1
|
Huang Z, Gu C, Li J, Xiang P, Liao Y, Jiang BP, Ji S, Shen XC. Surface-Initiated Polymerization with an Initiator Gradient: A Monte Carlo Simulation. Polymers (Basel) 2024; 16:1203. [PMID: 38732672 PMCID: PMC11085584 DOI: 10.3390/polym16091203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/13/2024] Open
Abstract
Due to the difficulty of accurately characterizing properties such as the molecular weight (Mn) and grafting density (σ) of gradient brushes (GBs), these properties are traditionally assumed to be uniform in space to simplify analysis. Applying a stochastic reaction model (SRM) developed for heterogeneous polymerizations, we explored surface-initiated polymerizations (SIPs) with initiator gradients in lattice Monte Carlo simulations to examine this assumption. An initial exploration of SIPs with 'homogeneously' distributed initiators revealed that increasing σ slows down the polymerization process, resulting in polymers with lower molecular weight and larger dispersity (Đ) for a given reaction time. In SIPs with an initiator gradient, we observed that the properties of the polymers are position-dependent, with lower Mn and larger Đ in regions of higher σ, indicating the non-uniform properties of polymers in GBs. The results reveal a significant deviation in the scaling behavior of brush height with σ compared to experimental data and theoretical predictions, and this deviation is attributed to the non-uniform Mn and Đ.
Collapse
Affiliation(s)
- Zhining Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.H.); (B.-P.J.)
| | - Caixia Gu
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.H.); (B.-P.J.)
| | - Jiahao Li
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.H.); (B.-P.J.)
| | - Peng Xiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.H.); (B.-P.J.)
| | - Yanda Liao
- School of Computer Science and Engineering & School of Software, Guangxi Normal University, Guilin 541004, China;
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.H.); (B.-P.J.)
| | - Shichen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.H.); (B.-P.J.)
- State Key Laboratory of Molecular Engineering of Polymers, Fudan University, Shanghai 200433, China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Ministry of Education of China, Collaborative Innovation Center for Guangxi Ethnic Medicine, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, China; (Z.H.); (B.-P.J.)
| |
Collapse
|
2
|
Sato T, Dunderdale GJ, Hozumi A. Threshold of Surface Initiator Concentration for Polymer Brush Growth by Surface-Initiated Atom Transfer Radical Polymerization. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:480-488. [PMID: 38127729 DOI: 10.1021/acs.langmuir.3c02756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The surface modification of various materials by grafting functional molecules has attracted much attention from fundamental research to practical applications because of its ability to impart various physical and chemical properties to the surfaces. One promising approach is the use of polymer brushes synthesized by atom transfer radical polymerization (ATRP) from surface-tethered initiators (SIs). In this study, for the purpose of controlling the grafting amounts/densities of polymer brushes, we developed a facile method to precisely regulate SI concentrations of SI layers (SILs) by serial dilution based on a sol-gel method. By simply mixing organosilanes terminated with and without an initiator group ((p-chloromethyl) phenyltrimethoxysilane (CMPTMS) and phenyltrimethoxysilane (PTMS), respectively) with tetraethoxysilane (TEOS), SI concentrations of SILs could be arbitrarily tuned precisely by varying dilution factors of (CMPTMS + PTMS)/CMPTMS (DFs, 1-107). The resulting SILs prepared at different DFs were highly smooth and transparent. X-ray photoelectron spectroscopy (XPS) also confirmed that the SIs were homogeneously distributed at the topmost surface of the SILs and their concentrations were proven to be accurately and precisely controlled from high to extremely low, comparable to theoretical values. Subsequent SI-ATRP in air ("paint-on" SI-ATRP) of two different types of monomers (hydrophobic/nonionic (2,3,4,5,6-pentafluorostyrene) and hydrophilic/ionic (sodium 4-styrenesulfonate)) demonstrated that polymer brushes with different grafting amounts/densities were successfully grafted only from SILs with DFs of 1-104 (theoretical SI concentrations: 3.9 × 10-4 ∼ 3.5 units/nm2), while at DFs of 105 and above (theoretical SI concentrations: <3.9 × 10-5 units/nm2), no sign of polymer brush growth was confirmed by thickness, XPS, and water contact angle data. Therefore, we are the first to gather evidence that the approximate threshold of SI concentration required for "paint-on" SI-ATRP might be on the order of 10-4 ∼ 10-5 units/nm2.
Collapse
Affiliation(s)
- Tomoya Sato
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205, Sakurazaka, Moriyama, Nagoya 463-8560, Japan
| | - Gary J Dunderdale
- Department of Chemical and Biological Engineering, University of Sheffield, Sheffield S1 3JD, U.K
| | - Atsushi Hozumi
- National Institute of Advanced Industrial Science and Technology (AIST), 4-205, Sakurazaka, Moriyama, Nagoya 463-8560, Japan
| |
Collapse
|
3
|
Özenler S, Alkan AA, Gunay US, Daglar O, Durmaz H, Yildiz UH. Thickness Gradient in Polymer Coating by Reactive Layer-by-Layer Assembly on Solid Substrate. ACS OMEGA 2023; 8:37413-37420. [PMID: 37841123 PMCID: PMC10568690 DOI: 10.1021/acsomega.3c05445] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/06/2023] [Indexed: 10/17/2023]
Abstract
The study describes a simple yet robust methodology for forming gradients in polymer coatings with nanometer-thickness precision. The thickness gradients of 0-20 nm in the coating are obtained by a reactive layer-by-layer assembly of polyester and polyethylenimine on gold substrates. Three parameters are important in forming thickness gradients: (i) the incubation time, (ii) the incubation concentration of the polymer solutions, and (iii) the tilt angle of the gold substrate during the dipping process. After examining these parameters, the characterization of the anisotropic surface obtained under the best conditions is presented in the manuscript. The thickness profile and nanomechanical characterization of the polymer gradients are characterized by atomic force microscopy. The roughness analysis has demonstrated that the coating exhibited decreasing roughness with increasing thickness. On the other hand, Young's moduli of the thin and thick coatings are 0.50 and 1.4 MPa, respectively, which assured an increase in mechanical stability with increasing coating thickness. Angle-dependent infrared spectroscopy reveals that the C-O-C ester groups of the polyesters exhibit a perpendicular orientation to the surface, while the C≡C groups are parallel to the surface. The surface properties of the polymer gradients are explored by fluorescence microscopy, proving that the dye's fluorescence intensity increases as the coating thickness increases. The significant benefit of the suggested methodology is that it promises thickness control of gradients in the coating as a consequence of the fast reaction kinetics between layers and the reaction time.
Collapse
Affiliation(s)
- Sezer Özenler
- Department
of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
- Leibniz-Institut
für Polymerforschung Dresden e.V., Hohe Strasse 6, 01069 Dresden, Germany
| | - Ali Ata Alkan
- Department
of Polymer Science and Engineering, Izmir
Institute of Technology, Urla 35430, Izmir, Turkey
| | - Ufuk Saim Gunay
- Department
of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Ozgün Daglar
- Department
of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Hakan Durmaz
- Department
of Chemistry, Istanbul Technical University, Maslak 34469, Istanbul, Turkey
| | - Umit Hakan Yildiz
- Department
of Chemistry, Izmir Institute of Technology, Urla 35430, Izmir, Turkey
- Department
of Polymer Science and Engineering, Izmir
Institute of Technology, Urla 35430, Izmir, Turkey
| |
Collapse
|
4
|
The Competition of Termination and Shielding to Evaluate the Success of Surface-Initiated Reversible Deactivation Radical Polymerization. Polymers (Basel) 2020; 12:polym12061409. [PMID: 32586068 PMCID: PMC7361790 DOI: 10.3390/polym12061409] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/20/2020] [Accepted: 06/20/2020] [Indexed: 11/16/2022] Open
Abstract
One of the challenges for brush synthesis for advanced bioinspired applications using surface-initiated reversible deactivation radical polymerization (SI-RDRP) is the understanding of the relevance of confinement on the reaction probabilities and specifically the role of termination reactions. The present work puts forward a new matrix-based kinetic Monte Carlo platform with an implicit reaction scheme capable of evaluating the growth pattern of individual free and tethered chains in three-dimensional format during SI-RDRP. For illustration purposes, emphasis is on normal SI-atom transfer radical polymerization, introducing concepts such as the apparent livingness and the molecular height distribution (MHD). The former is determined based on the combination of the disturbing impact of termination (related to conventional livingness) and shielding of deactivated species (additional correction due to hindrance), and the latter allows structure-property relationships to be identified, starting at the molecular level in view of future brush characterization. It is shown that under well-defined SI-RDRP conditions the contribution of (shorter) hindered dormant chains is relevant and more pronounced for higher average initiator coverages, despite the fraction of dead chains being less. A dominance of surface-solution termination is also put forward, considering two extreme diffusion modes, i.e., translational and segmental. With the translational mode termination is largely suppressed and the living limit is mimicked, whereas with the segmental mode termination occurs more and the termination front moves upward alongside the polymer layer growth. In any case, bimodalities are established for the tethered chains both on the level of the chain length distribution and the MHD.
Collapse
|
5
|
Li N, Li T, Qiao XY, Li R, Yao Y, Gong YK. Universal Strategy for Efficient Fabrication of Blood Compatible Surfaces via Polydopamine-Assisted Surface-Initiated Activators Regenerated by Electron Transfer Atom-Transfer Radical Polymerization of Zwitterions. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12337-12344. [PMID: 32096981 DOI: 10.1021/acsami.9b22574] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Implant and blood-contacting biomaterials are challenged by biofouling and thrombus formation at their interface. Zwitterionic polymer brush coating can achieve excellent hemocompatibility, but the preparation often involves tedious, expensive, and complicated procedures that are designed for specific substrates. Here, we report a facile and universal strategy of creating zwitterionic polymer brushes on variety of materials by polydopamine (PDA)-assisted and surface-initiated activators regenerated by electron transfer atom-transfer radical polymerization (PDA-SI-ARGET-ATRP). A PDA adhesive layer is first dipcoated on a substrate, followed by covalent immobilization of 3-trimethoxysilyl propyl 2-bromo-2-methylpropionate (SiBr, ATRP initiator) on the PDA via condensation. Meanwhile, the trimethoxysilyl group of SiBr also cross-links the PDA oligomers forming stabilized PDA/SiBr complex coating. Finally, SI-ARGET-ATRP is performed in a zwitterionic monomer solution catalyzed by the parts per million level of CuBr2 without deoxygenization. The conveniently fabricated zwitterionic polymer brush coatings are demonstrated to have stable, ultralow fouling, and extremely blood compatible and functionalizable characteristics. This facile, versatile, and universal surface modification strategy is expected to be widely applicable in various advanced biomaterials and devices.
Collapse
Affiliation(s)
- Nan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
- Institute of Materials Science and New Technology, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Tong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
- Institute of Materials Science and New Technology, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Xin-Yu Qiao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
- Institute of Materials Science and New Technology, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Rong Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
- Institute of Materials Science and New Technology, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yao Yao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
- Institute of Materials Science and New Technology, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| | - Yong-Kuan Gong
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an 710127, Shaanxi, P. R. China
- Institute of Materials Science and New Technology, Northwest University, Xi'an 710127, Shaanxi, P. R. China
| |
Collapse
|
6
|
Mocny P, Klok HA. Complex polymer topologies and polymer—nanoparticle hybrid films prepared via surface-initiated controlled radical polymerization. Prog Polym Sci 2020. [DOI: 10.1016/j.progpolymsci.2019.101185] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
7
|
Michl TD, Jung D, Pertoldi A, Schulte A, Mocny P, Klok HA, Schönherr H, Giles C, Griesser HJ, Coad BR. An Acid Test: Facile SI-ARGET-ATRP of Methacrylic Acid. MACROMOL CHEM PHYS 2018. [DOI: 10.1002/macp.201800182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Thomas D. Michl
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
| | - Dimitri Jung
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Andrea Pertoldi
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
| | - Anna Schulte
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Piotr Mocny
- École Polytechnique Fédérale de Lausanne; Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD, Station 12 CH-1015 Lausanne Switzerland
| | - Harm-Anton Klok
- École Polytechnique Fédérale de Lausanne; Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD, Station 12 CH-1015 Lausanne Switzerland
| | - Holger Schönherr
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Carla Giles
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
| | - Hans J. Griesser
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- Physical Chemistry I & Research Center of Micro and Nanochemistry and Engineering (Cμ), Department of Chemistry and Biology, University of Siegen; Adolf-Reichwein-Str. 2 57076 Siegen Germany
| | - Bryan R. Coad
- Future Industries Institute; University of South Australia; Mawson Lakes Blvd, Mawson Lakes SA 5095 Australia
- École Polytechnique Fédérale de Lausanne; Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques; Laboratoire des Polymères; Bâtiment MXD, Station 12 CH-1015 Lausanne Switzerland
- School of Agriculture, Food & Wine; Food and Wine; University of Adelaide; SA 5005 Adelaide Australia
| |
Collapse
|
8
|
Aden B, Street DP, Hopkins BW, Lokitz BS, Kilbey SM. Tailoring Surface Properties through in Situ Functionality Gradients in Reactively Modified Poly(2-vinyl-4,4-dimethyl azlactone) Thin Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5204-5213. [PMID: 29693402 DOI: 10.1021/acs.langmuir.8b00195] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Generating physical or chemical gradients in thin-film scaffolds is an efficient approach for screening and optimizing an interfacial structure or chemical functionality to create tailored surfaces that are useful because of their wetting, antifouling, or barrier properties. The relationship between the structure of poly(2-vinyl-4,4-dimethyl azlactone) (PVDMA) brushes created by the preferential assembly of poly(glycidyl methacrylate)- block-PVDMA diblock copolymers and the ability to chemically modify the PVDMA chains in situ to create a gradient in functionality are examined to investigate how the extent of functionalization affects the interfacial and surface properties. The introduction of a chemical gradient by controlled immersion allows reactive modification to generate position-dependent properties that are assessed by ellipsometry, attenuated total reflectance-Fourier transform infrared spectroscopy, contact angle measurements, and atomic force microscopy imaging. After functionalization of the azlactone rings with n-alkyl amines, ellipsometry confirms an increase in thickness and contact angle measurements support an increase in hydrophobicity along the substrate. These results are used to establish relationships between layer thickness, reaction time, position, and the extent of functionalization and demonstrate that gradual immersion into the functionalizing solution results in a linear change in chemical functionality along the surface. These findings broadly support efforts to produce tailored surfaces by in situ chemical modification, having application as tailored membranes, protein resistant surfaces, or sensors.
Collapse
Affiliation(s)
| | | | | | - Bradley S Lokitz
- Center for Nanophase Materials Sciences , Oak Ridge National Laboratory , Oak Ridge , Tennessee 37831 , United States
| | | |
Collapse
|
9
|
Caspofungin on ARGET-ATRP grafted PHEMA polymers: Enhancement and selectivity of prevention of attachment ofCandida albicans. Biointerphases 2017; 12:05G602. [DOI: 10.1116/1.4986054] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
10
|
Dehghani ES, Du Y, Zhang T, Ramakrishna SN, Spencer ND, Jordan R, Benetti EM. Fabrication and Interfacial Properties of Polymer Brush Gradients by Surface-Initiated Cu(0)-Mediated Controlled Radical Polymerization. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00088] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Ella S. Dehghani
- Laboratory
for Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Yunhao Du
- Chair
of Macromolecular Chemistry, School of Science, Technische Universität Dresden, Mommsenstrasse 4, 01069 Dresden, Germany
| | - Tao Zhang
- Chair
of Macromolecular Chemistry, School of Science, Technische Universität Dresden, Mommsenstrasse 4, 01069 Dresden, Germany
| | - Shivaprakash N. Ramakrishna
- Laboratory
for Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Nicholas D. Spencer
- Laboratory
for Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| | - Rainer Jordan
- Chair
of Macromolecular Chemistry, School of Science, Technische Universität Dresden, Mommsenstrasse 4, 01069 Dresden, Germany
| | - Edmondo M. Benetti
- Laboratory
for Surface Science and Technology, Department of Materials, Swiss Federal Institute of Technology (ETH) Zürich, Vladimir-Prelog-Weg 1-5/10, CH-8093 Zürich, Switzerland
| |
Collapse
|
11
|
Zoppe JO, Ataman NC, Mocny P, Wang J, Moraes J, Klok HA. Surface-Initiated Controlled Radical Polymerization: State-of-the-Art, Opportunities, and Challenges in Surface and Interface Engineering with Polymer Brushes. Chem Rev 2017; 117:1105-1318. [PMID: 28135076 DOI: 10.1021/acs.chemrev.6b00314] [Citation(s) in RCA: 603] [Impact Index Per Article: 86.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The generation of polymer brushes by surface-initiated controlled radical polymerization (SI-CRP) techniques has become a powerful approach to tailor the chemical and physical properties of interfaces and has given rise to great advances in surface and interface engineering. Polymer brushes are defined as thin polymer films in which the individual polymer chains are tethered by one chain end to a solid interface. Significant advances have been made over the past years in the field of polymer brushes. This includes novel developments in SI-CRP, as well as the emergence of novel applications such as catalysis, electronics, nanomaterial synthesis and biosensing. Additionally, polymer brushes prepared via SI-CRP have been utilized to modify the surface of novel substrates such as natural fibers, polymer nanofibers, mesoporous materials, graphene, viruses and protein nanoparticles. The last years have also seen exciting advances in the chemical and physical characterization of polymer brushes, as well as an ever increasing set of computational and simulation tools that allow understanding and predictions of these surface-grafted polymer architectures. The aim of this contribution is to provide a comprehensive review that critically assesses recent advances in the field and highlights the opportunities and challenges for future work.
Collapse
Affiliation(s)
- Justin O Zoppe
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Nariye Cavusoglu Ataman
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Piotr Mocny
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Jian Wang
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - John Moraes
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| | - Harm-Anton Klok
- Institut des Matériaux and Institut des Sciences et Ingénierie Chimiques, Laboratoire des Polymères Bâtiment MXD, Ecole Polytechnique Fédérale de Lausanne (EPFL) , Station 12 CH-1015 Lausanne, Switzerland
| |
Collapse
|
12
|
Pandiyarajan CK, Prucker O, Rühe J. Humidity Driven Swelling of the Surface-Attached Poly(N-alkylacrylamide) Hydrogels. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b01379] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- C. K. Pandiyarajan
- Laboratory for Chemistry
and Physics of Interfaces, Department of Microsystems Engineering
(IMTEK), University of Freiburg, 79110 Freiburg, Germany
| | - Oswald Prucker
- Laboratory for Chemistry
and Physics of Interfaces, Department of Microsystems Engineering
(IMTEK), University of Freiburg, 79110 Freiburg, Germany
| | - Jürgen Rühe
- Laboratory for Chemistry
and Physics of Interfaces, Department of Microsystems Engineering
(IMTEK), University of Freiburg, 79110 Freiburg, Germany
| |
Collapse
|
13
|
Dehghani ES, Spencer ND, Ramakrishna SN, Benetti EM. Crosslinking Polymer Brushes with Ethylene Glycol-Containing Segments: Influence on Physicochemical and Antifouling Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10317-10327. [PMID: 27642809 DOI: 10.1021/acs.langmuir.6b02958] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The introduction of different types and concentrations of crosslinks within poly(hydroxyethyl methacrylate) (PHEMA) brushes influences their interfacial, physicochemical properties, ultimately governing their adsorption of proteins. PHEMA brushes and brush-hydrogels were synthesized by surface-initiated, atom-transfer radical polymerization (SI-ATRP) from HEMA, with and without the addition of di(ethylene glycol) dimethacrylate (DEGDMA) or tetra(ethylene glycol) dimethacrylate (TEGDMA) as crosslinkers. Linear (pure PHEMA) brushes show high hydration and low modulus and additionally provide an efficient barrier against nonspecific protein adsorption. In contrast, brush-hydrogels are stiffer and less hydrated, and the presence of crosslinks affects the entropy-driven, conformational barrier that hinders the surface interaction of biomolecules with brushes. This leads to the physisorption of proteins at low concentrations of short crosslinks. At higher contents of DEGDMA or in the presence of longer TEGDMA-based crosslinks, brush-hydrogels recover their antifouling properties due to the increase in interfacial water association by the higher concentration of ethylene glycol (EG) units.
Collapse
Affiliation(s)
- Ella S Dehghani
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| | - Nicholas D Spencer
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| | - Shivaprakash N Ramakrishna
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| | - Edmondo M Benetti
- Laboratory for Surface Science and Technology, Department of Materials, ETH Zurich , Vladimir-Prelog-Weg 5, CH-8093 Zurich, Switzerland
| |
Collapse
|
14
|
Khelifa F, Ershov S, Habibi Y, Snyders R, Dubois P. Free-Radical-Induced Grafting from Plasma Polymer Surfaces. Chem Rev 2016; 116:3975-4005. [PMID: 26943005 DOI: 10.1021/acs.chemrev.5b00634] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
With the advances in science and engineering in the second part of the 20th century, emerging plasma-based technologies continuously find increasing applications in the domain of polymer chemistry, among others. Plasma technologies are predominantly used in two different ways: for the treatment of polymer substrates by a reactive or inert gas aiming at a specific surface functionalization or for the synthesis of a plasma polymer with a unique set of properties from an organic or mixed organic-inorganic precursor. Plasma polymer films (PPFs), often deposited by plasma-enhanced chemical vapor deposition (PECVD), currently attract a great deal of attention. Such films are widely used in various fields for the coating of solid substrates, including membranes, semiconductors, metals, textiles, and polymers, because of a combination of interesting properties such as excellent adhesion, highly cross-linked structures, and the possibility of tuning properties by simply varying the precursor and/or the synthesis parameters. Among the many appealing features of plasma-synthesized and -treated polymers, a highly reactive surface, rich in free radicals arising from deposition/treatment specifics, offers a particular advantage. When handled carefully, these reactive free radicals open doors to the controllable surface functionalization of materials without affecting their bulk properties. The goal of this review is to illustrate the increasing application of plasma-based technologies for tuning the surface properties of polymers, principally through free-radical chemistry.
Collapse
Affiliation(s)
- Farid Khelifa
- University of Mons (UMONS) , Institute of Research in Science and Engineering of Materials, Place du Parc, 23, 7000 Mons, Belgium
| | - Sergey Ershov
- University of Mons (UMONS) , Institute of Research in Science and Engineering of Materials, Place du Parc, 23, 7000 Mons, Belgium.,Materials Research and Technology Department (MRT), Luxembourg Institute of Science and Technology (LIST) , Rue du Brill 41, 4422 Belvaux, Luxembourg
| | - Youssef Habibi
- Materials Research and Technology Department (MRT), Luxembourg Institute of Science and Technology (LIST) , Rue du Brill 41, 4422 Belvaux, Luxembourg
| | - Rony Snyders
- University of Mons (UMONS) , Institute of Research in Science and Engineering of Materials, Place du Parc, 23, 7000 Mons, Belgium
| | - Philippe Dubois
- University of Mons (UMONS) , Institute of Research in Science and Engineering of Materials, Place du Parc, 23, 7000 Mons, Belgium.,Materials Research and Technology Department (MRT), Luxembourg Institute of Science and Technology (LIST) , Rue du Brill 41, 4422 Belvaux, Luxembourg
| |
Collapse
|
15
|
Choukourov A, Gordeev I, Ponti J, Uboldi C, Melnichuk I, Vaidulych M, Kousal J, Nikitin D, Hanyková L, Krakovský I, Slavínská D, Biederman H. Microphase-Separated PE/PEO Thin Films Prepared by Plasma-Assisted Vapor Phase Deposition. ACS APPLIED MATERIALS & INTERFACES 2016; 8:8201-8212. [PMID: 26953817 DOI: 10.1021/acsami.5b12382] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Immiscible polymer blends tend to undergo phase separation with the formation of nanoscale architecture which can be used in a variety of applications. Different wet-chemistry techniques already exist to fix the resultant polymeric structure in predictable manner. In this work, an all-dry and plasma-based strategy is proposed to fabricate thin films of microphase-separated polyolefin/polyether blends. This is achieved by directing (-CH2-)100 and (-CH2-CH2-O-)25 oligomer fluxes produced by vacuum thermal decomposition of poly(ethylene) and poly(ethylene oxide) onto silicon substrates through the zone of the glow discharge. The strategy enables mixing of thermodynamically incompatible macromolecules at the molecular level, whereas electron-impact-initiated radicals serve as cross-linkers to arrest the subsequent phase separation at the nanoscale. The mechanism of the phase separation as well as the morphology of the films is found to depend on the ratio between the oligomeric fluxes. For polyolefin-rich mixtures, polyether molecules self-organize by nucleation and growth into spherical domains with average height of 22 nm and average diameter of 170 nm. For equinumerous fluxes and for mixtures with the prevalence of polyethers, spinodal decomposition is detected that results in the formation of bicontinuous structures with the characteristic domain size and spacing ranging between 5 × 10(1) -7 × 10(1) nm and 3 × 10(2)-4 × 10(2) nm, respectively. The method is shown to produce films with tunable wettability and biologically nonfouling properties.
Collapse
Affiliation(s)
- Andrei Choukourov
- Charles University in Prague , Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague, Czech Republic
| | - Ivan Gordeev
- Charles University in Prague , Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague, Czech Republic
- Jan Evangelista Purkyne University in Usti nad Labem , Faculty of Science, Department of Physics, České mládeže 8, Usti nad Labem 400 96, Czech Republic
| | - Jessica Ponti
- European Commision Joint Research Centre, Institute for Health and Consumer Protection , Nanobiosciences, via Fermi 2749, 21027 Ispra, Italy
| | - Chiara Uboldi
- European Commision Joint Research Centre, Institute for Health and Consumer Protection , Nanobiosciences, via Fermi 2749, 21027 Ispra, Italy
| | - Iurii Melnichuk
- Charles University in Prague , Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague, Czech Republic
| | - Mykhailo Vaidulych
- Charles University in Prague , Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague, Czech Republic
| | - Jaroslav Kousal
- Charles University in Prague , Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague, Czech Republic
| | - Daniil Nikitin
- Charles University in Prague , Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague, Czech Republic
| | - Lenka Hanyková
- Charles University in Prague , Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague, Czech Republic
| | - Ivan Krakovský
- Charles University in Prague , Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague, Czech Republic
| | - Danka Slavínská
- Charles University in Prague , Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague, Czech Republic
| | - Hynek Biederman
- Charles University in Prague , Faculty of Mathematics and Physics, Department of Macromolecular Physics, V Holešovičkách 2, 180 00 Prague, Czech Republic
| |
Collapse
|
16
|
From Self-Assembled Monolayers to Coatings: Advances in the Synthesis and Nanobio Applications of Polymer Brushes. Polymers (Basel) 2015. [DOI: 10.3390/polym7071346] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
17
|
Li B, Yu B, Ye Q, Zhou F. Tapping the potential of polymer brushes through synthesis. Acc Chem Res 2015; 48:229-37. [PMID: 25521476 DOI: 10.1021/ar500323p] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
CONSPECTUS: Polymer brushes are becoming increasing popular in the chemical literature, because scientists can control their chemical configuration, density, architecture, and thickness down to nanoscale precision with even simple laboratory setups. A polymer brush is made up of a layer of polymers attached to a substrate surface at one end with the other end dangling into a solvent. In a suitable solvent, the polymer chains stretch away from the surface due to both steric and osmotic repulsion between the chain segments. In an inadequate solvent, however, the polymer chains collapse due to enough interior free space after desolvation. This unique class of materials exhibit interesting physicochemical properties at interfaces and have numerous applications from sensing to surface/interface property control. Chemists have made recent advances in surface modification and specific application of polymer brushes, due to both profound mechanistic understanding and synthetic strategies. The commonly used synthetic strategies for generating polymer brushes are surface-initiated polymerizations (SIPs), which resemble planting rice. That is, the assembly of initiator on the surface is similar to transplanting rice seedlings, and the subsequent polymerizations are akin to rice growth. Among different SIP methods, researchers mostly use surface-initiated atom transfer radical polymerization (SI-ATRP) because it provides many advantages in the preparation of well-defined polymer brushes, including easy initiator synthesis, fair control over polymer growth, a "living" end for copolymer grafting, and polymerization in aqueous solution. However, chemists gradually realized that there still room for improvement in this method, since the conventional SI-ATRP method suffers several drawbacks. These include having limited availability on various materials surfaces, rigorous synthetic protocols, heavy consumption and waste of unreacted monomers, and limited ability to control a polymerization process. Moreover, applications of polymer brushes as model surfaces must benefit from the synergistic strategies and profound insights into the fundamental understanding of the polymerization. This is not only to optimize the SI-ATRP process but also to expand the range of monomers, simplify reaction setups, reduce the cost, and ultimately gain control of the synthesis of well-defined polymeric surfaces for material science and engineering. In this Account, we provide an overview of our and others' recent advances in the fabrication of polymer brushes by using SI-ATRP, to promote the widespread application of SI-ATRP and practical applications of the polymer brushes. We aim to provide fundamental mechanistic and synthetic features of SI-ATRP, while emphasizing the various externally applied stimuli mediated catalytic and initiation systems, including electrochemistry, chemical reducing agents, and photochemistry. In addition, we discuss how chemists can advantageously exploit these methods to synthesize functional polymeric surfaces in environmentally friendly media and facilitate in situ regulation of a dynamic polymerization process. We also discuss structural polymer brushes, such as block copolymers and patterned and gradient structures. Finally, we provide examples that highlight some practical applications of polymer brushes using SI-ATRP, especially the emerging polymerization methods. Overall, recently developed SI-ATRP systems overcome many limitations that permit less rigorous synthetic protocols and facilitate scientific community-wide access to surface modifications. By using these methodologies, chemists are tapping the potential of polymer brushes in surface/interface research areas.
Collapse
Affiliation(s)
- Bin Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bo Yu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Qian Ye
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 China
| | - Feng Zhou
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000 China
| |
Collapse
|
18
|
Coad BR, Styan KE, Meagher L. One step ATRP initiator immobilization on surfaces leading to gradient-grafted polymer brushes. ACS APPLIED MATERIALS & INTERFACES 2014; 6:7782-7789. [PMID: 24783968 DOI: 10.1021/am501052d] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A method is described that allows potentially any surface to be functionalized covalently with atom transfer radical polymerization (ATRP) initiators derived from ethyl-2-bromoisobutyrl bromide in a single step. In addition, the initiator surface density was variable and tunable such that the thickness of polymer chain grafted from the surface varied greatly on the surfaces providing examples, across the surface of a substrate, of increased chain stretching due to the entropic nature of crowded polymer chains leading toward polymer brushes. An initiator gradient of increasing surface density was deposited by plasma copolymerization of an ATRP initiator (ethyl 2-bromoisobutyrate) and a non-ATRP reactive diluent molecule (ethanol). The deposited plasma polymer retained its chemical ability to surface-initiate polymerization reactions as exemplified by N,N'-dimethyl acrylamide and poly(ethylene glycol) methyl ether methacrylate polymerizations, illustrating linear and bottle-brush-like chains, respectively. A large variation in graft thickness was observed from the low to high chain-density side suggesting that chains were forced to stretch away from the surface interface--a consequence of entropic effects resulting from increased surface crowding. The tert-butyl bromide group of ethyl 2-bromoisobutyrate is a commonly used initiator in ATRP, so a method for covalent linkage to any substrate in a single step desirably simplifies the multistep surface activation procedures currently used.
Collapse
Affiliation(s)
- Bryan R Coad
- Mawson Institute, University of South Australia , Mawson Lakes SA 5095, Australia
| | | | | |
Collapse
|