1
|
Aoyama Y, Toyotama A, Okuzono T, Ishikawa T, Hyodo K, Nishida M, Yamanaka J. Two-Dimensional Square Lattice of Colloidal Particles Formed by Electrostatic Adsorption in Confined Space. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1948-1956. [PMID: 39813153 DOI: 10.1021/acs.langmuir.4c04480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2025]
Abstract
In this study, we demonstrate a novel and efficient fabrication methodology for nonclose-packed, two-dimensional (2D) colloidal crystals exhibiting square lattice structures. In our recent work, we detailed the formation of 2D colloidal crystals via the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. These 3D colloidal crystals possessed a face-centered cubic (FCC) lattice structure with their (111) planes aligned parallel to the substrate, facilitating the formation of 2D crystals with triangular lattice arrangements upon adsorption. This work presents the synthesis of 2D crystals with square lattices─a configuration widely used in photonics. We prepared 3D colloidal crystals of silica particles with four-fold symmetry in a micrometer-scale gap between two coverslips. The bottom glass surface is modified with a cationic silane coupling reagent, aminopropyltriethoxysilane, generating pH-responsive charge characteristics with an isoelectric point (iep) near pH 8. When the pH is greater than iep, the surface is charged negatively. As pH decreases below iep, the sign of the surface charge reverses to positive. Controlled pH lowering below the iep induces adsorption of the lowermost lattice plane of 3D crystals onto the substrate, yielding 2D crystals with a distinct square lattice. We further synthesized three-layer body-centered cubic (BCC) structures by stacking alternating layers of the 2D square lattices of silica and polystyrene particles. By aligning the refractive index of the surrounding medium (aqueous solution of ethylene glycol) with that of silica particles, we successfully fabricated a structure that is optically identical to a simple cubic lattice. These findings advance the development of 2D crystalline materials for photonic and plasmonic applications.
Collapse
Affiliation(s)
- Yurina Aoyama
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya 467-8603, Aichi, Japan
| | - Akiko Toyotama
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya 467-8603, Aichi, Japan
| | - Tohru Okuzono
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya 467-8603, Aichi, Japan
| | - Tatsuya Ishikawa
- Murata Manufacturing Co., Ltd., 1-10-1, Higashikotari 1-chome, Nagaokakyo 617-8555, Kyoto, Japan
| | - Koichiro Hyodo
- Murata Manufacturing Co., Ltd., 1-10-1, Higashikotari 1-chome, Nagaokakyo 617-8555, Kyoto, Japan
| | - Masaya Nishida
- Murata Manufacturing Co., Ltd., 1-10-1, Higashikotari 1-chome, Nagaokakyo 617-8555, Kyoto, Japan
| | - Junpei Yamanaka
- Graduate School of Pharmaceutical Sciences, Nagoya City University, 3-1 Tanabe, Mizuho, Nagoya 467-8603, Aichi, Japan
| |
Collapse
|
2
|
Ramachandran T, Ali A, Butt H, Zheng L, Deader FA, Rezeq M. Gold on the horizon: unveiling the chemistry, applications and future prospects of 2D monolayers of gold nanoparticles (Au-NPs). NANOSCALE ADVANCES 2024; 6:d4na00666f. [PMID: 39450415 PMCID: PMC11495494 DOI: 10.1039/d4na00666f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024]
Abstract
Noble 2D monolayers of gold nanoparticles (Au-NPs) have garnered significant attention due to their unique physicochemical properties, which are instrumental in various technological applications. This review delves into the intricate physical chemistry underlying the formation of Au-NP monolayers, highlighting key interactions such as electrostatic forces, van der Waals attractions, and ligand-mediated stabilization. The discussion extends to the size- and shape-dependent assembly processes of these NP monolayers, elucidating how nanoparticle dimensions and morphologies influence monolayer formation and stability. Moreover, the review explores the diverse interfaces-solid, liquid, and air-where Au-NP monolayers are employed, each presenting distinct advantages and challenges. In the realm of applications, Au-NP monolayers have shown remarkable promises. In memory devices, their ability to facilitate high-density data storage through enhanced electron transport mechanisms is examined. Biosensing applications benefit from the monolayers' exceptional sensitivity and specificity, which are crucial for detecting biomolecular interactions. Furthermore, the role of Au-NP monolayers in electrocatalysis is explored, with a focus on their catalytic efficiency and stability in various electrochemical reactions. Despite their potential, the deployment of Au-NP monolayers faces several challenges. The review addresses current limitations such as scalability, reproducibility, and long-term stability, proposing potential strategies to overcome these hurdles. Future prospects are also discussed, including the development of multifunctional monolayers and integration with other nanomaterials to enhance performance across different applications. In conclusion, while significant strides have been made in understanding and utilizing 2D Au-NP monolayers, ongoing research is imperative to fully exploit their capabilities. Addressing existing challenges through innovative approaches will pave the way for their widespread adoption in advanced technological applications.
Collapse
Affiliation(s)
- Tholkappiyan Ramachandran
- Department of Physics, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Ashraf Ali
- Department of Physics, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Haider Butt
- Department of Mechanical & Nuclear Engineering, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Lianxi Zheng
- Department of Mechanical & Nuclear Engineering, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Firdous Ahmad Deader
- Department of Physics, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| | - Moh'd Rezeq
- Department of Physics, Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
- System on Chip Lab (SoCL), Khalifa University of Science and Technology Abu Dhabi P. O. Box 127788 United Arab Emirates
| |
Collapse
|
3
|
He Z, Xiong J, Shi Y, Zhu G, Li X, Pan T, Li B, Xin H. Opto-Thermal-Tension Mediated Precision Large-Scale Particle Manipulation and Flexible Patterning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405211. [PMID: 39049684 PMCID: PMC11422809 DOI: 10.1002/advs.202405211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Indexed: 07/27/2024]
Abstract
Large-scale particle manipulation with single-particle precision and further flexible patterning into functional structures is of huge potentials in many fields including bio-optoelectronic sensing, colloidal lithography, and wearable devices. However, it is very challenging for the precision manipulation and flexible patterning of particles on complicated curved and functional substrates. In this work, opto-thermal-tension (OTT) mediated precision large-scale particle manipulation and flexible patterning based on soap film are reported. Flexible manipulation and subsequent patterning of particles with single-particle resolution is realized by optothermal regulated surface tension on soap films. Reconfigurable patterning of particle structures with different shapes as well as large-scale ordered structures (up to 2000 particles) with particle sizes spanning two orders of magnitude (0.5-20 µm) is realized using this OTT mediation method. Importantly, due to the high flexibility of soap films, the patterned large-scale particle structures can be non-destructively transferred to curved and rough substrates, including rough iron pipe surface, leaf and skin surface. This OTT mediated method provides a new method for precision large-scale particle manipulation and flexible patterning with high versatility on complicated functional substrates, with great potentials for optoelectronic and biophotonic sensing and wearable device design on different curved and rough functional substrates.
Collapse
Affiliation(s)
- Ziyi He
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Jianyun Xiong
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Yang Shi
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Guoshuai Zhu
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Xing Li
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Ting Pan
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Baojun Li
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443China
| | - Hongbao Xin
- Guangdong Provincial Key Laboratory of Nanophotonic ManipulationInstitute of NanophotonicsJinan UniversityGuangzhou511443China
| |
Collapse
|
4
|
Zhang H, Liu Y, Dong Y, Ashokan A, Widmer-Cooper A, Köhler J, Mulvaney P. Electrophoretic Deposition of Single Nanoparticles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024. [PMID: 38299884 DOI: 10.1021/acs.langmuir.3c02951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2024]
Abstract
The controlled assembly of colloid particles on a solid substrate has always been a major challenge in colloid and surface science. Here we provide an overview of electrophoretic deposition (EPD) of single charge-stabilized nanoparticles. We demonstrate that surface templated EPD (STEPD) assembly, which combines EPD with top-down nanofabrication, allows a wide range of nanoparticles to be built up into arbitrary structures with high speed, scalability, and excellent fidelity. We will also discuss some of the current colloid chemical limitations and challenges in STEPD assembly for sub-10 nm nanoparticles and for the fabrication of densely packed single particle arrays.
Collapse
Affiliation(s)
- Heyou Zhang
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
- Spectroscopy of soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
| | - Yawei Liu
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, CAS Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
- Longzihu New Energy Laboratory, Zhengzhou Institute of Emerging Industrial Technology, Henan University, Zhengzhou 450000, China
| | - Yue Dong
- Leibniz-Institut für Polymerforschung, 01069, Dresden, Germany
| | - Arun Ashokan
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| | - Asaph Widmer-Cooper
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Sydney, Sydney, New South Wales 2006, Australia
- The University of Sydney Nano Institute, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Jürgen Köhler
- Spectroscopy of soft Matter, University of Bayreuth, 95440 Bayreuth, Germany
- Bayreuther Institut für Makromolekülforschung (BIMF), 95440 Bayreuth, Germany
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
5
|
Escorcia-Díaz D, García-Mora S, Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C. Advancements in Nanoparticle Deposition Techniques for Diverse Substrates: A Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2586. [PMID: 37764615 PMCID: PMC10537803 DOI: 10.3390/nano13182586] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/03/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
Nanoparticle deposition on various substrates has gained significant attention due to the potential applications of nanoparticles in various fields. This review paper comprehensively analyzes different nanoparticle deposition techniques on ceramic, polymeric, and metallic substrates. The deposition techniques covered include electron gun evaporation, physical vapor deposition, plasma enriched chemical vapor deposition (PECVD), electrochemical deposition, chemical vapor deposition, electrophoretic deposition, laser metal deposition, and atomic layer deposition (ALD), thermophoretic deposition, supercritical deposition, spin coating, and dip coating. Additionally, the sustainability aspects of these deposition techniques are discussed, along with their potential applications in anti-icing, antibacterial power, and filtration systems. Finally, the review explores the importance of deposition purities in achieving optimal nanomaterial performance. This comprehensive review aims to provide valuable insights into state-of-the-art techniques and applications in the field of nanomaterial deposition.
Collapse
Affiliation(s)
- Daniel Escorcia-Díaz
- Nanotechnology Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (D.E.-D.); (S.G.-M.)
| | - Sebastián García-Mora
- Nanotechnology Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (D.E.-D.); (S.G.-M.)
| | - Leidy Rendón-Castrillón
- Chemical Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Margarita Ramírez-Carmona
- Chemical Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| | - Carlos Ocampo-López
- Chemical Engineering Program, Centro de Estudios y de Investigación en Biotecnología (CIBIOT), Chemical Engineering Faculty, Universidad Pontificia Bolivariana, Medellín 050031, Colombia; (L.R.-C.); (M.R.-C.)
| |
Collapse
|
6
|
Liu Y, Kim E, Lei M, Wu S, Yan K, Shen J, Bentley WE, Shi X, Qu X, Payne GF. Electro-Biofabrication. Coupling Electrochemical and Biomolecular Methods to Create Functional Bio-Based Hydrogels. Biomacromolecules 2023. [PMID: 37155361 DOI: 10.1021/acs.biomac.3c00132] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Twenty years ago, this journal published a review entitled "Biofabrication with Chitosan" based on the observations that (i) chitosan could be electrodeposited using low voltage electrical inputs (typically less than 5 V) and (ii) the enzyme tyrosinase could be used to graft proteins (via accessible tyrosine residues) to chitosan. Here, we provide a progress report on the coupling of electronic inputs with advanced biological methods for the fabrication of biopolymer-based hydrogel films. In many cases, the initial observations of chitosan's electrodeposition have been extended and generalized: mechanisms have been established for the electrodeposition of various other biological polymers (proteins and polysaccharides), and electrodeposition has been shown to allow the precise control of the hydrogel's emergent microstructure. In addition, the use of biotechnological methods to confer function has been extended from tyrosinase conjugation to the use of protein engineering to create genetically fused assembly tags (short sequences of accessible amino acid residues) that facilitate the attachment of function-conferring proteins to electrodeposited films using alternative enzymes (e.g., transglutaminase), metal chelation, and electrochemically induced oxidative mechanisms. Over these 20 years, the contributions from numerous groups have also identified exciting opportunities. First, electrochemistry provides unique capabilities to impose chemical and electrical cues that can induce assembly while controlling the emergent microstructure. Second, it is clear that the detailed mechanisms of biopolymer self-assembly (i.e., chitosan gel formation) are far more complex than anticipated, and this provides a rich opportunity both for fundamental inquiry and for the creation of high performance and sustainable material systems. Third, the mild conditions used for electrodeposition allow cells to be co-deposited for the fabrication of living materials. Finally, the applications have been expanded from biosensing and lab-on-a-chip systems to bioelectronic and medical materials. We suggest that electro-biofabrication is poised to emerge as an enabling additive manufacturing method especially suited for life science applications and to bridge communication between our biological and technological worlds.
Collapse
Affiliation(s)
- Yi Liu
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Eunkyoung Kim
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| | - Miao Lei
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Si Wu
- College of Resources and Environmental Engineering, Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgic Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Kun Yan
- Hubei Key Laboratory of Advanced Textile Materials & Application, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Jana Shen
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| | - William E Bentley
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
- Fischell Department of Bioengineering, University of Maryland, College Park, Maryland 20742, United States
| | - Xiaowen Shi
- School of Resource and Environmental Science, Hubei International Scientific and Technological Cooperation Base of Sustainable Resource and Energy, Hubei Engineering Center of Natural Polymers-Based Medical Materials, Hubei Biomass-Resource Chemistry and Environmental Biotechnology Key Laboratory, Wuhan University, Wuhan 430079, P. R. China
| | - Xue Qu
- Key Laboratory for Ultrafine Materials of Ministry of Education Frontiers Science Center for Materiobiology and Dynamic Chemistry, School of Materials Science and Engineering, Shanghai Frontier Science Research Base of Optogenetic Techniques for Cell Metabolism, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Gregory F Payne
- Institute for Bioscience and Biotechnology Research and Robert E. Fischell Institute for Biomedical Devices, University of Maryland, College Park, Maryland 20742, United States
| |
Collapse
|
7
|
Chai Z, Childress A, Busnaina AA. Directed Assembly of Nanomaterials for Making Nanoscale Devices and Structures: Mechanisms and Applications. ACS NANO 2022; 16:17641-17686. [PMID: 36269234 PMCID: PMC9706815 DOI: 10.1021/acsnano.2c07910] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 10/06/2022] [Indexed: 05/19/2023]
Abstract
Nanofabrication has been utilized to manufacture one-, two-, and three-dimensional functional nanostructures for applications such as electronics, sensors, and photonic devices. Although conventional silicon-based nanofabrication (top-down approach) has developed into a technique with extremely high precision and integration density, nanofabrication based on directed assembly (bottom-up approach) is attracting more interest recently owing to its low cost and the advantages of additive manufacturing. Directed assembly is a process that utilizes external fields to directly interact with nanoelements (nanoparticles, 2D nanomaterials, nanotubes, nanowires, etc.) and drive the nanoelements to site-selectively assemble in patterned areas on substrates to form functional structures. Directed assembly processes can be divided into four different categories depending on the external fields: electric field-directed assembly, fluidic flow-directed assembly, magnetic field-directed assembly, and optical field-directed assembly. In this review, we summarize recent progress utilizing these four processes and address how these directed assembly processes harness the external fields, the underlying mechanism of how the external fields interact with the nanoelements, and the advantages and drawbacks of utilizing each method. Finally, we discuss applications made using directed assembly and provide a perspective on the future developments and challenges.
Collapse
Affiliation(s)
- Zhimin Chai
- State
Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing100084, China
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Anthony Childress
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| | - Ahmed A. Busnaina
- NSF
Nanoscale Science and Engineering Center for High-Rate Nanomanufacturing
(CHN), Northeastern University, Boston, Massachusetts02115, United States
| |
Collapse
|
8
|
Dmitriev AA, Rybin MV. Optical coupling of overlapping nanopillars. OPTICS LETTERS 2021; 46:1221-1224. [PMID: 33720152 DOI: 10.1364/ol.415334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Engineering of nanophotonic devices for controlling light requires deep understanding of the interaction between their subwavelength structure elements. Theoretical approaches based on the multiple scattering theory provide simple analytics valuable for design. However, they consider different elements separated by the surrounding medium. Here, we develop an approach to study wave coupling in the case of overlapping particles. We consider the simplest system-a dimer of nanopillars-and find that it can be described by a three-oscillator model. Two modes correspond to the multipole response of isolated particles that interact through radiating and evanescent waves in accordance with the conventional multiple scattering theory, but there exists a third effective non-resonant oscillator supporting a direct mode coupling via the intersecting part. Our simple model yields results with a reliable agreement with numerical simulations and allows insight into the physical processes underlying the collective response of a cluster of overlapped subwavelength particles.
Collapse
|
9
|
Zhang H, Kinnear C, Mulvaney P. Fabrication of Single-Nanocrystal Arrays. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e1904551. [PMID: 31576618 DOI: 10.1002/adma.201904551] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 09/10/2019] [Indexed: 05/17/2023]
Abstract
To realize the full potential of nanocrystals in nanotechnology, it is necessary to integrate single nanocrystals into addressable structures; for example, arrays and periodic lattices. The current methods for achieving this are reviewed. It is shown that a combination of top-down lithography techniques with directed assembly offers a platform for attaining this goal. The most promising of these directed assembly methods are reviewed: capillary force assembly, electrostatic assembly, optical printing, DNA-based assembly, and electrophoretic deposition. The last of these appears to offer a generic approach to fabrication of single-nanocrystal arrays.
Collapse
Affiliation(s)
- Heyou Zhang
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
| | - Calum Kinnear
- CSIRO Manufacturing, Ian Wark Laboratories, Bayview Avenue, Clayton, VIC, 3168, Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry, University of Melbourne, Parkville, VIC, 3010, Australia
| |
Collapse
|
10
|
Aoyama Y, Toyotama A, Okuzono T, Yamanaka J. Two-Dimensional Nonclose-Packed Colloidal Crystals by the Electrostatic Adsorption of Three-Dimensional Charged Colloidal Crystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:9194-9201. [PMID: 31274319 DOI: 10.1021/acs.langmuir.9b00861] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
We demonstrate that nonclose-packed two-dimensional (2D) colloidal crystals fixed on flat solid surfaces can be obtained by the electrostatic adsorption of three-dimensional (3D) charged colloidal crystals onto oppositely charged substrates. 3D colloidal crystals of negatively charged polystyrene (diameter d = 500 nm) and silica (d = 510 and 550 nm) particles were formed in their aqueous dispersions. Then, a single layer of the 3D crystals (the particle volume fraction = ∼0.07-0.3) was adsorbed onto a glass surface, which was earlier modified with 3-aminopropyltriethoxysilane (APTES), a cationic silane coupling reagent. Under salt-free conditions, the lowermost layer of the 3D crystals, which was oriented parallel to the substrate, was adsorbed onto the substrate surface, forming 2D crystals. Centimeter-sized, large 2D silica crystals were produced by combining a unidirectional 3D crystallization of the silica colloid under a base concentration gradient and a unidirectional adsorption under an acidic concentration gradient, which allowed tuning of the charge number on the APTES-modified substrate. The interparticle separations of the resulted 2D crystals did not vary greatly (within 5%) over a large area (length: 2 cm); however, the separations were smaller than the initial value because of gravitational sedimentation. We also produced 2D crystals of gold particles (d = 250 nm), which we expect to be applicable as plasmonic materials. The present study will provide a facile strategy to produce nonclose-packed 2D colloidal crystals of various types of particles, including large and high-density particles.
Collapse
Affiliation(s)
- Yurina Aoyama
- Graduate School of Pharmaceutical Sciences , Nagoya City University , 3-1 Tanabe-dori , Mizuho, Nagoya , Aichi 467-8603 , Japan
| | - Akiko Toyotama
- Graduate School of Pharmaceutical Sciences , Nagoya City University , 3-1 Tanabe-dori , Mizuho, Nagoya , Aichi 467-8603 , Japan
| | - Tohru Okuzono
- Graduate School of Pharmaceutical Sciences , Nagoya City University , 3-1 Tanabe-dori , Mizuho, Nagoya , Aichi 467-8603 , Japan
| | - Junpei Yamanaka
- Graduate School of Pharmaceutical Sciences , Nagoya City University , 3-1 Tanabe-dori , Mizuho, Nagoya , Aichi 467-8603 , Japan
| |
Collapse
|
11
|
Zhang Z, Su M, Pan Q, Huang Z, Ren W, Li Z, Cai Z, Li Y, Li F, Li L, Song Y. Heterogeneous Integration of Three-Primary-Color Photoluminescent Nanoparticle Arrays with Defined Interfaces. ACS APPLIED MATERIALS & INTERFACES 2019; 11:1616-1623. [PMID: 30540182 DOI: 10.1021/acsami.8b16884] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Minimized photoluminescent devices require both high-density fluorescent arrays and minimal cross-talk between neighboring pixels on the limited area. However, the challenges to achieve the overall integration of nanomaterial-based devices hinder the development of microscale full-color displays, including micro/nanoarray density, orientation control, multimaterial interface morphology, and uniform colors. Here, we report a heterogeneous integration approach to control the orientation, combination, and density of fluorescent micro/nanoarrays on flexible substrates. By controlling the defined interface and critical shrinkage width of liquid bridges, the width of three-primary-color micro/nanolines reached 100 nm. The interval between two parallel luminous lines is down to 40 μm, and the optical cross-talk effect is remarkably reduced. This work provides a facile approach to prepare high-performance micro-photoluminescent and imaging arrays for next-generation flexible display and lighting technology.
Collapse
Affiliation(s)
- Zeying Zhang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Meng Su
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Qi Pan
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zhandong Huang
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Wanjie Ren
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zheng Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Zheren Cai
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Yifan Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| | - Fengyu Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Lihong Li
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
| | - Yanlin Song
- Key Laboratory of Green Printing, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry , Chinese Academy of Sciences , Beijing 100190 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100049 , P. R. China
| |
Collapse
|
12
|
Zhang H, Cadusch J, Kinnear C, James T, Roberts A, Mulvaney P. Direct Assembly of Large Area Nanoparticle Arrays. ACS NANO 2018; 12:7529-7537. [PMID: 30004661 DOI: 10.1021/acsnano.8b02932] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
A major goal of nanotechnology is the assembly of nanoscale building blocks into functional optical, electrical, or chemical devices. Many of these applications depend on an ability to optically or electrically address single nanoparticles. However, positioning large numbers of single nanocrystals with nanometer precision on a substrate for integration into solid-state devices remains a fundamental roadblock. Here, we report fast, scalable assembly of thousands of single nanoparticles using electrophoretic deposition. We demonstrate that gold nanospheres down to 30 nm in size and gold nanorods <100 nm in length can be assembled into predefined patterns on transparent conductive substrates within a few seconds. We find that rod orientation can be preserved during deposition. As proof of high fidelity scale-up, we have created centimeter scale patterns comprising more than 1 million gold nanorods.
Collapse
Affiliation(s)
- Heyou Zhang
- ARC Centre of Excellence in Exciton Science, School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Jasper Cadusch
- School of Physics , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Calum Kinnear
- ARC Centre of Excellence in Exciton Science, School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Timothy James
- School of Physics , University of Melbourne , Parkville , Victoria 3010 , Australia
- Reserve Bank of Australia , Craigieburn , Victoria 3064 , Australia
| | - Ann Roberts
- School of Physics , University of Melbourne , Parkville , Victoria 3010 , Australia
| | - Paul Mulvaney
- ARC Centre of Excellence in Exciton Science, School of Chemistry , University of Melbourne , Parkville , Victoria 3010 , Australia
| |
Collapse
|
13
|
Shi R, Liu X, Ying Y. Facing Challenges in Real-Life Application of Surface-Enhanced Raman Scattering: Design and Nanofabrication of Surface-Enhanced Raman Scattering Substrates for Rapid Field Test of Food Contaminants. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:6525-6543. [PMID: 28920678 DOI: 10.1021/acs.jafc.7b03075] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is capable of detecting a single molecule with high specificity and has become a promising technique for rapid chemical analysis of agricultural products and foods. With a deeper understanding of the SERS effect and advances in nanofabrication technology, SERS is now on the edge of going out of the laboratory and becoming a sophisticated analytical tool to fulfill various real-world tasks. This review focuses on the challenges that SERS has met in this progress, such as how to obtain a reliable SERS signal, improve the sensitivity and specificity in a complex sample matrix, develop simple and user-friendly practical sensing approach, reduce the running cost, etc. This review highlights the new thoughts on design and nanofabrication of SERS-active substrates for solving these challenges and introduces the recent advances of SERS applications in this area. We hope that our discussion will encourage more researches to address these challenges and eventually help to bring SERS technology out of the laboratory.
Collapse
Affiliation(s)
- Ruyi Shi
- College of Biosystems Engineering and Food Science , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , China
| | - Xiangjiang Liu
- College of Biosystems Engineering and Food Science , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , China
| | - Yibin Ying
- College of Biosystems Engineering and Food Science , Zhejiang University , 866 Yuhangtang Road , Hangzhou , Zhejiang 310058 , China
- Zhejiang A&F University , 88 Huanchengdong Road , Hangzhou , Zhejiang 311300 , China
| |
Collapse
|
14
|
Weldon AL, Joshi K, Routh AF, Gilchrist JF. Uniformly spaced nanoscale cracks in nanoparticle films deposited by convective assembly. J Colloid Interface Sci 2017; 487:80-87. [PMID: 27750069 DOI: 10.1016/j.jcis.2016.09.078] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2016] [Accepted: 09/29/2016] [Indexed: 10/20/2022]
Abstract
Rapid convective deposition is used to assemble nanoparticle coatings from suspension, with controllable thickness. Varying film thickness generates stress-induced linear cracks with highly monodisperse spacing. Film thickness is controlled through mechanical means, suspension volume fraction, and the use of applied thermal gradients. These cracks extend in the deposition direction, and a uniform crack spacing from 2 to 160μm is observed. The nanoparticle film thickness is the relevant length scale for hydrodynamic flow, and films will crack with this spacing, in a characteristic manner to minimize the system energy and capillary stresses. As expected from this energy minimization problem and relevant theory, the correlation between coating thickness and crack spacing is highly linear. Because this process is continuous, continuous cracks have potential as a high-throughput method of fabricating nanoscale channels for microfluidics and MEMS.
Collapse
Affiliation(s)
- Alexander L Weldon
- Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Kedar Joshi
- Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Alexander F Routh
- BP Institute and Department of Chemical Engineering and Biotechnology, University of Cambridge, Pembroke Street, Cambridge CB2 3RA, UK
| | - James F Gilchrist
- Department of Chemical Engineering, Lehigh University, Bethlehem, PA 18015, USA.
| |
Collapse
|
15
|
Giera B, Zepeda-Ruiz LA, Pascall AJ, Weisgraber TH. Mesoscale Particle-Based Model of Electrophoretic Deposition. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:652-661. [PMID: 27997803 DOI: 10.1021/acs.langmuir.6b04010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We present and evaluate a semiempirical particle-based model of electrophoretic deposition using extensive mesoscale simulations. We analyze particle configurations in order to observe how colloids accumulate at the electrode and arrange into deposits. In agreement with existing continuum models, the thickness of the deposit increases linearly in time during deposition. Resulting colloidal deposits exhibit a transition between highly ordered and bulk disordered regions that can give rise to an appreciable density gradient under certain simulated conditions. The overall volume fraction increases and falls within a narrow range as the driving force due to the electric field increases and repulsive intercolloidal interactions decrease. We postulate ordering and stacking within the initial layer(s) dramatically impacts the microstructure of the deposits. We find a combination of parameters, i.e., electric field and suspension properties, whose interplay enhances colloidal ordering beyond the commonly known approach of only reducing the driving force.
Collapse
Affiliation(s)
- Brian Giera
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Luis A Zepeda-Ruiz
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Andrew J Pascall
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| | - Todd H Weisgraber
- Lawrence Livermore National Laboratory, Livermore, California 94550, United States
| |
Collapse
|
16
|
Lin X, Yao J, Dong H, Cao X. Effective Cell and Particle Sorting and Separation in Screen-Printed Continuous-Flow Microfluidic Devices with 3D Sidewall Electrodes. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b03249] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xiaoguang Lin
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Jie Yao
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Hua Dong
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
| | - Xiaodong Cao
- Department
of Biomedical Engineering, School of Materials Science and Engineering, South China University of Technology, Guangzhou 510006, China
- National Engineering Research Center for Tissue Restoration and Reconstruction (NERC-TRR), Guangzhou 510006, China
- Guangdong
Province Key Laboratory of Biomedical Engineering, South China University of Technology, Guangzhou 510641, China
| |
Collapse
|