1
|
Li Z, Deng J, Ma P, Bai H, Jin Y, Zhang Y, Dong A, Burenjargal M. Stimuli-Responsive Molecularly Imprinted Polymers: Mechanism and Applications. J Sep Sci 2024; 47:e202400441. [PMID: 39385447 DOI: 10.1002/jssc.202400441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/21/2024] [Accepted: 08/24/2024] [Indexed: 10/12/2024]
Abstract
Molecularly imprinted polymers (MIPs) are very suitable for extraction, drug delivery systems, and sensors due to their good selective adsorption ability, but the difficulty of eluting templates during synthesis and the limitation of application scenarios put higher demands on MIPs. Stimuli-responsive MIPs (SR-MIPs) can actively respond to changes in external conditions to realize various functions, which provides new ideas for the further development of MIPs. This paper reviews the multiple response modes of MIPs, including the common temperature, pH, photo, magnetic, redox-responsive and rare gas, biomolecule, ion, and solvent-responsive MIPs, and explains the mechanism, composition, and applications of such SR-MIPs. These SR-MIPs and the resulting dual/multiple-responsive MIPs have good selectivity, and controllability, and are very promising for isolation and extraction, targeted drug delivery, and electro-sensor.
Collapse
Affiliation(s)
- Zheng Li
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Jiaming Deng
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Peirong Ma
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yuting Jin
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Yanling Zhang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, P. R. China
- Engineering Research Center of Dairy Products Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, Hohhot, P. R. China
| | | |
Collapse
|
2
|
Ahmed B, Reiche CF, Magda JJ, Solzbacher F, Körner J. Smart Hydrogel Swelling State Detection Based on a Power-Transfer Transduction Principle. ACS APPLIED POLYMER MATERIALS 2024; 6:5544-5554. [PMID: 38752016 PMCID: PMC11091848 DOI: 10.1021/acsapm.4c00808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/08/2024] [Accepted: 04/16/2024] [Indexed: 05/18/2024]
Abstract
Stimulus-responsive (smart) hydrogels are a promising sensing material for biomedical contexts due to their reversible swelling change in response to target analytes. The design of application-specific sensors that utilize this behavior requires the development of suitable transduction concepts. The presented study investigates a power-transfer-based readout approach that is sensitive to small volumetric changes of the smart hydrogel. The concept employs two thin film polyimide substrates with embedded conductive strip lines, which are shielded from each other except at the tip region, where the smart hydrogel is sandwiched in between. The hydrogel's volume change in response to a target analyte alters the distance and orientation of the thin films, affecting the amount of transferred power between the two transducer parts and, consequently, the measured sensor output voltage. With proper calibration, the output signal can be used to determine the swelling change of the hydrogel and, consequently, to quantify the stimulus. In proof-of-principle experiments with glucose- and pH-sensitive smart hydrogels, high sensitivity to small analyte concentration changes was found along with very good reproducibility and stability. The concept was tested with two exemplary hydrogels, but the transduction principle in general is independent of the specific hydrogel material, as long as it exhibits a stimulus-dependent volume change. The application vision of the presented research is to integrate in situ blood analyte monitoring capabilities into standard (micro)catheters. The developed sensor is designed to fit into a catheter without obstructing its normal use and, therefore, offers great potential for providing a universally applicable transducer platform for smart catheter-based sensing.
Collapse
Affiliation(s)
- Benozir Ahmed
- Department
of Electrical & Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Christopher F. Reiche
- Department
of Electrical & Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Jules J. Magda
- Department
of Chemical Engineering, University of Utah, Salt Lake City, Utah 84112, United States
| | - Florian Solzbacher
- Department
of Electrical & Computer Engineering, University of Utah, Salt Lake
City, Utah 84112, United States
| | - Julia Körner
- Faculty
of
Electrical Engineering & Computer Science, Leibniz Universität Hannover, 30167 Hannover, Germany
| |
Collapse
|
3
|
Chen H, Guo J, Wang Y, Dong W, Zhao Y, Sun L. Bio-Inspired Imprinting Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2202038. [PMID: 35908804 PMCID: PMC9534966 DOI: 10.1002/advs.202202038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/08/2022] [Indexed: 05/27/2023]
Abstract
Inspired by the recognition mechanism of biological molecules, molecular imprinting techniques (MITs) are imparted with numerous merits like excellent stability, recognition specificity, adsorption properties, and easy synthesis processes, and thus broaden the avenues for convenient fabrication protocol of bio-inspired molecularly imprinted polymers (MIPs) with desirable functions to satisfy the extensive demands of biomedical applications. Herein, the recent research progress made with respect to bio-inspired imprinting materials is discussed in this review. First, the underlying mechanism and basic components of a typical molecular imprinting procedure are briefly explored. Then, emphasis is put on the introduction of diverse MITs and novel bio-inspired imprinting materials. Following these two sections, practical applications of MIPs in the field of biomedical science are focused on. Last but not least, perspectives on the remaining challenges and future development of bio-inspired imprinting materials are presented.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Jiahui Guo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
| | - Weiliang Dong
- State Key Laboratory of Materials‐Oriented Chemical EngineeringCollege of Biotechnology and Pharmaceutical EngineeringNanjing Tech UniversityNanjing211800P. R. China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| | - Lingyun Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096P. R. China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001P. R. China
| |
Collapse
|
4
|
Tugce Yaman Y, Akbal Vural O, Bolat G, Abaci S. Peptide nanotubes/self-assembled polydopamine molecularly imprinted biochip for the impedimetric detection of human Interleukin-6. Bioelectrochemistry 2022; 145:108053. [DOI: 10.1016/j.bioelechem.2022.108053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 12/12/2022]
|
5
|
Reddy YVM, Shin JH, Palakollu VN, Sravani B, Choi CH, Park K, Kim SK, Madhavi G, Park JP, Shetti NP. Strategies, advances, and challenges associated with the use of graphene-based nanocomposites for electrochemical biosensors. Adv Colloid Interface Sci 2022; 304:102664. [PMID: 35413509 DOI: 10.1016/j.cis.2022.102664] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/18/2022] [Accepted: 04/04/2022] [Indexed: 12/29/2022]
Abstract
Graphene is an intriguing two-dimensional honeycomb-like carbon material with a unique basal plane structure, charge carrier mobility, thermal conductivity, wide electrochemical spectrum, and unusual physicochemical properties. Therefore, it has attracted considerable scientific interest in the field of nanoscience and bionanotechnology. The high specific surface area of graphene allows it to support high biomolecule loading for good detection sensitivity. As such, graphene, graphene oxide (GO), and reduced GO are excellent materials for the fabrication of new nanocomposites and electrochemical sensors. Graphene has been widely used as a chemical building block and/or scaffold with various materials to create highly sensitive and selective electrochemical sensing microdevices. Over the past decade, significant advancements have been made by utilizing graphene and graphene-based nanocomposites to design electrochemical sensors with enhanced analytical performance. This review focus on the synthetic strategies, as well as the structure-to-function studies of graphene, electrochemistry, novel multi nanocomposites combining graphene, limit of detection, stability, sensitivity, assay time. Finally, the review describes the challenges, strategies and outlook on the future development of graphene sensors technology that would be usable for the internet of things are also highlighted.
Collapse
|
6
|
Molecularly Imprinted Polymers as State-of-the-Art Drug Carriers in Hydrogel Transdermal Drug Delivery Applications. Polymers (Basel) 2022; 14:polym14030640. [PMID: 35160628 PMCID: PMC8838162 DOI: 10.3390/polym14030640] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/03/2022] [Accepted: 02/04/2022] [Indexed: 12/17/2022] Open
Abstract
Molecularly Imprinted Polymers (MIPs) are polymeric networks capable of recognizing determined analytes. Among other methods, non-covalent imprinting has become the most popular synthesis strategy for Molecular Imprinting Technology (MIT). While MIPs are widely used in various scientific fields, one of their most challenging applications lies within pharmaceutical chemistry, namely in therapeutics or various medical therapies. Many studies focus on using hydrogel MIPs in transdermal drug delivery, as the most valuable feature of hydrogels in their application in drug delivery systems that allow controlled diffusion and amplification of the microscopic events. Hydrogels have many advantages over other imprinting materials, such as milder synthesis conditions at lower temperatures or the increase in the availability of biological templates like DNA, protein, and nucleic acid. Moreover, one of the most desirable controlled drug delivery applications is the development of stimuli-responsive hydrogels that can modulate the release in response to changes in pH, temperature, ionic strength, or others. The most important feature of these systems is that they can be designed to operate within a particular human body area due to the possibility of adapting to well-known environmental conditions. Therefore, molecularly imprinted hydrogels play an important role in the development of modern drug delivery systems.
Collapse
|
7
|
Yang JC, Hazarika D, Lee J, Hong SW, Park J. Correlation between the bending angle and protein sensing properties of molecularly imprinted hydrogel strips with a one-sided porous pattern. Chem Commun (Camb) 2022; 58:6934-6937. [DOI: 10.1039/d2cc02026b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A visual observation of the bending angle changes of molecularly imprinted hydrogel strips with a one-sided porous pattern for the novel and easy detection of proteins.
Collapse
Affiliation(s)
- Jin Chul Yang
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Deepshikha Hazarika
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| | - Jihye Lee
- Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Suck Won Hong
- Department of Cogno-Mechatronics Engineering, Department of Optics and Mechatronics Engineering, College of Nanoscience and Nanotechnology, Pusan National University, Busan 46241, Republic of Korea
| | - Jinyoung Park
- Department of Polymer Science & Engineering, Kyungpook National University, 80 Daehak-ro, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Perçin I, Idil N, Denizli A. Preparation of Molecularly Imprinted Poly(N-Isopropylacrylamide) Thermosensitive Based Cryogels. Methods Mol Biol 2022; 2466:249-260. [PMID: 35585323 DOI: 10.1007/978-1-0716-2176-9_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Cryogels are defined as polymeric gel matrices with interconnected macropores providing an advantage to be efficient carriers enabling unhindered diffusion of interested molecule. Cryogels could be easily prepared with the combination of molecular imprinting. Molecular imprinting technology provides selective and sensitive recognition for biomolecules. Immunoglobulin G (IgG) is a main effector component in human response. It is recently well recognized that the purification strategies for IgG have intensively gained attention to treat immune defects. Several methods including affinity chromatography have been applied for the purification of IgG from complex media. The purification of IgG plays a crucial role in medical applications using several materials. Among these, cryogels have been widely applied for the purification of several biomolecules. They offer to create low-cost affinity systems with high chemical and physical stability. Above all, temperature sensitive polymers enable a reversible phase transition against small temperature changes, by the way, reversible swelling and shrinking manner is observed.In this chapter, immunoglobulin G imprinted thermosensitive poly(N-isopropylacrylamide-N methacryloyl-(l)-histidine) [p(NIPA-MAH)/IgG-MIP] monolithic cryogel is explained. The preparation and characterization of cryogels are summarized. In addition, IgG binding studies with different parameters are briefly described. Herein, an effective design principle is presented to create imprinted temperature-sensitive cryogels for IgG purification. A p(NIPA-MAH)/IgG-MIP monolithic cryogel was synthesized for IgG purification. Afterward, IgG binding capacity of p(NIPA-MAH)/IgG-MIP cryogels was examined in different experimental conditions. Apart from these, selectivity of the p(NIPA-MAH)/IgG-MIP cryogel was shown by comparing IgG binding capacity of nonimprinted [p(NIPA-MAH)/NIP] one. Finally, the IgG purification ability of the p(NIPA-MAH)/IgG-MIP cryogel from human plasma was demonstrated proving its application in affinity chromatography using real sample.
Collapse
Affiliation(s)
- Işık Perçin
- Department of Biology, Hacettepe University, Ankara, Turkey
| | - Neslihan Idil
- Department of Biology, Hacettepe University, Ankara, Turkey
| | - Adil Denizli
- Department of Chemistry, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
9
|
Lu W, Wang S, Liu R, Guan Y, Zhang Y. Human serum albumin-imprinted polymers with high capacity and selectivity for abundant protein depletion. Acta Biomater 2021; 126:249-258. [PMID: 33722786 DOI: 10.1016/j.actbio.2021.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 02/20/2021] [Accepted: 03/02/2021] [Indexed: 02/09/2023]
Abstract
Depletion of human serum albumin (HSA), the most abundant protein in human plasma, from serum/plasma is a prerequisite before their proteomic analysis. Molecularly imprinted polymers (MIPs) using HSA as a template have been designed for this purpose, but suffer from a low sorption capacity and low selectivity. Here, a new HSA-imprinted polymer was synthesized using N-isopropylacrylamide (NIPAM) as the main monomer; acrylamide (AAm), methacrylic acid (MAA), and dimethylaminoethyl methacrylate (DMAEMA) as functional monomers; and oligoglutamic acid-based peptide crosslinker (PC) as a crosslinker at pH 5.5. When pH is adjusted to 7.4, the peptide chains in the polymer change from a helical conformation to an extended coil conformation, and the polymer swells. Consequently, the template protein is removed completely. When pH is adjusted back to 5.5, the peptide chains fold back precisely to the helical conformation. Both the size and shape of the imprint cavities are restored. Therefore, the polymer rebinds the template protein selectively. Highest imprinting factor (IF) was observed at pH 5.5 at which the polymer was synthesized. The IF increases with the increasing number of glutamic acid residues in the PCs because of their increased degree of helicity at pH 5.5. No improvement in imprinting effect was observed when using a peptide crosslinker containing both L- and D-glutamic acid residues and hence incapable of folding into α-helix, further confirming the key role of the pH-induced helix-coil transition of the peptide chains. The MIP synthesized here presents a much higher affinity to HSA than the nontemplate proteins. It could be used repeatedly without evident decrease in sorption capacity. Because of the mild eluting conditions, the secondary structure of the extracted HSA protein remains unchanged. Finally, the MIP was used to deplete HSA from human serum. Because of its high sorption capacity and high selectivity, HSA was depleted completely and selectively. STATEMENT OF SIGNIFICANCE: A new molecularly imprinted polymer (MIP) using human serum albumin (HSA) as a template was synthesized using N-isopropylacrylamide (NIPAM) as the main monomer; acrylamide (AAm), methacrylic acid (MAA), and dimethylaminoethyl methacrylate (DMAEMA) as functional monomers; and oligoglutamic acid-based peptide crosslinker as a crosslinker. Because of the reversible and precise pH-induced helix-coil transition of the peptide chains, the template protein was removed facilely and completely under mild conditions. Simultaneously, a significant improvement in imprinting efficiency was obtained. The sorption capacity was as high as 648.05 mg/g and the imprinting factor was 7.9. Because of its high selectivity and high binding capacity, the MIP synthesized here is highly promising for the depletion of HSA, the most abundant protein in serum, which is a prerequisite for its proteomic analysis. For the first time, complete and selective depletion of HSA from human serum was achieved using a protein-imprinted polymer.
Collapse
|
10
|
Wei W, Zhu M, Wu S, Shen X, Li S. Stimuli-Responsive Biopolymers: An Inspiration for Synthetic Smart Materials and Their Applications in Self-Controlled Catalysis. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01382-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
11
|
Boitard C, Curcio A, Rollet AL, Wilhelm C, Ménager C, Griffete N. Biological Fate of Magnetic Protein-Specific Molecularly Imprinted Polymers: Toxicity and Degradation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35556-35565. [PMID: 31496222 DOI: 10.1021/acsami.9b11717] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Magnetic nanoparticles coated with protein-specific molecularly imprinted polymers (MIPs) are receiving increasing attention thanks to their binding abilities, robustness, and easy synthesis compared to their natural analogues also able to target proteins, such as antibodies or aptamers. Acting as tailor-made recognition systems, protein-specific MIPs can be used in many in vivo nanomedicine applications, such as targeted drug delivery, biosensing, and tissue engineering. Nonetheless, studies on their biocompatibility and long-term fate in biological environments are almost nonexistent, although these questions have to be addressed before considering clinical applications. To alleviate this lack of knowledge, we propose here to monitor the effect of a protein-specific MIP coating on the toxicity and biodegradation of magnetic iron oxide nanoparticles, both in a minimal aqueous degradation medium and in a model of cartilage tissue formed by differentiated human mesenchymal stem cells. Degradation of iron oxide nanoparticles with or without the polymer coating was monitored for a month by following their magnetic properties using vibrating sample magnetometry and their morphology by transmission electron microscopy. We showed that the MIP coating of magnetic iron oxide nanoparticles does not affect their biocompatibility or internalization inside cells. Remarkably, the imprinted polymer coating does not hinder the magnetic particle degradation but seems to slow it down, although this effect is more visible when degradation occurs in the buffer medium than in cells. Hence, the results presented in this paper are really encouraging and open up the way to future applications of MIP-coated nanoparticles into the clinic.
Collapse
Affiliation(s)
- Charlotte Boitard
- CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX , Sorbonne Université , F-75005 Paris , France
| | - Alberto Curcio
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 , CNRS and Université Paris Diderot , 75205 Paris Cedex 05, France
| | - Anne-Laure Rollet
- CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX , Sorbonne Université , F-75005 Paris , France
| | - Claire Wilhelm
- Laboratoire Matière et Systèmes Complexes (MSC), UMR 7057 , CNRS and Université Paris Diderot , 75205 Paris Cedex 05, France
| | - Christine Ménager
- CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX , Sorbonne Université , F-75005 Paris , France
| | - Nébéwia Griffete
- CNRS, PHysico-chimie des Electrolytes et Nanosystèmes InterfaciauX, PHENIX , Sorbonne Université , F-75005 Paris , France
| |
Collapse
|
12
|
Perçin I, Idil N, Denizli A. Molecularly imprinted poly(N-isopropylacrylamide) thermosensitive based cryogel for immunoglobulin G purification. Process Biochem 2019. [DOI: 10.1016/j.procbio.2019.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
13
|
Synthesis of imprinted hydrogel microbeads by inverse Pickering emulsion to controlled release of adenosine 5'‑monophosphate. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 101:254-263. [PMID: 31029318 DOI: 10.1016/j.msec.2019.03.102] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 11/23/2022]
Abstract
Herein, we propose the synthesis of a microspherical imprinted hydrogel meant for the controlled release of a nucleotide, adenosine 5'-monophosphate (5'-AMP). Indeed, molecularly imprinted polymers-based (MIPs) materials possess remarkable selective molecular recognition ability that mimicks biological systems. MIPs have been used in numerous applications and hold great promise for the vectorization and/or controlled release of therapeutics and cosmetics. But, the conception of imprinted hydrogels-based drug delivery systems that are able to release polar bioactive compounds is explored weakly. Herein, the synthesis of imprinted hydrogel microbeads by inverse Pickering emulsion is detailed. Microspheres showed a large 5'-AMP loading capacity, around 300 mg·g-1, and a high binding capacity comparatively to the non-imprinted counterpart. The MIP had a thermo-responsive release behavior providing sustained release of adenosine 5'-monophosphate in an aqueous buffer simulating both human skin pH and temperature.
Collapse
|
14
|
Bioinspired synthesis of multiple-functional nanocomposite platform showing optically and thermally responsive affinity: Application to environmentally responsive separation membrane. J Colloid Interface Sci 2018; 531:1-10. [DOI: 10.1016/j.jcis.2018.07.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Revised: 07/04/2018] [Accepted: 07/10/2018] [Indexed: 11/23/2022]
|
15
|
Demir EF, Özçalışkan E, Karakaş H, Uygun M, Aktaş Uygun D, Akgöl S, Denizli A. Synthesis and characterization of albumin imprinted polymeric hydrogel membranes for proteomic studies. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:2218-2236. [PMID: 30303463 DOI: 10.1080/09205063.2018.1534423] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
In this presented study, a novel molecularly imprinted polymeric hydrogel membranes (PHMs) were developed to use for the albumin depletion studies. For this, albumin imprinted poly(2-hydroxyethyl methacrylate-N-methacryloyl-(L)-phenylalanine methyl ester) polymeric hydrogel membranes [p(HEMA-MAP) PHMs] were synthesized by the photopolymerization technique, and then characterized by SEM, EDX, FT-IR and swelling studies. Synthesized PHMs had spherical structure and the MAP monomer incorporation onto the PHMs was determined by EDX analysis by using nitrogen stoichiometry. Also, the swelling ratio of the albumin imprinted p(HEMA-MAP) PHMs was determined as 215%. The optimum albumin adsorption condition (adsorption capacity, medium pH, adsorption rate, temperature, ionic strength) were studied and the maximum albumin adsorption capacity was found to be as 34.28 mg/g PHMs. Selectivity experiments were also carried out with the presence of the competitive proteins such as lysozyme and amylase, and the results demonstrated that the albumin imprinted p(HEMA-MAP) PHMs showed high affinity towards the BSA molecules than the competitive proteins of lysozyme and amylase. Adsorbed albumin was desorbed from the PHMs by 1.0 M of NaCl, and the reusability of the imprinted PHMs was also demonstrated for five successive adsorption-desorption cycles without any significant loss in the albumin adsorption capacity. As an application, sodium-dodecyl sulfate polyacrylamide gel electrophoresis was used to indicate the albumin depletion efficiency of albumin imprinted p(HEMA-MAP) PHMs. This presented study showed that, these imprinted membranes are promising for proteomic studies and applications, and can be used for the investigations for human diagnostics.
Collapse
Affiliation(s)
- Esra Feyzioğlu Demir
- a Vocational School of Health Services, Department of Medical Laboratory Techniques , Izmir University of Economics , Izmir , Turkey
| | - Emir Özçalışkan
- b Faculty of Science, Department of Biochemistry , Ege University , Izmir , Turkey
| | - Hayriye Karakaş
- b Faculty of Science, Department of Biochemistry , Ege University , Izmir , Turkey
| | - Murat Uygun
- c Faculty of Science and Arts, Chemistry Division , Adnan Menderes University , Aydın , Turkey.,d Adnan Menderes University, Nanotechnology Application and Research Center , Aydın , Turkey
| | - Deniz Aktaş Uygun
- c Faculty of Science and Arts, Chemistry Division , Adnan Menderes University , Aydın , Turkey.,d Adnan Menderes University, Nanotechnology Application and Research Center , Aydın , Turkey
| | - Sinan Akgöl
- b Faculty of Science, Department of Biochemistry , Ege University , Izmir , Turkey
| | - Adil Denizli
- e Department of Chemistry , Hacettepe University Faculty of Science , Ankara , Turkey
| |
Collapse
|
16
|
Yuan Y, Yang C, Lv T, Qiao F, Zhou Y, Yan H. Green synthesis of hydrophilic protein-imprinted resin with specific recognition of bovine serum albumin in aqueous matrix. Anal Chim Acta 2018; 1033:213-220. [DOI: 10.1016/j.aca.2018.06.009] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 05/25/2018] [Accepted: 06/02/2018] [Indexed: 01/04/2023]
|
17
|
Chen F, Wang J, Lu R, Chen H, Xie X. Fast and high-efficiency magnetic surface imprinting based on microwave-accelerated reversible addition fragmentation chain transfer polymerization for the selective extraction of estrogen residues in milk. J Chromatogr A 2018; 1562:19-26. [DOI: 10.1016/j.chroma.2018.05.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/04/2018] [Accepted: 05/23/2018] [Indexed: 01/13/2023]
|
18
|
Hashemi M, Nazari Z. Preparation of molecularly imprinted polymer based on the magnetic multiwalled carbon nanotubes for selective separation and spectrophotometric determination of melamine in milk samples. J Food Compost Anal 2018. [DOI: 10.1016/j.jfca.2018.02.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
19
|
Lin X, Wu Y, Hao Y, Sun Q, Yan Y, Li C. Sensitive and Selective Determination of 2,4,6-Trichlorophenol Using a Molecularly Imprinted Polymer Based on Zinc Oxide Quantum Dots. ANAL LETT 2018. [DOI: 10.1080/00032719.2017.1384480] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Xinyu Lin
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| | - Yilin Wu
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| | - Yue Hao
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| | - Qian Sun
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| | - Chunxiang Li
- School of Chemistry and Chemical Engineering, Institute of Green Chemistry and Chemical Technology, Jiangsu University, Zhenjiang, China
| |
Collapse
|
20
|
Boitard C, Rollet AL, Ménager C, Griffete N. Surface-initiated synthesis of bulk-imprinted magnetic polymers for protein recognition. Chem Commun (Camb) 2018; 53:8846-8849. [PMID: 28736780 DOI: 10.1039/c7cc04284a] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bulk imprinting of proteins was used combined with a grafting approach onto maghemite nanoparticles to develop a faster and simpler polymerization method for the synthesis of magnetic protein imprinted polymers with very high adsorption capacities and very strong affinity constants.
Collapse
Affiliation(s)
- Charlotte Boitard
- UMR 8234, Laboratoire Physico-chimie des Electrolytes, Nanosystèmes InterfaciauX (PHENIX), UPMC Univ Paris 06, Sorbonne Universités, 4 place Jussieu - case 51, 75252 Paris cedex 05, France
| | | | | | | |
Collapse
|
21
|
Boitard C, Bée A, Ménager C, Griffete N. Magnetic protein imprinted polymers: a review. J Mater Chem B 2018; 6:1563-1580. [PMID: 32254273 DOI: 10.1039/c7tb02985c] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Protein imprinted polymers have received a lot of interest in the past few years because of their applications as tailor-made receptors for biomacromolecules. Generally, the preparation of these polymers requires numerous and time-consuming steps. But their coupling with magnetic nanoparticles simplifies and speeds up the synthesis of these materials. Some recent papers describe the use of protein imprinted polymer (PIP) coupled to magnetic iron oxide nanoparticles (MION) for the design of MION@PIP biosensors. With such systems, a target protein can be specifically and selectively captured from complex media due to exceptional chemical properties of the polymer. Despite such performances, only a limited number of studies address these hybrid nanosystems. This review focuses on the chemistry and preparation of MION@PIP nanocomposites as well as on the metrics used to characterize their performances.
Collapse
Affiliation(s)
- Charlotte Boitard
- Sorbonne Université, UPMC Univ Paris 06, CNRS, UMR 8234, PHENIX Laboratory, Case 51, 4 place Jussieu, 75252 Paris cedex 05, France.
| | | | | | | |
Collapse
|
22
|
Zhang Z, Liu Y, Zhang X, Liu J. A Cell-Mimicking Structure Converting Analog Volume Changes to Digital Colorimetric Output with Molecular Selectivity. NANO LETTERS 2017; 17:7926-7931. [PMID: 29130302 DOI: 10.1021/acs.nanolett.7b04298] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We herein report a three-component cell-mimicking structure with a peroxidase-like iron oxide nanozyme as the nucleus, a molecularly imprinted hydrogel shell as cytoplasm, and a lipid bilayer membrane. The structure was characterized by cryo and negative stain TEM and also by a calcein leakage test. By introducing charged monomers, the gel shell can swell or shrink in response to salt concentration. By lowering the salt concentration, the gradual "analog" gel volume change was reflected in a switch-like "digital" colorimetric output by the burst of membrane and oxidation of substrates such as 3,3',5,5'-tetramethylbenzidine (TMB). Controlled access was also achieved by using melittin to insert channels cross the membrane, and selective molecular transport was realized by the molecularly imprinted gel. The functions of each component are coupled, and this sophisticated tripartite structure provides a new platform for modular design of new materials. Our cell-mimicking structure is functional and it is complementary to the current protocell work that aims to understand the origin of life.
Collapse
Affiliation(s)
- Zijie Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Yibo Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Xiaohan Zhang
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| | - Juewen Liu
- Department of Chemistry, Waterloo Institute for Nanotechnology, University of Waterloo , 200 University Avenue W, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
23
|
Hashemi M, Nazari Z, Noshirvani N. Synthesis of chitosan based magnetic molecularly imprinted polymers for selective separation and spectrophotometric determination of histamine in tuna fish. Carbohydr Polym 2017; 177:306-314. [DOI: 10.1016/j.carbpol.2017.08.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/30/2017] [Accepted: 08/10/2017] [Indexed: 01/25/2023]
|
24
|
Rahmani V, Elshereef R, Sheardown H. Optimizing electrostatic interactions for controlling the release of proteins from anionic and cationically modified alginate. Eur J Pharm Biopharm 2017; 117:232-243. [DOI: 10.1016/j.ejpb.2017.04.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/20/2017] [Accepted: 04/21/2017] [Indexed: 01/15/2023]
|
25
|
Erol K, Uzun L. Two-step polymerization approach for synthesis of macroporous surface ion-imprinted cryogels. JOURNAL OF MACROMOLECULAR SCIENCE PART A-PURE AND APPLIED CHEMISTRY 2017. [DOI: 10.1080/10601325.2017.1342519] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kadir Erol
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey
- Hitit University, Osmancık Ömer Derindere Vocational School, Çorum, Turkey
| | - Lokman Uzun
- Hacettepe University, Faculty of Science, Department of Chemistry, Ankara, Turkey
| |
Collapse
|
26
|
Wei Y, Zeng Q, Hu Q, Wang M, Tao J, Wang L. Self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel. Biosens Bioelectron 2017; 99:136-141. [PMID: 28750337 DOI: 10.1016/j.bios.2017.07.049] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Revised: 07/08/2017] [Accepted: 07/19/2017] [Indexed: 12/19/2022]
Abstract
Herein, the self-cleaned electrochemical protein imprinting biosensor basing on a thermo-responsive memory hydrogel was constructed on a glassy carbon electrode (GCE) with a free radical polymerization method. Combining the advantages of thermo-responsive molecular imprinted polymers and electrochemistry, the resulted biosensor presents a novel self-cleaned ability for bovine serum albumin (BSA) in aqueous media. As a temperature controlled gate, the hydrogel film undergoes the adsorption and desorption of BSA basing on a reversible structure change with the external temperature stimuli. In particular, these processes have been revealed by the response of cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) of electroactive [Fe(CN)6]3-/4-. The results have been supported by the evidences of scanning electron microscopy (SEM) and contact angles measurements. Under the optimal conditions, a wide detection range from 0.02μmolL-1 to 10μmolL-1 with a detection limit of 0.012 μmolL-1 (S/N = 3) was obtained for BSA. This proposed BSA sensor also possesses high selectivity, excellent stability, acceptable recovery and good reproducibility in its practical applications.
Collapse
Affiliation(s)
- Yubo Wei
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Qiang Zeng
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Qiong Hu
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Min Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Jia Tao
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China
| | - Lishi Wang
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510641, People's Republic of China.
| |
Collapse
|
27
|
Wang XH, Tang L, Yang FF, Ying LL, Huang YP, Liu ZS. Green synthesis of water-compatible and thermo-responsive molecularly imprinted nanoparticles. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Wen-qi S, Li-wei Q. Synthesis of l -phenylalanine imprinted hydrogels with anti-biofouling capability by using a novel zwitterionic functional monomer. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.03.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Hashemi M, Nazari Z, Bigdelifam D. A molecularly imprinted polymer based on multiwalled carbon nanotubes for separation and spectrophotometric determination of L-cysteine. Mikrochim Acta 2017. [DOI: 10.1007/s00604-017-2236-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
30
|
Hu Y, Wang C, Li X, Liu L. Preparation and application of epitope magnetic molecularly imprinted polymers for enrichment of sulfonamide antibiotics in water. Electrophoresis 2017; 38:2462-2467. [DOI: 10.1002/elps.201700031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 03/09/2017] [Accepted: 03/17/2017] [Indexed: 11/08/2022]
Affiliation(s)
- Yufeng Hu
- School of Food and Environment; Dalian University of Technology; Panjin P. R. China
| | - Cheng Wang
- School of Food and Environment; Dalian University of Technology; Panjin P. R. China
| | - Xiangdao Li
- School of Food and Environment; Dalian University of Technology; Panjin P. R. China
| | - Lifen Liu
- School of Food and Environment; Dalian University of Technology; Panjin P. R. China
| |
Collapse
|
31
|
Tang X, Ni L, Han J, Wang Y. Preparation and characterization of ternary magnetic g-C 3 N 4 composite photocatalysts for removal of tetracycline under visible light. CHINESE JOURNAL OF CATALYSIS 2017. [DOI: 10.1016/s1872-2067(16)62591-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
32
|
Wolska J. Thermoresponsive molecularly imprinted polymer for rapid sorption and desorption of diethyl phthalate. SEP SCI TECHNOL 2016. [DOI: 10.1080/01496395.2016.1165706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Joanna Wolska
- Division of Polymer and Carbonaceous Materials, Wroclaw University of Technology, Wroclaw, Poland
| |
Collapse
|
33
|
Gao R, Cui X, Hao Y, Zhang L, Liu D, Tang Y. A highly-efficient imprinted magnetic nanoparticle for selective separation and detection of 17β-estradiol in milk. Food Chem 2016; 194:1040-7. [DOI: 10.1016/j.foodchem.2015.08.112] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 07/21/2015] [Accepted: 08/27/2015] [Indexed: 10/23/2022]
|
34
|
Ji S, Li N, Shen Y, Li Q, Qiao J, Li Z. Poly(amino acid)-based thermoresponsive molecularly imprinted magnetic nanoparticles for specific recognition and release of lysozyme. Anal Chim Acta 2016; 909:60-6. [DOI: 10.1016/j.aca.2016.01.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 12/14/2015] [Accepted: 01/02/2016] [Indexed: 12/16/2022]
|
35
|
Chen L, Wang X, Lu W, Wu X, Li J. Molecular imprinting: perspectives and applications. Chem Soc Rev 2016; 45:2137-211. [DOI: 10.1039/c6cs00061d] [Citation(s) in RCA: 1438] [Impact Index Per Article: 179.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
This critical review presents a survey of recent developments in technologies and strategies for the preparation of MIPs, followed by the application of MIPs in sample pretreatment, chromatographic separation and chemical sensing.
Collapse
Affiliation(s)
- Lingxin Chen
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaoyan Wang
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Wenhui Lu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Xiaqing Wu
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| | - Jinhua Li
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation
- Yantai Institute of Coastal Zone Research
- Chinese Academy of Sciences
- Yantai 264003
- China
| |
Collapse
|
36
|
Huang W, Xu P, Yang W, Xu W. Thermosensitive molecularly imprinted polymers based on magnetic nanoparticles for the recognition of sulfamethazine. RSC Adv 2016. [DOI: 10.1039/c6ra16162f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Schematic illustration of the preparation of tmips.
Collapse
Affiliation(s)
- Weihong Huang
- School of the Environment and Safety Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Ping Xu
- School of the Environment and Safety Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Wenming Yang
- School of Materials Science and Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| | - Wanzhen Xu
- School of the Environment and Safety Engineering
- Jiangsu University
- Zhenjiang 212013
- China
| |
Collapse
|
37
|
Wang XL, Yao HF, Li XY, Wang X, Huang YP, Liu ZS. pH/temperature-sensitive hydrogel-based molecularly imprinted polymers (hydroMIPs) for drug delivery by frontal polymerization. RSC Adv 2016. [DOI: 10.1039/c6ra20626c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Frontal polymerization was successfully utilized, for the first time, to obtain pH/temperature-sensitive hydrogel-based molecularly imprinted polymers (hydroMIPs).
Collapse
Affiliation(s)
- Xiao-Lin Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Hong-Fei Yao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Xiu-Yuan Li
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Xu Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Yan-Ping Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| | - Zhao-Sheng Liu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics)
- School of Pharmacy
- Tianjin Medical University
- Tianjin 300070
- China
| |
Collapse
|
38
|
Wang Y, Han M, Liu G, Hou X, Huang Y, Wu K, Li C. Molecularly imprinted electrochemical sensing interface based on in-situ-polymerization of amino-functionalized ionic liquid for specific recognition of bovine serum albumin. Biosens Bioelectron 2015; 74:792-8. [DOI: 10.1016/j.bios.2015.07.046] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 07/18/2015] [Accepted: 07/20/2015] [Indexed: 12/28/2022]
|
39
|
Surface hydrophilic imprinted particles via a green precipitation polymerization for selective removal of tetracycline from aqueous solution. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0758-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
40
|
Kashefi Mofrad SMR, Naeimpoor F, Hejazi P, Nematollahzadeh A. Synthesis of lysozyme imprinted column with macroporous structure and enhanced selectivity: Utilization of cryogelation technique and electrostatic functional monomers. J Appl Polym Sci 2015. [DOI: 10.1002/app.42880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Seyed Mohammad Reza Kashefi Mofrad
- Biotechnology Research Laboratory, School of Chemical Engineering; Iran University of Science and Technology; P.O. Box 16846-13114 Tehran Iran
| | - Fereshteh Naeimpoor
- Biotechnology Research Laboratory, School of Chemical Engineering; Iran University of Science and Technology; P.O. Box 16846-13114 Tehran Iran
| | - Parisa Hejazi
- Biotechnology Research Laboratory, School of Chemical Engineering; Iran University of Science and Technology; P.O. Box 16846-13114 Tehran Iran
| | - Ali Nematollahzadeh
- Chemical Engineering Department; University of Mohaghegh Ardabili; Ardabil Iran
| |
Collapse
|
41
|
Molecularly Imprinted Polymers with Stimuli-Responsive Affinity: Progress and Perspectives. Polymers (Basel) 2015. [DOI: 10.3390/polym7091478] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
42
|
Recognition and determination of bovine hemoglobin using a gold electrode modified with gold nanoparticles and molecularly imprinted self-polymerized dopamine. Mikrochim Acta 2015. [DOI: 10.1007/s00604-015-1594-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Qian L, Hu X, Guan P, Wang D, Li J, Du C, Song R, Wang C, Song W. The effectively specific recognition of bovine serum albumin imprinted silica nanoparticles by utilizing a macromolecularly functional monomer to stabilize and imprint template. Anal Chim Acta 2015; 884:97-105. [DOI: 10.1016/j.aca.2015.05.015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 11/26/2022]
|
44
|
Kim DY, Kwon DY, Kwon JS, Kim JH, Min BH, Kim MS. Stimuli-Responsive InjectableIn situ-Forming Hydrogels for Regenerative Medicines. POLYM REV 2015. [DOI: 10.1080/15583724.2014.983244] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
45
|
Thermo-responsive and magnetic molecularly imprinted Fe3O4@carbon nanospheres for selective adsorption and controlled release of 2,4,5-trichlorophenol. J IND ENG CHEM 2015. [DOI: 10.1016/j.jiec.2014.11.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
46
|
Liu Y, Fang S, Zhai J, Zhao M. Construction of antibody-like nanoparticles for selective protein sequestration in living cells. NANOSCALE 2015; 7:7162-7167. [PMID: 25812011 DOI: 10.1039/c4nr07615j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We demonstrate the successful construction of fluorescently labeled magnetic antibody-like nanoparticles (ANPs) via a facile one-step surface-initiated in situ molecular imprinting approach over silica coated magnetite (Fe3O4@SiO2) core-shell nanocomposites. The as-prepared ANPs had a highly compact structure with an overall size of 83 ± 5 nm in diameter and showed excellent aqueous dispersion stability. With the predetermined high specificity to the target protein and high biocompatibility, the ANPs enabled rapid, efficient, selective and optically trackable sequestration of target proteins within living cells. This work represents the first example of fully artificially engineered multifunctional ANPs for the intracellular protein-sequestration without disruption of the cells. The established approach may be further extended to generate ANPs for various proteins of interest and provide useful tools for related biological research and biomedical applications.
Collapse
Affiliation(s)
- Yibin Liu
- Beijing National Laboratory for Molecular Sciences and MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.
| | | | | | | |
Collapse
|
47
|
Pan J, Yin Y, Zhang Y, Wu R, Dai X, Yan Y. Thermoresponsive and magnetic molecularly imprinted polymers based on iron oxide encapsulated carbon nanotubes as a matrix for the selective adsorption and controlled release of 2,4,5-trichlorophenol. J Appl Polym Sci 2015. [DOI: 10.1002/app.42087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jianming Pan
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Yijie Yin
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Yunlei Zhang
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Runrun Wu
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Xiaohui Dai
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Yongsheng Yan
- School of Chemistry and Chemical Engineering; Jiangsu University; Zhenjiang 212013 China
| |
Collapse
|
48
|
Zhang W, Zhu S, Bai Y, Xi N, Wang S, Bian Y, Li X, Zhang Y. Glow discharge electrolysis plasma initiated preparation of temperature/pH dual sensitivity reed hemicellulose-based hydrogels. Carbohydr Polym 2015; 122:11-7. [PMID: 25817637 DOI: 10.1016/j.carbpol.2015.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2014] [Revised: 12/25/2014] [Accepted: 01/05/2015] [Indexed: 10/24/2022]
Abstract
The temperature/pH dual sensitivity reed hemicellulose-based hydrogels have been prepared through glow discharge electrolysis plasma (GDEP). The effect of different discharge voltages on the temperature and pH response performance of reed hemicellulose-based hydrogels was inspected, and the formation mechanism, deswelling behaviors of reed hemicellulose-based hydrogels were also discussed. At the same time, infrared spectroscopy (FT-IR), scanning differential thermal analysis (DSC) and scanning electron microscope (SEM) were adopted to characterize the structure, phase transformation behaviors and microstructure of hydrogels. It turned out to be that all reed hemicellulose-based hydrogels had a double sensitivity to temperature and pH, and their phase transition temperatures were all approximately 33 °C, as well as the deswelling dynamics met the first model. In addition, the hydrogel (TPRH-3), under discharge voltage 600 V, was more sensitive to temperature and pH and had higher deswelling ratio.
Collapse
Affiliation(s)
- Wenming Zhang
- Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China.
| | - Sha Zhu
- Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Yunping Bai
- Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Ning Xi
- Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Shaoyang Wang
- Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Yang Bian
- Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xiaowei Li
- Hebei Key Lab of Optic-electronic Information and Materials, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Yucang Zhang
- College of Materials and Chemical Engineering, Hainan University, Haikou 570228, China.
| |
Collapse
|
49
|
MIPs in Aqueous Environments. MOLECULARLY IMPRINTED POLYMERS IN BIOTECHNOLOGY 2015; 150:131-66. [DOI: 10.1007/10_2015_317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
50
|
Zhou T, Zhang K, Kamra T, Bülow L, Ye L. Preparation of protein imprinted polymer beads by Pickering emulsion polymerization. J Mater Chem B 2014; 3:1254-1260. [PMID: 32264476 DOI: 10.1039/c4tb01605j] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We present a new method for preparation of protein-specific polymer beads based on surface molecular imprinting in Pickering emulsion. In the first step, adult human hemoglobin (Hb) was adsorbed on silica nanoparticles. The protein-coated silica particles were then used to stabilize an oil-in-water emulsion (Pickering emulsion) composed of cross-linking monomer in the oil phase. After free radical polymerization of the oil phase, the protein-silica particles were removed to leave Hb-imprinted sites on the polymer surface. The protein-imprinted polymer microspheres were characterized by scanning electron microscopy and their selectivity was investigated by protein binding analysis. The new synthetic method based on Pickering emulsion polymerization produced easily accessible Hb binding sites on the surface of spherical polymer particles, which are useful for protein separation, purification and analysis.
Collapse
Affiliation(s)
- Tongchang Zhou
- Division of Pure and Applied Biochemistry, Lund University, Box 124, 221 00 Lund, Sweden.
| | | | | | | | | |
Collapse
|