculiarities of the different practical implementations. We point out the specific characteristics of the set-ups and apparatuses developed for self-assembly in terms of complexity, requirements, reproducibility, robustness, sensitivity to process parameters and morphology of the final colloidal pattern. Such an analysis will help the reader to individuate more easily the approach more suitable for a given application and will draw the attention towards the importance of the details of each implementation for the final results.
Collapse
|
15
|
Bykov A, Gochev G, Loglio G, Miller R, Panda A, Noskov B. Dynamic surface properties of mixed monolayers of polystyrene micro- and nanoparticles with DPPC. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2016.11.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
16
|
Kralchevsky PA, Danov KD, Petkov PV. Soft electrostatic repulsion in particle monolayers at liquid interfaces: surface pressure and effect of aggregation. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2016; 374:20150130. [PMID: 27298437 PMCID: PMC4920279 DOI: 10.1098/rsta.2015.0130] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 12/02/2015] [Indexed: 05/30/2023]
Abstract
Non-densely packed interfacial monolayers from charged micrometre-sized colloid particles find applications for producing micropatterned surfaces. The soft electrostatic repulsion between the particles in a monolayer on an air/water (or oil/water) interface is mediated by the non-polar fluid, where Debye screening is absent and the distances between the particles are considerably greater than their diameters. Surface pressure versus area isotherms were measured at the air/water interface. The experiments show that asymptotically the surface pressure is inversely proportional to the third power of the interparticle distance. A theoretical model is developed that predicts not only the aforementioned asymptotic law but also the whole surface pressure versus area dependence. An increase in the surface pressure upon aggregation of charged particles in the interfacial monolayers is experimentally established. This effect is explained by the developed theoretical model, which predicts that the surface pressure should linearly increase with the square root of the particle mean aggregation number. The effect of added electrolyte on the aggregation is also investigated. The data lead to the conclusion that 'limited aggregation' exists in the monolayers of charged particles. In brief, the stronger electrostatic repulsion between the bigger aggregates leads to a higher barrier to their coalescence that, in turn, prevents any further aggregation, i.e. negative feedback is present.This article is part of the themed issue 'Soft interfacial materials: from fundamentals to formulation'.
Collapse
Affiliation(s)
- Peter A Kralchevsky
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Krassimir D Danov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| | - Plamen V Petkov
- Department of Chemical and Pharmaceutical Engineering, Faculty of Chemistry and Pharmacy, Sofia University, Sofia 1164, Bulgaria
| |
Collapse
|
17
|
Bähler PT, Zanini M, Morgese G, Benetti EM, Isa L. Immobilization of Colloidal Monolayers at Fluid⁻Fluid Interfaces. Gels 2016; 2:E19. [PMID: 30674151 PMCID: PMC6318634 DOI: 10.3390/gels2030019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2016] [Revised: 06/21/2016] [Accepted: 06/24/2016] [Indexed: 02/05/2023] Open
Abstract
Monolayers of colloidal particles trapped at an interface between two immiscible fluids play a pivotal role in many applications and act as essential models in fundamental studies. One of the main advantages of these systems is that non-close packed monolayers with tunable inter-particle spacing can be formed, as required, for instance, in surface patterning and sensing applications. At the same time, the immobilization of particles locked into desired structures to be transferred to solid substrates remains challenging. Here, we describe three different strategies to immobilize monolayers of polystyrene microparticles at water⁻decane interfaces. The first route is based on the leaking of polystyrene oligomers from the particles themselves, which leads to the formation of a rigid interfacial film. The other two rely on in situ interfacial polymerization routes that embed the particles into a polymer membrane. By tracking the motion of the colloids at the interface, we can follow in real-time the formation of the polymer membranes and we interestingly find that the onset of the polymerization reaction is accompanied by an increase in particle mobility determined by Marangoni flows at the interface. These results pave the way for future developments in the realization of thin tailored composite polymer-particle membranes.
Collapse
Affiliation(s)
- Peter T Bähler
- Laboratory for Interfaces, Soft matter and Assembly, Department of Materials, ETH Zurich, Vladimir-Prleog-Weg 5, 8093 Zurich, Switzerland.
| | - Michele Zanini
- Laboratory for Interfaces, Soft matter and Assembly, Department of Materials, ETH Zurich, Vladimir-Prleog-Weg 5, 8093 Zurich, Switzerland.
| | - Giulia Morgese
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prleog-Weg 5, 8093 Zurich, Switzerland.
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich, Vladimir-Prleog-Weg 5, 8093 Zurich, Switzerland.
| | - Lucio Isa
- Laboratory for Interfaces, Soft matter and Assembly, Department of Materials, ETH Zurich, Vladimir-Prleog-Weg 5, 8093 Zurich, Switzerland.
| |
Collapse
|
18
|
Dipolar colloids in apolar media: direct microscopy of two-dimensional suspensions. Sci Rep 2016; 6:28578. [PMID: 27346611 PMCID: PMC4921927 DOI: 10.1038/srep28578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Accepted: 06/06/2016] [Indexed: 02/07/2023] Open
Abstract
Spherical colloids, in an absence of external fields, are commonly assumed to interact solely through rotationally-invariant potentials, u(r). While the presence of permanent dipoles in aqueous suspensions has been previously suggested by some experiments, the rotational degrees of freedom of spherical colloids are typically neglected. We prove, by direct experiments, the presence of permanent dipoles in commonly used spherical poly(methyl methacrylate) (PMMA) colloids, suspended in an apolar organic medium. We study, by a combination of direct confocal microscopy, computer simulations, and theory, the structure and other thermodynamical properties of organic suspensions of colloidal spheres, confined to a two-dimensional (2D) monolayer. Our studies reveal the effects of the dipolar interactions on the structure and the osmotic pressure of these fluids. These observations have far-reaching consequences for the fundamental colloidal science, opening new directions in self-assembly of complex colloidal clusters.
Collapse
|
19
|
Gao P, Yi Z, Xing X, Ngai T, Jin F. Influence of an Additive-Free Particle Spreading Method on Interactions between Charged Colloidal Particles at an Oil/Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:4909-4916. [PMID: 27108987 DOI: 10.1021/acs.langmuir.6b01362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The assembly and manipulation of charged colloidal particles at oil/water interfaces represent active areas of fundamental and applied research. Previously, we have shown that colloidal particles can spontaneously generate unstable residual charges at the particle/oil interface when spreading solvent is used to disperse them at an oil/water interface. These residual charges in turn affect the long-ranged electrostatic repulsive forces and packing of particles at the interface. To further uncover the influence arising from the spreading solvents on interfacial particle interactions, in the present study we utilize pure buoyancy to drive the particles onto an oil/water interface and compare the differences between such a spontaneously adsorbed particle monolayer to the spread monolayer based on solvent spreading techniques. Our results show that the solvent-free method could also lead particles to spread well at the interface, but it does not result in violent sliding of particles along the interface. More importantly, this additive-free spreading method can avoid the formation of unstable residual charges at the particle/oil interface. These findings agree well with our previous hypothesis; namely, those unstable residual charges are triboelectric charges that arise from the violently rubbing of particles on oil at the interface. Therefore, if the spreading solvents could be avoided, then we would be able to get rid of the formation of residual charges at interfaces. This finding will provide insight for precisely controlling the interactions among colloidal particles trapped at fluid/fluid interfaces.
Collapse
Affiliation(s)
- Peng Gao
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Hefei 230026, PR China
| | - Zonglin Yi
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, N. T. Hong Kong
- Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute, The Chinese University of Hong Kong , Shenzhen 518057, China
| | - Xiaochen Xing
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Hefei 230026, PR China
| | - To Ngai
- Department of Chemistry, The Chinese University of Hong Kong , Shatin, N. T. Hong Kong
- Shenzhen Municipal Key Laboratory of Chemical Synthesis of Medicinal Organic Molecules, Shenzhen Research Institute, The Chinese University of Hong Kong , Shenzhen 518057, China
| | - Fan Jin
- Hefei National Laboratory for Physical Sciences at the Microscale, Department of Chemical Physics, Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China , Hefei 230026, PR China
| |
Collapse
|
20
|
Gu C, Botto L. Direct calculation of anisotropic surface stresses during deformation of a particle-covered drop. SOFT MATTER 2016; 12:705-716. [PMID: 26559077 DOI: 10.1039/c5sm02374b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The modification of the surface tension and the surface shear elasticity by particles in particle-covered drops can be attributed to a particle-induced surface stress. This stress represents at the macroscopic, continuum level the microscopic effect of lateral particle-particle interactions. Understanding the link between the isotropic and anisotropic components of the surface stress and the particle microstructure, and how these components change when structured interfaces deform, is a crucial problem in the field of particle-laden interfaces. In this paper, we analyse static and transient three-dimensional simulations of a pendant drop whose surface is covered by colloidal particles displaying purely repulsive particle-particle interactions. We compute the isotropic and anisotropic surface stress from the inter-particle forces using a version of the Kirkwood-Irving formula suitable for interfacial suspensions; we validate the approach by comparing against surface tension values obtained using Fordham's method (Proc. R. Soc. London, Ser. A, 1948, 194). In the parameter range simulated, the combination of parameters for which the drop does not pinch off (stable drop) gives rise to a homogeneous and isotropic surface stress; we argue that in the absence of attractive interactions the drop becomes unstable before anisotropic effects can manifest themselves. For unstable drops, stress non-uniformity and anisotropy are significant when the drop deformation and the solid area fraction are sufficiently large. Our results have implications for the dynamic deformation of structured interfaces with geometrically complex and time dependent morphologies.
Collapse
Affiliation(s)
- Chuan Gu
- School of Engineering and Materials Science, Queen Mary University of London, E1 4NS, London, UK.
| | | |
Collapse
|
21
|
Banchelli M, Tiribilli B, Pini R, Dei L, Matteini P, Caminati G. Controlled graphene oxide assembly on silver nanocube monolayers for SERS detection: dependence on nanocube packing procedure. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2016; 7:9-21. [PMID: 26925348 PMCID: PMC4734306 DOI: 10.3762/bjnano.7.2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 12/21/2015] [Indexed: 05/03/2023]
Abstract
Hybrid graphene oxide/silver nanocubes (GO/AgNCs) arrays for surface-enhanced Raman spectroscopy (SERS) applications were prepared by means of two procedures differing for the method used in the assembly of the silver nanocubes onto the surface: Langmuir-Blodgett (LB) transfer and direct sequential physisorption of silver nanocubes (AgNCs). Adsorption of graphene oxide (GO) flakes on the AgNC assemblies obtained with both procedures was monitored by quartz crystal microbalance (QCM) technique as a function of GO bulk concentration. The experiment provided values of the adsorbed GO mass on the AgNC array and the GO saturation limit as well as the thickness and the viscoelastic properties of the GO film. Atomic force microscopy (AFM) measurements of the resulting samples revealed that a similar surface coverage was achieved with both procedures but with a different distribution of silver nanoparticles. In the GO covered LB film, the AgNC distribution is characterized by densely packed regions alternating with empty surface areas. On the other hand, AgNCs are more homogeneously dispersed over the entire sensor surface when the nanocubes spontaneously adsorb from solution. In this case, the assembly results in less-packed silver nanostructures with higher inter-cube distance. For the two assembled substrates, AFM of silver nanocubes layers fully covered with GO revealed the presence of a homogeneous, flexible and smooth GO sheet folding over the silver nanocubes and extending onto the bare surface. Preliminary SERS experiments on adenine showed a higher SERS enhancement factor for GO on Langmuir-Blodgett films of AgNCs with respect to bare AgNC systems. Conversely, poor SERS enhancement for adenine resulted for GO-covered AgNCs obtained by spontaneous adsorption. This indicated that the assembly and packing of AgNCs obtained in this way, although more homogeneous over the substrate surface, is not as effective for SERS analysis.
Collapse
Affiliation(s)
- Martina Banchelli
- Institute of Applied Physics, National Research Council - Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Bruno Tiribilli
- Institute for Complex Systems, National Research Council, Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Roberto Pini
- Institute of Applied Physics, National Research Council - Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Luigi Dei
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3–13, I-50019 Sesto Fiorentino, Italy
| | - Paolo Matteini
- Institute of Applied Physics, National Research Council - Via Madonna del Piano 10, I-50019 Sesto Fiorentino, Italy
| | - Gabriella Caminati
- Department of Chemistry and CSGI, University of Florence, Via della Lastruccia 3–13, I-50019 Sesto Fiorentino, Italy
| |
Collapse
|
22
|
Ho CC, Lin WY, Tseng FG. In situ monitoring of colloid packing at an air/water interface using visible laser diffraction. RSC Adv 2016. [DOI: 10.1039/c6ra15087j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A diffractive method using a visible laser to directly monitor colloids trapped at an air/water interface under isothermal compression is discussed.
Collapse
Affiliation(s)
- Chi-Chih Ho
- Department of Engineering and System Science
- National Tsing Hua University
- Hsinchu
- Taiwan
- Nano Science and Technology Program
| | - Wen-Yi Lin
- Department of Materials Science and Engineering
- National Tsing Hua University
- Hsinchu
- Taiwan
| | - Fan-Gang Tseng
- Department of Engineering and System Science
- National Tsing Hua University
- Hsinchu
- Taiwan
| |
Collapse
|
23
|
Dilational surface elasticity of monolayers of charged polystyrene nano- and microparticles at liquid/fluid interfaces. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.09.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
24
|
Monolayers of charged particles in a Langmuir trough: Could particle aggregation increase the surface pressure? J Colloid Interface Sci 2015; 462:223-34. [PMID: 26454382 DOI: 10.1016/j.jcis.2015.09.075] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 09/30/2015] [Indexed: 11/22/2022]
Abstract
The effect of aggregation on the surface pressure, Π, of monolayers from charged micrometer-sized colloidal particles on the air/water interface is investigated. Π is completely due to the long-range electrostatic repulsion between the particles mediated by their electrostatic field in the air. The most probable origin of particle aggregation is the attraction between capillary quadrupoles due to undulated contact lines on particle surfaces. Aggregates have higher charge and repel each other stronger than single particles. The data analysis by means of a theoretical model implies that Π linearly increases with n(1/2); n is the mean aggregation number, which can be determined from the experimental Π vs. area curves. The presence of electrolyte promotes aggregation, which tends to increase Π, but simultaneously reduces the surface charge that leads to lower Π. For our system, the first effect prevails and apparently paradoxical behavior is observed: the addition of salt in water enhances the electrostatic surface pressure. The data indicate limited aggregation: the rise of the electrostatic barrier prevents the further coalescence of aggregates if they have become sufficiently large. The results contribute for a better understanding of the factors that control the interactions in monolayers of charged particles at liquid interfaces.
Collapse
|
25
|
Deshmukh OS, van den Ende D, Stuart MC, Mugele F, Duits MHG. Hard and soft colloids at fluid interfaces: Adsorption, interactions, assembly & rheology. Adv Colloid Interface Sci 2015; 222:215-27. [PMID: 25288385 DOI: 10.1016/j.cis.2014.09.003] [Citation(s) in RCA: 136] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2014] [Revised: 09/09/2014] [Accepted: 09/13/2014] [Indexed: 11/15/2022]
Abstract
Soft microgel particles inherently possess qualities of both polymers as well as particles. We review the similarities and differences between soft microgel particles and stiff colloids at fluid-fluid interfaces. We compare two fundamental aspects of particle-laden interfaces namely the adsorption kinetics and the interactions between adsorbed particles. Although it is well established that the transport of both hard particles and microgels to the interface is driven by diffusion, the analysis of the adsorption kinetics needs reconsideration and a proper equation of state relating the surface pressure to the adsorbed mass should be used. We review the theoretical and experimental investigations into the interactions of particles at the interface. The rheology of the interfacial layers is intimately related to the interactions, and the differences between hard particles and microgels become pronounced. The assembly of particles into the layer is another distinguishing factor that separates hard particles from soft microgel particles. Microgels deform substantially upon adsorption and the stability of a microgel-stabilized emulsion depends on the conformational changes triggered by external stimuli.
Collapse
Affiliation(s)
- Omkar S Deshmukh
- Physics of Complex Fluids Group, Dept. Science and Technology, University of Twente, Enschede, The Netherlands
| | - Dirk van den Ende
- Physics of Complex Fluids Group, Dept. Science and Technology, University of Twente, Enschede, The Netherlands
| | - Martien Cohen Stuart
- Physics of Complex Fluids Group, Dept. Science and Technology, University of Twente, Enschede, The Netherlands; Laboratory of Physical Chemistry and Colloid Science, Wageningen University, Wageningen, The Netherlands
| | - Frieder Mugele
- Physics of Complex Fluids Group, Dept. Science and Technology, University of Twente, Enschede, The Netherlands
| | - Michel H G Duits
- Physics of Complex Fluids Group, Dept. Science and Technology, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
26
|
Razavi S, Cao KD, Lin B, Lee KYC, Tu RS, Kretzschmar I. Collapse of Particle-Laden Interfaces under Compression: Buckling vs Particle Expulsion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:7764-75. [PMID: 26099031 DOI: 10.1021/acs.langmuir.5b01652] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Colloidal particles can bind to fluid interfaces with a capillary energy that is thousands of times the thermal energy. This phenomenon offers an effective route to emulsion and foam stabilization where the stability is influenced by the phase behavior of the particle-laden interface under deformation. Despite the vast interest in particle-laden interfaces, the key factors that determine the collapse of such an interface under compression have remained relatively unexplored. In this study, we illustrate the significance of the particle surface wettability and presence of electrolyte in the subphase on interparticle interactions at the interface and the resulting collapse mode. Various collapse mechanisms including buckling, particle expulsion, and multilayer formation are reported and interpreted in terms of particle-particle and particle-interface interactions.
Collapse
Affiliation(s)
- Sepideh Razavi
- †Department of Chemical Engineering, City College of City University of New York, New York, New York 10031, United States
| | | | | | | | - Raymond S Tu
- †Department of Chemical Engineering, City College of City University of New York, New York, New York 10031, United States
| | - Ilona Kretzschmar
- †Department of Chemical Engineering, City College of City University of New York, New York, New York 10031, United States
| |
Collapse
|
27
|
Bykov AG, Noskov BA, Loglio G, Lyadinskaya VV, Miller R. Dilational surface elasticity of spread monolayers of polystyrene microparticles. SOFT MATTER 2014; 10:6499-6505. [PMID: 25046357 DOI: 10.1039/c4sm00782d] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The dependence of the dilational surface elasticity on the surface pressure of the spread monolayers of polystyrene microparticles is studied at the water-air interface. The surface rheological measurements together with the data from optical methods allow the division of the whole range of surface pressures into three zones characterized by different monolayer structures. The extremely high surface elasticity (∼500 mN m(-1)) at surface pressures close to 30 mN m(-1) is similar to the results for the adsorption layer of the complexes formed between silica particles and surfactant molecules and is probably caused by strong hydrophobic attraction between the particles. At the same time, some other characteristic features of the viscoelasticity of the monolayers of polysterene microparticles differ strongly from the properties of previously studied systems.
Collapse
Affiliation(s)
- A G Bykov
- Saint Petersburg State University, Universitetsky pr. 26, Peterhof, Saint Petersburg, Russia.
| | | | | | | | | |
Collapse
|