1
|
Pach A, Szot A, Fitzner K, Luty-Błocho M. Opportunities and Challenges in the Synthesis of Noble Metal Nanoparticles via the Chemical Route in Microreactor Systems. MICROMACHINES 2024; 15:1119. [PMID: 39337779 PMCID: PMC11434062 DOI: 10.3390/mi15091119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
The process of noble metal nanoparticle synthesis is complex and consists of at least two steps: slow nucleation and fast autocatalytic growth. The kinetics of these two processes depends on the reductant "power" and the addition of stabilizers, as well as other factors (e.g., temperature, pH, ionic strength). Knowing these parameters, it is possible to synthesize materials with appropriate physicochemical properties, which can be simply adjusted by the type of the used metal, particle morphology and surface property. This, in turn, affects the possibility of their applications in various areas of life, including medicine, catalysis, engineering, fuel cells, etc. However, in some cases, the standard route, i.e., the chemical reduction of a metal precursor carried out in the batch reactor, is not sufficient due to problems with temperature control, properties of reagents, unstable or dangerous intermediates and products, etc. Therefore, in this review, we focused on an alternative approach to their chemical synthesis provided by microreactor systems. The use of microreactors for the synthesis of noble metal nanomaterials (e.g., Ag, Au, Pt, Pd), obtained by chemical reduction, is analyzed, taking into account investigations carried out in recent years. A particular emphasis is placed on the processes in which the use of microreactors removed the limitations associated with synthesis in a batch reactor. Moreover, the opportunities and challenges related to the synthesis of noble nanomaterials in the microreactor system are underlined. This review discusses the advantages as well as the problems of nanoparticle synthesis in microreactors.
Collapse
Affiliation(s)
| | | | | | - Magdalena Luty-Błocho
- AGH University of Krakow, Faculty of Non-Ferrous Metals, al. Adama Mickiewicza 30, 30-059 Krakow, Poland; (A.P.); (A.S.); (K.F.)
| |
Collapse
|
2
|
Schmitt C, Da Roit N, Neumaier M, Maliakkal CB, Wang D, Henrich T, Kübel C, Kappes M, Behrens S. Continuous flow synthesis of atom-precise platinum clusters. NANOSCALE ADVANCES 2024; 6:2459-2468. [PMID: 38694455 PMCID: PMC11059489 DOI: 10.1039/d4na00074a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 02/22/2024] [Indexed: 05/04/2024]
Abstract
Subnanometer clusters with precise atom numbers hold immense potential for applications in catalysis, as single atoms can significantly impact catalytic properties. Typically, inorganic clusters are produced using batch processes with high dilutions, making the scale-up of these processes time-consuming and its reproducibility challenging. While continuous-flow systems have been employed for organic synthesis and, more recently, nanoparticle preparation, these approaches have only rarely been applied to cluster synthesis. In a flexible, continuous flow synthesis platform, we integrate multiple continuous stirred tank reactors (CSTR) into a cascade to synthesize clusters with a precise number of atoms, demonstrating the potential of this approach for atom precise cluster synthesis and expanding the application of continuous-flow systems beyond organic synthesis.
Collapse
Affiliation(s)
- Christian Schmitt
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology Hermann-von Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Nicola Da Roit
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology Hermann-von Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Marco Neumaier
- Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann-von Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Carina B Maliakkal
- Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann-von Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Di Wang
- Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann-von Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Thilo Henrich
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology Hermann-von Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Christian Kübel
- Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann-von Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
- Karlsruhe Nano Micro Facility (KNMFi), Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Manfred Kappes
- Institute of Nanotechnology, Karlsruhe Institute of Technology Hermann-von Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| | - Silke Behrens
- Institute of Catalysis Research and Technology, Karlsruhe Institute of Technology Hermann-von Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
3
|
Aljarrah MT, Alboull AM, Alharahsheh MS, Ashraf A, Khandakar A. Parametric Study of Gold Nanoparticles Synthesis under Micro-Continuous Flow Conditions. Molecules 2022; 27:molecules27248651. [PMID: 36557787 PMCID: PMC9781614 DOI: 10.3390/molecules27248651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/22/2022] [Accepted: 11/29/2022] [Indexed: 12/12/2022] Open
Abstract
The synthesis of gold nanoparticles (GNPs) using chemical reduction in batch and microreactor methods has been reported. A parametric study of the effect of several parameters on the size of gold nanoparticles was performed in batch synthesis mode using the modified Martin method. The best-obtained conditions were used to synthesize gold nanoparticles using a glass chip microreactor, and the size of the resulting GNPs from both methods was compared. The presence of polyvinyl alcohol (SC) was used as a capping agent, and sodium borohydride (SB) was used as a reducing agent. Several parameters were studied, including HAuCl4, SC, SB concentrations, the volumetric ratio of SB to gold precursor, pH, temperature, and mixing speed. Various techniques were used to characterize the resulting nanoparticles, including Atomic Absorbance spectroscopy (AAS), Ultraviolet-visible spectroscopy (UV-Vis), and dynamic light scratching (DLS). Optimum conditions were obtained for the synthesis of gold nanoparticles. Under similar reaction conditions, the microreactor consistently produced smaller nanoparticles in the range of 10.42-11.31 nm with a reaction time of less than 1 min.
Collapse
Affiliation(s)
- Mohannad T. Aljarrah
- Department of Chemical Engineering, College of Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
- Department of Chemical Engineering, College of Engineering Technology, University of Doha for Science and Technology, College of Engineering Technology, Doha P.O. Box 24449, Qatar
- Correspondence:
| | - Ala’a M. Alboull
- Department of Chemical Engineering, College of Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Mohammad S. Alharahsheh
- Department of Chemical Engineering, College of Engineering, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Azad Ashraf
- Department of Chemical Engineering, College of Engineering Technology, University of Doha for Science and Technology, College of Engineering Technology, Doha P.O. Box 24449, Qatar
| | - Amith Khandakar
- Department of Electrical Engineering, College of Engineering, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
4
|
Wei SX, Yang H, Au CT, Xie TL, Yin SF. Mixing Characteristic and High-Throughput Synthesis of Cadmium Sulfide Nanoparticles with Cubic Hexagonal Phase Junctions in a Chaotic Millireactor. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14439-14450. [PMID: 36378533 DOI: 10.1021/acs.langmuir.2c02087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
A four-stage oscillating feedback millireactor with splitters (S-OFM) was designed to improve the mixing performance based on chaotic advection. Three-dimensional CFD simulations were used to investigate its flow characteristics and mixing performance, and the generation mechanisms of secondary flows were examined. The results show that the mixing index (MIcup) increased with the increase in the Reynolds number (Re), and MIcup could reach 99.8% at Re = 663. Poincaré mapping and Kolmogorov entropy were adopted to characterize the chaotic advection intensity, which indicates that there is a intensity increase with the increase in Re. In addition, the results of Villermaux-Dushman experiments demonstrate that S-OFM performs excellently, and the mixing time could reach 1.04 ms at Re = 2764. Finally, S-OFM was successfully used to synthesize CdS nanoparticles with cubic hexagonal phase junctions. At a flow rate of 180 mL/min, the average particle size was 10.5 nm and the particle size distribution was narrow (with a coefficient of variation of 0.14).
Collapse
Affiliation(s)
- Shi-Xiao Wei
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, P. R. China
| | - Chak-Tong Au
- College of Chemical Engineering, Fuzhou University, Fuzhou350002, P. R. China
| | - Ting-Liang Xie
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, P. R. China
| | - Shuang-Feng Yin
- College of Chemistry and Chemical Engineering, Advanced Catalytic Engineering Research Center of the Ministry of Education, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha410082, P. R. China
| |
Collapse
|
5
|
Hasegawa S, Masuda S, Takano S, Harano K, Kikkawa J, Tsukuda T. Synergistically Activated Pd Atom in Polymer-Stabilized Au 23Pd 1 Cluster. ACS NANO 2022; 16:16932-16940. [PMID: 36191255 DOI: 10.1021/acsnano.2c06996] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Single Pd atom doped Au23Pd1 clusters stabilized by polyvinylpyrrolidone (Au23Pd1:PVP) were selectively synthesized by kinetically controlled coreduction of the Au and Pd precursor ions. The geometric structure of Au23Pd1:PVP was investigated by density functional theory calculation, aberration-corrected transmission electron microscopy, extended X-ray absorption fine structure analysis, Fourier transform infrared spectroscopy of adsorbed CO, and hydrogenation catalysis. These results showed that Au23Pd1:PVP takes polydisperse but the same atomic arrangements as undoped Au24:PVP while exposing all the atoms including the Pd atom on the surface. Au23Pd1:PVP exhibited a significantly higher catalytic activity than Au24:PVP for the aerobic oxidation of p-substituted benzyl alcohols. The kinetic studies showed that the rate-determining step was the hydride abstraction from the α-carbon of the alkoxides for both systems. The activation energy for hydride abstraction by Au23Pd1:PVP was lower than that by Au24:PVP, indicating that the doped Pd atom acts as the active center.
Collapse
Affiliation(s)
- Shingo Hasegawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
| | - Koji Harano
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Jun Kikkawa
- Research Center for Advanced Measurement and Characterization, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki305-0044, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto615-8520, Japan
| |
Collapse
|
6
|
Xia K, Yatabe T, Yonesato K, Yabe T, Kikkawa S, Yamazoe S, Nakata A, Yamaguchi K, Suzuki K. Supported Anionic Gold Nanoparticle Catalysts Modified Using Highly Negatively Charged Multivacant Polyoxometalates. Angew Chem Int Ed Engl 2022; 61:e202205873. [DOI: 10.1002/anie.202205873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Soichi Kikkawa
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
| | - Seiji Yamazoe
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Ayako Nakata
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
7
|
Xia K, Yatabe T, Yonesato K, Yabe T, Kikkawa S, Yamazoe S, Nakata A, Yamaguchi K, Suzuki K. Supported Anionic Gold Nanoparticle Catalysts Modified Using Highly Negatively Charged Multivacant Polyoxometalates. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202205873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kang Xia
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Takafumi Yatabe
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kentaro Yonesato
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Tomohiro Yabe
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Soichi Kikkawa
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
| | - Seiji Yamazoe
- Department of Chemistry Graduate School of Science Tokyo Metropolitan University 1-1 Minami Osawa Hachioji Tokyo 192-0397 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| | - Ayako Nakata
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
- International Center for Materials Nanoarchitectonics (WPI-MANA) National Institute for Materials Science (NIMS) 1-1 Namiki Tsukuba Ibaraki 305-0044 Japan
| | - Kazuya Yamaguchi
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
| | - Kosuke Suzuki
- Department of Applied Chemistry School of Engineering The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-8656 Japan
- Precursory Research for Embryonic Science and Technology (PRESTO) Japan Science and Technology Agency (JST) 4-1-8 Honcho Kawaguchi Saitama 332-0012 Japan
| |
Collapse
|
8
|
Hasegawa S, Masuda S, Takano S, Harano K, Tsukuda T. Polymer-Stabilized Au 38 Cluster: Atomically Precise Synthesis by Digestive Ripening and Characterization of the Atomic Structure and Oxidation Catalysis. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01355] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Shingo Hasegawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinya Masuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koji Harano
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
9
|
Lin M, Mochizuki C, Ishida T, Zhang Y, Haruta M, Murayama T. Effect of poly(N-vinylpyrrolidone) ligand on catalytic activities of Au nanoparticles supported on Nb2O5 for CO oxidation and furfural oxidation. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
10
|
Hasegawa S, Takano S, Harano K, Tsukuda T. New Magic Au 24 Cluster Stabilized by PVP: Selective Formation, Atomic Structure, and Oxidation Catalysis. JACS AU 2021; 1:660-668. [PMID: 34467325 PMCID: PMC8395683 DOI: 10.1021/jacsau.1c00102] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 06/13/2023]
Abstract
An unprecedented magic number cluster, Au24Cl x (x = 0-3), was selectively synthesized by the kinetically controlled reduction of the Au precursor ions in a microfluidic mixer in the presence of a large excess of poly(N-vinyl-2-pyrrolidone) (PVP). The atomic structure of the PVP-stabilized Au24Cl x was investigated by means of aberration-corrected transmission electron microscopy (ACTEM) and density functional theory (DFT) calculations. ACTEM video imaging revealed that the Au24Cl x clusters were stable against dissociation but fluctuated during the observation period. Some of the high-resolution ACTEM snapshots were explained by DFT-optimized isomeric structures in which all the constituent atoms were located on the surface. This observation suggests that the featureless optical spectrum of Au24Cl x is associated with the coexistence of distinctive isomers. X-ray photoelectron spectroscopy and Fourier-transform infrared spectroscopy of CO adsorbates revealed the electron-rich nature of Au24Cl x clusters due to the interaction with PVP. The Au24Cl x :PVP clusters catalyzed the aerobic oxidation of benzyl alcohol derivatives without degradation. Hammett analysis and the kinetic isotope effect indicated that the hydride elimination by Au24Cl x was the rate-limiting step with an apparent activation energy of 56 ± 3 kJ/mol, whereas the oxygen pressure dependence of the reaction kinetics suggested the involvement of hydrogen abstraction by coadsorbed O2 as a faster process.
Collapse
Affiliation(s)
- Shingo Hasegawa
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shinjiro Takano
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Koji Harano
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department
of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements
Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
11
|
Hasegawa S, Tsukuda T. Exploring Novel Catalysis Using Polymer-Stabilized Metal Clusters. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200377] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Shingo Hasegawa
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
12
|
Sivo A, Galaverna RDS, Gomes GR, Pastre JC, Vilé G. From circular synthesis to material manufacturing: advances, challenges, and future steps for using flow chemistry in novel application area. REACT CHEM ENG 2021. [DOI: 10.1039/d0re00411a] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
We review the emerging use of flow technologies for circular chemistry and material manufacturing, highlighting advances, challenges, and future directions.
Collapse
Affiliation(s)
- Alessandra Sivo
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- IT-20131 Milano
- Italy
| | | | | | | | - Gianvito Vilé
- Department of Chemistry
- Materials and Chemical Engineering “Giulio Natta”
- Politecnico di Milano
- IT-20131 Milano
- Italy
| |
Collapse
|
13
|
Dzhardimalieva GI, Zharmagambetova AK, Kudaibergenov SE, Uflyand IE. Polymer-Immobilized Clusters and Metal Nanoparticles in Catalysis. KINETICS AND CATALYSIS 2020. [DOI: 10.1134/s0023158420020044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
14
|
The Influence of the Gold Particle Size on the Catalytic Oxidation of 5-(Hydroxymethyl)furfural. Catalysts 2020. [DOI: 10.3390/catal10030342] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
For the production of chemicals from biomass, new selective processes are required. The selective oxidation of 5-(Hydroxymethyl)furfural (HMF), a promising platform molecule in fine chemistry, to 2,5-furandicarboxylic acid (FDCA) is considered a promising approach and requires the oxidation of two functional groups. In this study, Au/ZrO2 catalysts with different mean particle sizes were prepared by a chemical reduction method using tetrakis(hydroxymethyl)phosphonium chloride (THPC) and tested in HMF oxidation. The catalyst with the smallest mean particle size (2.1 nm) and the narrowest particle size distribution was highly active in the oxidation of the aldehyde moiety of HMF, but less active in alcohol oxidation. On the other hand, increased activity in FDCA synthesis up to 92% yield was observed over catalysts with a larger mean particle size (2.7 nm), which had a large fraction of small and some larger particles. A decreasing FDCA yield over the catalyst with the largest mean particle size (2.9 nm) indicates that the oxidation of both functional groups require different particle sizes and hint at the presence of an optimal particle size for both oxidation steps. The activity of Au particles seems to be influenced by surface steps and H bonding strength, the latter particularly in aldehyde oxidation. Therefore, the presence of both small and some larger Au particles seem to give catalysts with the highest catalytic activity.
Collapse
|
15
|
Chivers BA, Scott RWJ. Selective oxidation of crotyl alcohol by AuxPd bimetallic pseudo-single-atom catalysts. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01387k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Pseudo single-atom Pd catalysts dispersed in gold nanoparticle matrices show high selectivity and activity for room temperature crotyl alcohol oxidation.
Collapse
|
16
|
Chow E, Raguse B, Della Gaspera E, Barrow SJ, Hong J, Hubble LJ, Chai R, Cooper JS, Sosa Pintos A. Flow-controlled synthesis of gold nanoparticles in a biphasic system with inline liquid–liquid separation. REACT CHEM ENG 2020. [DOI: 10.1039/c9re00403c] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
4-Dimethylaminopyridine-stabilised gold nanoparticles are synthesised in a biphasic flow reactor system using organic/aqueous membrane separators and gas-permeable tubing.
Collapse
|
17
|
Chong HB, Gao GQ, Li G. Selective oxidation of aldehyde over hydroxymethyl group catalyzed by gold nanoparticles in aqueous phase. CHINESE J CHEM PHYS 2019. [DOI: 10.1063/1674-0068/cjcp1905101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Han-bao Chong
- School of Physics and Material Science, Anhui University, Hefei 230601, China
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Gui-qi Gao
- Institute of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Guang Li
- School of Physics and Material Science, Anhui University, Hefei 230601, China
| |
Collapse
|
18
|
Abstract
Microfluidics is an emerging field in diagnostics that allows for extremely precise fluid control and manipulation, enabling rapid and high-throughput sample processing in integrated micro-scale medical systems. These platforms are well-suited for both standard clinical settings and point-of-care applications. The unique features of microfluidics-based platforms make them attractive for early disease diagnosis and real-time monitoring of the disease and therapeutic efficacy. In this chapter, we will first provide a background on microfluidic fundamentals, microfluidic fabrication technologies, microfluidic reactors, and microfluidic total-analysis-systems. Next, we will move into a discussion on the clinical applications of existing and emerging microfluidic platforms for blood analysis, and for diagnosis and monitoring of cancer and infectious disease. Together, this chapter should elucidate the potential that microfluidic systems have in the development of effective diagnostic technologies through a review of existing technologies and promising directions.
Collapse
Affiliation(s)
- Alison Burklund
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Amogha Tadimety
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Yuan Nie
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - Nanjing Hao
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States
| | - John X J Zhang
- Thayer School of Engineering, Dartmouth College, Hanover, NH, United States; Norris Cotton Cancer Center, Dartmouth Hitchcock Medical Center, Lebanon, NH, United States.
| |
Collapse
|
19
|
Roberts EJ, Karadaghi LR, Wang L, Malmstadt N, Brutchey RL. Continuous Flow Methods of Fabricating Catalytically Active Metal Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27479-27502. [PMID: 31287651 DOI: 10.1021/acsami.9b07268] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
One of the obstacles preventing the commercialization of colloidal nanoparticle catalysts is the difficulty in fabricating these materials at scale while maintaining a high level of control over their resulting morphologies, and ultimately, their properties. Translation of batch-scale solution nanoparticle syntheses to continuous flow reactors has been identified as one method to address the scaling issue. The superior heat and mass transport afforded by the high surface-area-to-volume ratios of micro- and millifluidic channels allows for high control over reaction conditions and oftentimes results in decreased reaction times, higher yields, and/or more monodisperse size distributions compared to an analogous batch reaction. Furthermore, continuous flow reactors are automatable and have environmental health and safety benefits, making them practical for commercialization. Herein, a discussion of continuous flow methods, reactor design, and potential challenges is presented. A thorough account of the implementation of these technologies for the fabrication of catalytically active metal nanoparticles is reviewed for hydrogenation, electrocatalysis, and oxidation reactions.
Collapse
Affiliation(s)
- Emily J Roberts
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| | - Lanja R Karadaghi
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| | - Lu Wang
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 925 Bloom Walk , Los Angeles , California 90089-1211 , United States
| | - Noah Malmstadt
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
- Mork Family Department of Chemical Engineering and Materials Science , University of Southern California , 925 Bloom Walk , Los Angeles , California 90089-1211 , United States
| | - Richard L Brutchey
- Department of Chemistry , University of Southern California , 840 Downey Way , Los Angeles , California 90089-0744 , United States
| |
Collapse
|
20
|
Tofighi G, Yu X, Lichtenberg H, Doronkin DE, Wang W, Wöll C, Wang Y, Grunwaldt JD. Chemical Nature of Microfluidically Synthesized AuPd Nanoalloys Supported on TiO2. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00161] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Ghazal Tofighi
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | | | - Henning Lichtenberg
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | - Dmitry E. Doronkin
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| | | | | | | | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), D-76131 Karlsruhe, Germany
| |
Collapse
|
21
|
Abstract
In the present review, the important and current developments of gold catalysts for a wide range of applications are comprehensively summarized. This review also provides a detailed study of the literature data concerning the preparation, characterization, and catalytic applications of gold catalysts. Additionally, the main aspects of using supported gold nanoparticles (AuNPs) as catalysts for oxidation reactions are considered. In particular, the oxidation of benzyl alcohol to benzaldehyde and the production of adipic acid from cyclohexane are discussed in detail. Lastly, the key properties of gold catalysts are described, and an outlook on the application of gold catalysts is presented.
Collapse
|
22
|
Cattaneo S, Althahban S, Freakley SJ, Sankar M, Davies T, He Q, Dimitratos N, Kiely CJ, Hutchings GJ. Synthesis of highly uniform and composition-controlled gold-palladium supported nanoparticles in continuous flow. NANOSCALE 2019; 11:8247-8259. [PMID: 30976773 DOI: 10.1039/c8nr09917k] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The synthesis of supported bimetallic nanoparticles with well-defined size and compositional parameters has long been a challenge. Although batch colloidal methods are commonly used to pre-form metal nanoparticles with the desired size-range in solution, inhomogeneous mixing of the reactant solutions often leads to variations in size, structure and composition from batch-to-batch and even particle-to-particle. Here we describe a millifluidic approach for the production of oxide supported monometallic Au and bimetallic AuPd nanoparticles in a continuous fashion. This optimised method enables the production of nanoparticles with smaller mean sizes, tighter particle size distributions and a more uniform particle-to-particle chemical composition as compared to the conventional batch procedure. In addition, we describe a facile procedure to prepare bimetallic Au@Pd core-shell nanoparticles in continuous flow starting from solutions of the metal precursors. Moreover, the relative ease of scalability of this technique makes the proposed methodology appealing not only for small-scale laboratory purposes, but also for the industrial-scale production of supported metal nanoparticles.
Collapse
Affiliation(s)
- Stefano Cattaneo
- Cardiff Catalysis Institute, School of Chemistry, Cardiff University, Cardiff, CF10 3AT, UK.
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yamazoe S, Tsukuda T. X-ray Absorption Spectroscopy on Atomically Precise Metal Clusters. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180282] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Seiji Yamazoe
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
- Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Agency, 7 Gobancho, Chiyoda-ku, Tokyo 102-0076, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
24
|
Celentano M, Jakhmola A, Profeta M, Battista E, Guarnieri D, Gentile F, Netti PA, Vecchione R. Diffusion limited green synthesis of ultra-small gold nanoparticles at room temperature. Colloids Surf A Physicochem Eng Asp 2018. [DOI: 10.1016/j.colsurfa.2018.09.030] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
25
|
Suryawanshi PL, Gumfekar SP, Bhanvase BA, Sonawane SH, Pimplapure MS. A review on microreactors: Reactor fabrication, design, and cutting-edge applications. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.03.026] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
26
|
Huang H, du Toit H, Panariello L, Mazzei L, Gavriilidis A. Continuous synthesis of gold nanoparticles in micro- and millifluidic systems. PHYSICAL SCIENCES REVIEWS 2018. [DOI: 10.1515/psr-2017-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Gold nanomaterials have diverse applications ranging from healthcare and nanomedicine to analytical sciences and catalysis. Microfluidic and millifluidic reactors offer multiple advantages for their synthesis and manufacturing, including controlled or fast mixing, accurate reaction time control and excellent heat transfer. These advantages are demonstrated by reviewing gold nanoparticle synthesis strategies in flow devices. However, there are still challenges to be resolved, such as reactor fouling, particularly if robust manufacturing processes are to be developed to achieve the desired targets in terms of nanoparticle size, size distribution, surface properties, process throughput and robustness. Solutions to these challenges are more effective through a coordinated approach from chemists, engineers and physicists, which has at its core a qualitative and quantitative understanding of the synthesis processes and reactor operation. This is important as nanoparticle synthesis is complex, encompassing multiple phenomena interacting with each other, often taking place at short timescales. The proposed methodology for the development of reactors and processes is generic and contains various interconnected considerations. It aims to be a starting point towards rigorous design procedures for the robust and reproducible continuous flow synthesis of gold nanoparticles.
Graphical Abstract:
Collapse
Affiliation(s)
- He Huang
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Hendrik du Toit
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Luca Panariello
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Luca Mazzei
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering , University College London , Torrington Place , London WC1E 7JE , UK
| |
Collapse
|
27
|
‘Green’ synthesis of silver polymer Nanocomposites of poly (2-isopropenyl-2- oxazoline-co- N-vinylpyrrolidone) and its catalytic activity. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1548-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
28
|
Itteboina R, Madhuri UD, Ghosal P, Kannan M, Sau TK, Tsukuda T, Bhardwaj S. Efficient One-Pot Synthesis and pH-Dependent Tuning of Photoluminescence and Stability of Au 18(SC 2H 4CO 2H) 14 Cluster. J Phys Chem A 2018; 122:1228-1234. [PMID: 29314857 DOI: 10.1021/acs.jpca.7b10888] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Developing efficient ways to control the nanocluster properties and synthesize atomically precise metal nanoclusters are the foremost goals in the field of metal nanocluster research. In this article, we demonstrate that the direct synthesis of atomically precise, hydrophilic metal nanoclusters as well as tuning of their properties can be achieved by an appropriate selection of reactants, binding ligand, and their proportions. Thus, a facile, single-step method has been developed for the direct synthesis of Au18(SC2H4CO2H)14 nanocluster in an aqueous medium under ambient conditions. The synthesis does not require any pH or temperature control and postsynthesis size-separation step. The use of a hydrophilic, bifunctional short carbon-chain capping ligand, HSC2H4CO2H, allows tuning of cluster properties such as the photoluminescence and stability in an aqueous medium via the variation of pH of the cluster solution. By using a phase transfer catalyst, the nanoclusters can also be transferred into toluene solvent, which further enhances the nanocluster photoluminescence. The formation, composition, and purity of the product clusters have been characterized by using a number of methods such as the polyacrylamide gel electrophoresis, UV-visible and FTIR spectroscopies, transmission electron microscopy, energy dispersive X-ray analysis, thermogravimetric analysis, X-ray photoelectron spectroscopy, and matrix-assisted laser desorption ionization-time-of-flight mass spectrometry. Gold nanoclusters with properties such as water solubility, water-to-organic phase-transfer ability, and tunable stability and photoluminescence are promising for various studies and applications. The work reveals a few principles that can be helpful in the development of a general toolbox for the rational design of size-selective synthesis and properties tuning of the metal nanoclusters.
Collapse
Affiliation(s)
- Ramakrishna Itteboina
- CCNSB, International Institute of Information Technology-Hyderabad , Gachibowli, Hyderabad 500032, India
| | - U Divya Madhuri
- School of Chemistry, University of Hyderabad , Gachibowli, Hyderabad 500046, India
| | - Partha Ghosal
- Defence Metallurgical Research Laboratory (DMRL) , Kanchanbagh, Hyderabad 500058, India
| | - Monica Kannan
- Proteomics Facility, School of Life Sciences, University of Hyderabad , Gachibowli, Hyderabad 500046, India
| | - Tapan K Sau
- CCNSB, International Institute of Information Technology-Hyderabad , Gachibowli, Hyderabad 500032, India
| | - Tatsuya Tsukuda
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shweta Bhardwaj
- CCNSB, International Institute of Information Technology-Hyderabad , Gachibowli, Hyderabad 500032, India
| |
Collapse
|
29
|
Hasegawa S, Takano S, Yamazoe S, Tsukuda T. Prominent hydrogenation catalysis of a PVP-stabilized Au34 superatom provided by doping a single Rh atom. Chem Commun (Camb) 2018; 54:5915-5918. [DOI: 10.1039/c8cc03123a] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A single rhodium atom was precisely doped into a gold cluster Au34 stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) as revealed by mass spectrometry.
Collapse
Affiliation(s)
- Shingo Hasegawa
- Department of Chemistry
- School of Science
- The University of Tokyo
- 7-3-1 Hongo
- Bunkyo-ku
| | - Shinjiro Takano
- Department of Chemistry
- School of Science
- The University of Tokyo
- 7-3-1 Hongo
- Bunkyo-ku
| | - Seiji Yamazoe
- Department of Chemistry
- School of Science
- The University of Tokyo
- 7-3-1 Hongo
- Bunkyo-ku
| | - Tatsuya Tsukuda
- Department of Chemistry
- School of Science
- The University of Tokyo
- 7-3-1 Hongo
- Bunkyo-ku
| |
Collapse
|
30
|
Doping a Single Palladium Atom into Gold Superatoms Stabilized by PVP: Emergence of Hydrogenation Catalysis. Top Catal 2017. [DOI: 10.1007/s11244-017-0876-z] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
31
|
Bobuatong K, Sakurai H, Ehara M. Intramolecular Hydroamination by a Primary Amine of an Unactivated Alkene on Gold Nanoclusters: A DFT Study. ChemCatChem 2017. [DOI: 10.1002/cctc.201700839] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Karan Bobuatong
- Institute for Molecular Science and Research Center for Computational Science 38 Nishigo-Naka, Myodaiji Okazaki 444-8585 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University Kyoto Daigaku-Katsura Kyoto 615-8510 Japan
- Current address: Department of Chemistry, Faculty of Science and Technology Rajamangala University of Technology Thanyaburi Klong 6 Thanyaburi Pathumthani 12110 Thailand
| | - Hidehiro Sakurai
- Division of Applied Chemistry, Graduate School of Engineering Osaka University 2-1 Yamada-oka Suita Osaka 565-0871 Japan
| | - Masahiro Ehara
- Institute for Molecular Science and Research Center for Computational Science 38 Nishigo-Naka, Myodaiji Okazaki 444-8585 Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB) Kyoto University Kyoto Daigaku-Katsura Kyoto 615-8510 Japan
| |
Collapse
|
32
|
Baber R, Mazzei L, Thanh NTK, Gavriilidis A. An engineering approach to synthesis of gold and silver nanoparticles by controlling hydrodynamics and mixing based on a coaxial flow reactor. NANOSCALE 2017; 9:14149-14161. [PMID: 28905060 DOI: 10.1039/c7nr04962e] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this work we present a detailed study of flow technology approaches that could open up new possibilities for nanoparticle synthesis. The synthesis of gold and silver nanoparticles (NPs) in a flow device based on a coaxial flow reactor (CFR) was investigated. The CFR comprised of an outer glass tube of 2 mm inner diameter (I.D.) and an inner glass tube whose I.D. varied between 0.142 and 0.798 mm. A split and recombine (SAR) mixer and coiled flow inverter (CFI) were further employed to alter the mixing conditions after the CFR. The 'Turkevich' method was used to synthesize gold NPs, with a CFR followed by a CFI. This assembly allows control over nucleation and growth through variation of residence time. Increasing the total flow rate from 0.25 ml min-1 to 3 ml min-1 resulted initially in a constant Au NP size, and beyond 1 ml min-1 to a size increase of Au NPs from 17.9 ± 2.1 nm to 23.9 ± 4.7 nm. The temperature was varied between 60-100 °C and a minimum Au NP size of 17.9 ± 2.1 nm was observed at 80 °C. Silver NPs were synthesized in a CFR followed by a SAR mixer, using sodium borohydride to reduce silver nitrate in the presence of trisodium citrate. The SAR mixer provided an enhancement of the well-controlled laminar mixing in the CFR. Increasing silver nitrate concentration resulted in a decrease in Ag NP size from 5.5 ± 2.4 nm to 3.4 ± 1.4 nm. Different hydrodynamic conditions were studied in the CFR operated in isolation for silver NP synthesis. Increasing the Reynolds number from 132 to 530 in the inner tube created a vortex flow resulting in Ag NPs in the size range between 5.9 ± 1.5 nm to 7.7 ± 3.4 nm. Decreasing the inner tube I.D. from 0.798 mm to 0.142 mm resulted in a decrease in Ag NP size from 10.5 ± 4.0 nm to 4.7 ± 1.4 nm. Thus, changing the thickness of the inner stream enabled control over size of the Ag NPs.
Collapse
Affiliation(s)
- Razwan Baber
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Luca Mazzei
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Nguyen Thi Kim Thanh
- Biophysics Group, Department of Physics and Astronomy, University College London, Gower Street, London WC1E 6BT, UK. and UCL Healthcare Biomagnetic and Nanomaterials Laboratories, 21 Albemarle Street, London W1S 4BS, UK
| | - Asterios Gavriilidis
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
33
|
Jian N, Bauer K, Palmer RE. Towards production of novel catalyst powders from supported size-selected clusters by multilayer deposition and dicing. NANOTECHNOLOGY 2017; 28:325601. [PMID: 28718457 DOI: 10.1088/1361-6528/aa795b] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
A multilayer deposition method has been developed with the potential to capture and process atomic clusters generated by a high flux cluster beam source. In this deposition mode a series of sandwich structures each consisting of three layers-a carbon support layer, cluster layer and polymer release layer-is sequentially deposited to form a stack of isolated cluster layers, as confirmed by through-focal aberration-corrected HAADF STEM analysis. The stack can then be diced into small pieces by a mechanical saw. The diced pieces are immersed in solvent to dissolve the polymer release layer and form small platelets of supported clusters.
Collapse
Affiliation(s)
- Nan Jian
- Nanoscale Physics, Chemistry and Engineering Research Laboratory, School of Physics and Astronomy, University of Birmingham, Birmingham, B15 2TT, United Kingdom
| | | | | |
Collapse
|
34
|
Chakraborty I, Pradeep T. Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles. Chem Rev 2017; 117:8208-8271. [DOI: 10.1021/acs.chemrev.6b00769] [Citation(s) in RCA: 1305] [Impact Index Per Article: 186.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Indranath Chakraborty
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| | - Thalappil Pradeep
- DST Unit of Nanoscience (DST
UNS) and Thematic Unit of Excellence, Department of Chemistry, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
35
|
Ishida R, Hayashi S, Yamazoe S, Kato K, Tsukuda T. Hydrogen-Mediated Electron Doping of Gold Clusters As Revealed by In Situ X-ray and UV-vis Absorption Spectroscopy. J Phys Chem Lett 2017; 8:2368-2372. [PMID: 28459582 DOI: 10.1021/acs.jpclett.7b00722] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We previously reported that small (∼1.2 nm) gold clusters stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) exhibited a localized surface plasmon resonance (LSPR) band at ∼520 nm in the presence of NaBH4. To reveal the mechanism of this phenomenon, the electronic structure of Au:PVP during the reaction with NaBH4 in air was examined by means of in situ X-ray absorption spectroscopy at Au L3-edge and UV-vis spectroscopy. These measurements indicated that the appearance of the LSPR band is not associated with the growth in size but is ascribed to electron doping to the Au sp band by the adsorbed H atoms.
Collapse
Affiliation(s)
- Ryo Ishida
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shun Hayashi
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Seiji Yamazoe
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University , Katsura, Kyoto 615-8520, Japan
| | - Kazuo Kato
- Japan Synchrotron Radiation Research Institute , SPring-8, 1-1-1 Koto, Sayo, Hyogo 679-5198, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University , Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
36
|
Maguire P, Rutherford D, Macias-Montero M, Mahony C, Kelsey C, Tweedie M, Pérez-Martin F, McQuaid H, Diver D, Mariotti D. Continuous In-Flight Synthesis for On-Demand Delivery of Ligand-Free Colloidal Gold Nanoparticles. NANO LETTERS 2017; 17:1336-1343. [PMID: 28139927 DOI: 10.1021/acs.nanolett.6b03440] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We demonstrate an entirely new method of nanoparticle chemical synthesis based on liquid droplet irradiation with ultralow (<0.1 eV) energy electrons. While nanoparticle formation via high energy radiolysis or transmission electron microscopy-based electron bombardment is well-understood, we have developed a source of electrons with energies close to thermal which leads to a number of important and unique benefits. The charged species, including the growing nanoparticles, are held in an ultrathin surface reaction zone which enables extremely rapid precursor reduction. In a proof-of-principle demonstration, we obtain small-diameter Au nanoparticles (∼4 nm) with tight control of polydispersity, in under 150 μs. The precursor was almost completely reduced in this period, and the resultant nanoparticles were water-soluble and free of surfactant or additional ligand chemistry. Nanoparticle synthesis rates within the droplets were many orders of magnitude greater than equivalent rates reported for radiolysis, electron beam irradiation, or colloidal chemical synthesis where reaction times vary from seconds to hours. In our device, a stream of precursor loaded microdroplets, ∼15 μm in diameter, were transported rapidly through a cold atmospheric pressure plasma with a high charge concentration. A high electron flux, electron and nanoparticle confinement at the surface of the droplet, and the picoliter reactor volume are thought to be responsible for the remarkable enhancement in nanoparticle synthesis rates. While this approach exhibits considerable potential for scale-up of synthesis rates, it also offers the more immediate prospect of continuous on-demand delivery of high-quality nanomaterials directly to their point of use by avoiding the necessity of collection, recovery, and purification. A range of new applications can be envisaged, from theranostics and biomedical imaging in tissue to inline catalyst production for pollution remediation in automobiles.
Collapse
Affiliation(s)
- Paul Maguire
- NIBEC, University of Ulster , Belfast, BT37 0QB, Northern Ireland
| | - David Rutherford
- NIBEC, University of Ulster , Belfast, BT37 0QB, Northern Ireland
| | | | - Charles Mahony
- NIBEC, University of Ulster , Belfast, BT37 0QB, Northern Ireland
| | - Colin Kelsey
- NIBEC, University of Ulster , Belfast, BT37 0QB, Northern Ireland
| | - Mark Tweedie
- NIBEC, University of Ulster , Belfast, BT37 0QB, Northern Ireland
| | | | - Harold McQuaid
- NIBEC, University of Ulster , Belfast, BT37 0QB, Northern Ireland
| | - Declan Diver
- SUPA, School of Physics and Astronomy, University of Glasgow , Glasgow G12 8QQ, United Kingdom
| | - Davide Mariotti
- NIBEC, University of Ulster , Belfast, BT37 0QB, Northern Ireland
| |
Collapse
|
37
|
du Toit H, Macdonald TJ, Huang H, Parkin IP, Gavriilidis A. Continuous flow synthesis of citrate capped gold nanoparticles using UV induced nucleation. RSC Adv 2017. [DOI: 10.1039/c6ra27173a] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A novel multimodal reactor system for separating the nucleation and growth phases of gold nanoparticle synthesis to control particle size.
Collapse
Affiliation(s)
- H. du Toit
- Department of Chemical Engineering
- University College London
- London
- UK
| | | | - H. Huang
- Department of Chemical Engineering
- University College London
- London
- UK
| | - I. P. Parkin
- Department of Chemistry
- University College London
- London
- UK
| | - A. Gavriilidis
- Department of Chemical Engineering
- University College London
- London
- UK
| |
Collapse
|
38
|
Tofighi G, Lichtenberg H, Pesek J, Sheppard TL, Wang W, Schöttner L, Rinke G, Dittmeyer R, Grunwaldt JD. Continuous microfluidic synthesis of colloidal ultrasmall gold nanoparticles:in situstudy of the early reaction stages and application for catalysis. REACT CHEM ENG 2017. [DOI: 10.1039/c7re00114b] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The formation of gold nanoparticles in the first 2–20 ms of the reaction was studiedin situwith XAS using microfluidics.
Collapse
Affiliation(s)
- Ghazal Tofighi
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
| | - Henning Lichtenberg
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
- Institute of Catalysis Research and Technology (IKFT)
| | - Jan Pesek
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
| | - Thomas L. Sheppard
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
- Institute of Catalysis Research and Technology (IKFT)
| | - Wu Wang
- Institute of Nanotechnology (INT)
- Karlsruhe Institute of Technology (KIT)
- D-76344 Eggenstein-Leopoldshafen
- Germany
| | - Ludger Schöttner
- Institute of Functional Interfaces (IFG)
- Karlsruhe Institute of Technology (KIT)
- D-76344 Eggenstein-Leopoldshafen
- Germany
| | - Günter Rinke
- Institute for Micro Process Engineering (IMVT)
- Karlsruhe Institute of Technology (KIT)
- D-76344 Eggenstein-Leopoldshafen
- Germany
| | - Roland Dittmeyer
- Institute for Micro Process Engineering (IMVT)
- Karlsruhe Institute of Technology (KIT)
- D-76344 Eggenstein-Leopoldshafen
- Germany
| | - Jan-Dierk Grunwaldt
- Institute for Chemical Technology and Polymer Chemistry (ITCP)
- Karlsruhe Institute of Technology (KIT)
- D-76131 Karlsruhe
- Germany
- Institute of Catalysis Research and Technology (IKFT)
| |
Collapse
|
39
|
Ishida R, Arii S, Kurashige W, Yamazoe S, Koyasu K, Negishi Y, Tsukuda T. Halogen adsorbates on polymer-stabilized gold clusters: Mass spectrometric detection and effects on catalysis. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62501-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
40
|
Advances in polymer-stabilized Au nano-cluster catalysis : Interplay of theoretical calculations and experiments. CHINESE JOURNAL OF CATALYSIS 2016. [DOI: 10.1016/s1872-2067(16)62463-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
41
|
Ishida R, Yamazoe S, Koyasu K, Tsukuda T. Repeated appearance and disappearance of localized surface plasmon resonance in 1.2 nm gold clusters induced by adsorption and desorption of hydrogen atoms. NANOSCALE 2016; 8:2544-2547. [PMID: 26488140 DOI: 10.1039/c5nr06373f] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Addition of an aqueous solution of NaBH4 to a dispersion of small (∼1.2 nm) gold clusters stabilized by poly(N-vinyl-2-pyrrolidone) (Au:PVP) induced a localized surface plasmon resonance (LSPR) absorption for a certain period of time while maintaining the cluster size. The duration of the LSPR band could be lengthened by increasing the NaBH4 concentration and shortened by increasing the concentration of dissolved O2, and the LSPR band could be made to appear and reappear repeatedly. The appearance of the LSPR band is explained by the electron donation to the Au core from the adsorbed H atoms that originate from NaBH4, whereas its disappearance is ascribed to the removal of H atoms by their reaction with O2. These results suggest that the transition between the metallic and non-metallic electronic structures of the Au clusters can be reversibly induced by the adsorption and desorption of H atoms, which are electronically equivalent to Au.
Collapse
Affiliation(s)
- Ryo Ishida
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| | - Seiji Yamazoe
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Kiichirou Koyasu
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan. and Elements Strategy Initiative for Catalysts and Batteries (ESICB), Kyoto University, Katsura, Kyoto 615-8520, Japan
| |
Collapse
|
42
|
Pillegowda M, Periyasamy G. DFT studies on the influence of ligation on optical and redox properties of bimetallic [Au4M2] clusters. RSC Adv 2016. [DOI: 10.1039/c6ra14886g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Computational studies have been employed to understand the lowest energy conformers and the properties of bare [Au4M2] and ligated [Au4M2(SCH3)6], [Au4M2(PH3)6]2+ clusters in both gas phase and implicit solvent media.
Collapse
Affiliation(s)
- Manohar Pillegowda
- Department of Chemistry
- Central College Campus
- Bangalore University
- Bangalore-560001
- India
| | - Ganga Periyasamy
- Department of Chemistry
- Central College Campus
- Bangalore University
- Bangalore-560001
- India
| |
Collapse
|
43
|
Chong H, Zhu M. Catalytic Reduction by Quasi-Homogeneous Gold Nanoclusters in the Liquid Phase. ChemCatChem 2015. [DOI: 10.1002/cctc.201500247] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
44
|
Hayashi N, Sakai Y, Tsunoyama H, Nakajima A. Development of ultrafine multichannel microfluidic mixer for synthesis of bimetallic nanoclusters: catalytic application of highly monodisperse AuPd nanoclusters stabilized by poly(N-vinylpyrrolidone). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10539-10547. [PMID: 25145798 DOI: 10.1021/la501642m] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
On account of their novel properties, bimetallic nanoparticles and nanoclusters (NCs) are strong potential candidates for optical, magnetic, and catalytic functional materials. These properties depend on the chemical composition and size (number of constituent atoms) of the NCs. Control of size, structure, and composition is particularly important for fabricating highly functional materials based on bimetallic NCs. Size- and structure-controlled synthesis of two-element alloys can reveal their intrinsic electronic synergistic effects. However, because synergistic enhancement of activity is strongly affected by composition as well as by size and structure, controlled synthesis is a challenging task, particularly in catalytic applications. To investigate catalytic synergistic effects, we have synthesized highly monodisperse, sub-2 nm, solid-solution AuPd NCs stabilized with poly(N-vinylpyrrolidone) (AuPd:PVP) using a newly developed ultrafine microfluidic mixing device with 15 μm wide multiple lamination channels. The synergistic enhancement for catalytic aerobic oxidation of benzyl alcohol exhibited a volcano-shaped trend, with a maximum at 20-65 at. % Pd. From X-ray photoelectron spectroscopic measurements, we confirmed that the enhanced activity originates from the enhanced electron density at the Au sites, donated by Pd sites.
Collapse
Affiliation(s)
- Naoto Hayashi
- Nakajima Designer Nanocluster Assembly Project, Exploratory Research for Advanced Technology (ERATO), Japan Science and Technology Agency , 3-2-1 Sakado, Kawasaki 213-0012, Japan
| | | | | | | |
Collapse
|
45
|
|
46
|
Kitano T, Shishido T, Teramura K, Tanaka T. Acid property of Nb 2 O 5 /Al 2 O 3 prepared by impregnation method by using niobium oxalate solution: Effect of pH on the structure and acid property. Catal Today 2014. [DOI: 10.1016/j.cattod.2013.09.053] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
Abstract
Small, negatively charged gold clusters isolated in vacuum can oxidize CO via electron-transfer-mediated activation of O2. This suggests that Au clusters can act as aerobic oxidation catalysts in the real world when their structure parameters satisfy given required conditions. However, there is a technical challenge for the development of Au cluster oxidation catalysts; the structural parameters of the Au clusters, such as size and composition, must be precisely controlled because the intrinsic chemical properties of the clusters are strongly dependent on these parameters. This Account describes our efforts to achieve precision synthesis of small (diameter <2 nm) Au clusters, stabilized by polymers and immobilized on supports, for a variety of catalytic applications. Since we aim to develop Au cluster catalysts by taking full advantage of their intrinsic, size-specific chemical nature, we chose chemically inert materials for the stabilizers and supports. We began by preparing small Au clusters weakly stabilized by polyvinylpyrrolidone (PVP) to test the hypothesis that small Au clusters in the real world will also show size-specific oxidation catalysis. The size of Au:PVP was controlled using a microfluidic device and monitored by mass spectrometry. We found that only Au clusters smaller than a certain critical size show a variety of aerobic oxidation reactions and proposed that the reactions proceed via catalytic activation of O2 by negatively charged Au clusters. We also developed a method to precisely control the size and composition of supported Au clusters using ligand-protected Au and Au-based bimetallic clusters as precursors. These small Au clusters immobilized on mesoporous silica, hydroxyapatite, and carbon nanotubes acted as oxidation catalysts. We have demonstrated for the first time an optimal Au cluster size for the oxidation of cyclohexane and a remarkable improvement in the oxidation catalysis of Au25 clusters by single-atom Pd doping. The non-scalable catalysis of Au clusters that we reported here points to the possibility that novel catalysis beyond that expected from bulk counterparts can be developed simply by reducing the catalyst size to the sub-2 nm regime.
Collapse
Affiliation(s)
- Seiji Yamazoe
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 606-8501, Japan
| | - Kiichirou Koyasu
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
| | - Tatsuya Tsukuda
- Department of Chemistry, School of Science, The University of Tokyo, Tokyo 113-0033, Japan
- Elements Strategy Initiative for Catalysts and Batteries, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
48
|
Krishna KS, Li Y, Li S, Kumar CS. Lab-on-a-chip synthesis of inorganic nanomaterials and quantum dots for biomedical applications. Adv Drug Deliv Rev 2013; 65:1470-95. [PMID: 23726944 DOI: 10.1016/j.addr.2013.05.006] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Revised: 05/14/2013] [Accepted: 05/22/2013] [Indexed: 10/26/2022]
Abstract
The past two decades have seen a dramatic raise in the number of investigations leading to the development of Lab-on-a-Chip (LOC) devices for synthesis of nanomaterials. A majority of these investigations were focused on inorganic nanomaterials comprising of metals, metal oxides, nanocomposites and quantum dots. Herein, we provide an analysis of these findings, especially, considering the more recent developments in this new decade. We made an attempt to bring out the differences between chip-based as well as tubular continuous flow systems. We also cover, for the first time, various opportunities the tools from the field of computational fluid dynamics provide in designing LOC systems for synthesis inorganic nanomaterials. Particularly, we provide unique examples to demonstrate that there is a need for concerted effort to utilize LOC devices not only for synthesis of inorganic nanomaterials but also for carrying out superior in vitro studies thereby, paving the way for faster clinical translation. Even though LOC devices with the possibility to carry out multi-step syntheses have been designed, surprisingly, such systems have not been utilized for carrying out simultaneous synthesis and bio-functionalization of nanomaterials. While traditionally, LOC devices are primarily based on microfluidic systems, in this review article, we make a case for utilizing millifluidic systems for more efficient synthesis, bio-functionalization and in vitro studies of inorganic nanomaterials tailor-made for biomedical applications. Finally, recent advances in the field clearly point out the possibility for pushing the boundaries of current medical practices towards personalized health care with a vision to develop automated LOC-based instrumentation for carrying out simultaneous synthesis, bio-functionalization and in vitro evaluation of inorganic nanomaterials for biomedical applications.
Collapse
|
49
|
Tsai TH, Yu CC, Liu YC, Yang KH. Effectively catalytic decomposition of acetaldehydes in spirits by using chitosan-capped gold nanoparticles. J Appl Polym Sci 2013. [DOI: 10.1002/app.39127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
50
|
Gao L, Nishikata T, Kojima K, Chikama K, Nagashima H. Water- and Organo-Dispersible Gold Nanoparticles Supported by Using Ammonium Salts of Hyperbranched Polystyrene: Preparation and Catalysis. Chem Asian J 2013; 8:3152-63. [DOI: 10.1002/asia.201300871] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2013] [Revised: 08/19/2013] [Indexed: 12/13/2022]
|