1
|
Dziubak D, Sęk S. Sparsely tethered bilayer lipid membranes formed by self-assembly of bicelles: Spectroelectrochemical characterization and incorporation of transmembrane protein. Bioelectrochemistry 2023; 153:108482. [PMID: 37271008 DOI: 10.1016/j.bioelechem.2023.108482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/17/2023] [Accepted: 05/26/2023] [Indexed: 06/06/2023]
Abstract
Many biochemical processes related to proper homeostasis take place in cell membranes. The key molecules involved in these processes are proteins, including transmembrane proteins. These macromolecules still challenge the understanding of their function within the membrane. Biomimetic models that mimic the properties of the cell membrane can help understand their functionality. Unfortunately, preserving the native protein structure in such systems is problematic. A possible solution to this problem involves the use of bicelles. Their unique properties make integrating bicelles with transmembrane proteins manageable while preserving their native structure. Hitherto, bicelles have not been used as precursors for protein-hosting lipid membranes deposited on solid substrates like pre-modified gold. Here, we demonstrated that bicelles can be self-assembled to form sparsely tethered bilayer lipid membranes and the properties of the resulting membrane satisfy the conditions suitable for transmembrane protein insertion. We showed that the incorporation of α-hemolysin toxin in the lipid membrane leads to a decrease in membrane resistance due to pore formation. Simultaneously, the insertion of the protein causes a drop in the capacitance of the membrane-modified electrode, which can be explained by the dehydration of the polar region of the lipid bilayer and the loss of water from the submembrane region.
Collapse
Affiliation(s)
- Damian Dziubak
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| | - Sławomir Sęk
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Żwirki i Wigury 101, 02-089 Warsaw, Poland.
| |
Collapse
|
2
|
Altunayar-Unsalan C, Unsalan O, Mavromoustakos T. Molecular interactions of hesperidin with DMPC/cholesterol bilayers. Chem Biol Interact 2022; 366:110131. [PMID: 36037876 DOI: 10.1016/j.cbi.2022.110131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 08/05/2022] [Accepted: 08/20/2022] [Indexed: 11/03/2022]
Abstract
Since cell membranes are complex systems, the use of model lipid bilayers is quite important for the study of their interactions with bioactive molecules. Mammalian cell membranes require cholesterol (CHOL) for their structure and function. For this reason, the mixtures of phospholipid and cholesterol are necessary to use in model membrane studies to better simulate the real systems. In the present study, we investigated the effect of the incorporation of hesperidin in model membranes consisting of dimyristoylphosphatidylcholine (DMPC) and CHOL by using differential scanning calorimetry (DSC), attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy, and atomic force microscopy (AFM). ATR-FTIR results demonstrated that hesperidin increases the fluidity of the DMPC/CHOL binary system. DSC findings indicated that the presence of 5 mol% hesperidin induces a broadening of the main phase transition consisting of three overlapping components. AFM experiments showed that hesperidin increases the thickness of DMPC/CHOL lipid bilayer model membranes. In addition to experimental results, molecular docking studies were conducted with hesperidin and human lanosterol synthase (LS), which is an enzyme found in the final step of cholesterol synthesis, to characterize hesperidin's interactions with its surrounding via its hydroxyl and oxygen groups. Then, hesperidin's ADME/Tox (absorption, distribution, metabolism, excretion and toxicity) profile was computed to see the potential impact on living system. In conclusion, considering the data obtained from experimental studies, this work ensures molecular insights in the interaction between a flavonoid, as an antioxidant drug model, and lipids mimicking those found in mammalian membranes. Moreover, computational studies demonstrated that hesperidin may be a great potential for use as a therapeutic agent for hypercholesterolemia due to its antioxidant property.
Collapse
Affiliation(s)
- Cisem Altunayar-Unsalan
- Ege University Central Research Testing and Analysis Laboratory Research and Application Center, 35100, Bornova, Izmir, Turkey.
| | - Ozan Unsalan
- Ege University, Faculty of Science, Department of Physics, 35100, Bornova, Izmir, Turkey.
| | - Thomas Mavromoustakos
- Section of Organic Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, Athens, 15771, Greece.
| |
Collapse
|
3
|
Sofińska K, Lupa D, Chachaj-Brekiesz A, Czaja M, Kobierski J, Seweryn S, Skirlińska-Nosek K, Szymonski M, Wilkosz N, Wnętrzak A, Lipiec E. Revealing local molecular distribution, orientation, phase separation, and formation of domains in artificial lipid layers: Towards comprehensive characterization of biological membranes. Adv Colloid Interface Sci 2022; 301:102614. [PMID: 35190313 DOI: 10.1016/j.cis.2022.102614] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/28/2022] [Accepted: 02/01/2022] [Indexed: 01/01/2023]
Abstract
Lipids, together with molecules such as DNA and proteins, are one of the most relevant systems responsible for the existence of life. Selected lipids are able to assembly into various organized structures, such as lipid membranes. The unique properties of lipid membranes determine their complex functions, not only to separate biological environments, but also to participate in regulatory functions, absorption of nutrients, cell-cell communication, endocytosis, cell signaling, and many others. Despite numerous scientific efforts, still little is known about the reason underlying the variability within lipid membranes, and its biochemical significance. In this review, we discuss the structural complexity of lipid membranes, as well as the importance to simplify studied systems in order to understand phenomena occurring in natural, complex membranes. Such systems require a model interface to be analyzed. Therefore, here we focused on analytical studies of artificial systems at various interfaces. The molecular structure of lipid membranes, specifically the nanometric thickens of molecular bilayer, limits in a major extent the choice of highly sensitive methods suitable to study such structures. Therefore, we focused on methods that combine high sensitivity, and/or chemical selectivity, and/or nanometric spatial resolution, such as atomic force microscopy, nanospectroscopy (tip-enhanced Raman spectroscopy, infrared nanospectroscopy), phase modulation infrared reflection-absorption spectroscopy, sum-frequency generation spectroscopy. We summarized experimental and theoretical approaches providing information about molecular structure and composition, lipid spatial distribution (phase separation), organization (domain shape, molecular orientation) of lipid membranes, and real-time visualization of the influence of various molecules (proteins, drugs) on their integrity. An integral part of this review discusses the latest achievements in the field of lipid layer-based biosensors.
Collapse
|
4
|
Sieling T, Petersen T, Alpers T, Christoffers J, Klüner T, Brand I. CD Stretching Modes are Sensitive to the Microenvironment in Ionic Liquids. Chemistry 2021; 27:17808-17817. [PMID: 34510599 PMCID: PMC9298891 DOI: 10.1002/chem.202102346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Indexed: 11/26/2022]
Abstract
Knowledge of the structure of the electrical double layer in ionic liquids (IL) is crucial for their applications in electrochemical technologies. We report the synthesis and applicability of an imidazolium-based amphiphilic ionic liquid with a perdeuterated alkyl chain for studies of electric potential-dependent rearrangements, and changes in the microenvironment in a monolayer on a Au(111) surface. Electrochemical measurements show two states of the organization of ions on the electrode surface. In situ IR spectroscopy shows that the alkyl chains in imidazolium cations change their orientation depending on the adsorption state. The methylene-d2 stretching modes in the perdeuterated IL display a reversible, potential-dependent appearance of a new band. The presence of this mode also depends on the anion in the IL. Supported by quantum chemical calculations, this new mode is assigned to a second νas (CD2 ) band in alkyl-chain fragments embedded in a polar environment of the anions/solvent present in the vicinity of the imidazolium cation and electrode. It is a measure of the potential-dependent segregation between polar and nonpolar environments in the layers of an IL closest to the electrode.
Collapse
Affiliation(s)
- Thorben Sieling
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | - Thorben Petersen
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | - Torben Alpers
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | | | - Thorsten Klüner
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| | - Izabella Brand
- Institute of ChemistryUniversity of Oldenburg26111OldenburgGermany
| |
Collapse
|
5
|
Zaborowska M, Dziubak D, Matyszewska D, Bilewicz R. Surface and electrochemical properties of lipid raft model membranes and how they are affected by incorporation of statin. Electrochim Acta 2021. [DOI: 10.1016/j.electacta.2021.138514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
6
|
Evaluation of the effects in cellular membrane models of antitrypanosomal poly-thymolformaldehyde (PTF) using Langmuir monolayers. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2020; 1863:183500. [PMID: 33130097 DOI: 10.1016/j.bbamem.2020.183500] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 10/20/2020] [Indexed: 11/23/2022]
Abstract
The polymerization of bioactive compounds may be interesting because the supramolecular structures formed can boost biological action on microorganism membranes. In the present work, poly-thymolformaldehyde (PTF) activity, prepared by condensation of thymol and formaldehyde, was evaluated against trypomastigote forms of Trypanosoma cruzi and related with the physicochemical changes provided by the incorporation of the compound in protozoan cell membrane models. PTF exhibited an EC50 value of 23.4 μg/mL and no toxicity against mammalian cells (CC50 > 200 μg/mL). To understand the molecular action of PTF as an antiprotozoal candidate, this compound was incorporated in Langmuir monolayers of dipalmitoylphosphatidylglycerol (DPPG) as a model for parasite cell membranes. PTF shifted DPPG surface pressure-area isotherms to higher areas, indicating its incorporation in the lipid films. Additionally, it changed the thermodynamic, compressional, structural, and morphological properties of the floating monolayers, decreasing the collapse pressure, reducing the surface elasticity, and segregating molecules at the interface, forming domains with different reflectivities. Infrared spectroscopy showed that the lipid films with PTF presented an increased rate of gauche/all-trans conformers for the methylene groups from the acyl chains, indicating molecular disorder. Therefore, these results show that PTF alters the physicochemical properties of DPPG monolayers as a model for protozoa cell membranes, which can enhance the comprehension of the parasitic action of PTF against T. cruzi.
Collapse
|
7
|
Electrochemical Biosensors Based on Membrane-Bound Enzymes in Biomimetic Configurations. SENSORS 2020; 20:s20123393. [PMID: 32560121 PMCID: PMC7349357 DOI: 10.3390/s20123393] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 06/12/2020] [Accepted: 06/14/2020] [Indexed: 02/07/2023]
Abstract
In nature, many enzymes are attached or inserted into the cell membrane, having hydrophobic subunits or lipid chains for this purpose. Their reconstitution on electrodes maintaining their natural structural characteristics allows for optimizing their electrocatalytic properties and stability. Different biomimetic strategies have been developed for modifying electrodes surfaces to accommodate membrane-bound enzymes, including the formation of self-assembled monolayers of hydrophobic compounds, lipid bilayers, or liposomes deposition. An overview of the different strategies used for the formation of biomimetic membranes, the reconstitution of membrane enzymes on electrodes, and their applications as biosensors is presented.
Collapse
|
8
|
Alvarez-Malmagro J, Matyszewska D, Nazaruk E, Szwedziak P, Bilewicz R. PM-IRRAS Study on the Effect of Phytantriol-Based Cubosomes on DMPC Bilayers as Model Lipid Membranes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:16650-16660. [PMID: 31746606 DOI: 10.1021/acs.langmuir.9b02974] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effect of phytantriol (PT)-based liquid-crystalline nanoparticles, cubosomes, on the lipid bilayer membranes has been investigated using the combined Langmuir-Blodgett/Langmuir-Schaefer (LB-LS) technique to form an h-1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) monolayer at the air-water interface and transfer the lipid bilayer onto the Au(111) substrate. Changes of the compression isotherms confirmed incorporation of cubosomes dispersed in the subphase into the h-DMPC monolayer at the air-water interface. The photon polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) measurements of the gold electrode covered by the transferred DMPC bilayer showed for the first time how the incorporation of cubosome material affects the orientation and conformation of lipid molecules in the membrane. Exposure to cubosomes affected the packing of d54-DMPC bilayers and introduced disorder of chains by increasing the contribution of gauche conformation. The decrease of the tilt angle of the acyl chains of adsorbed DMPC in the whole range of potentials applied to the gold electrode confirmed that incorporation of cubosome material results in a more tightly packed bilayer. The presence of phytantriol molecules within the d63-DMPC matrix was confirmed by PM-IRRAS studies of the PT-related bands. The LB and PM-IRRAS studies demonstrated in a convincing way that PT-based cubosomes change the organization of model lipid layers leading to structural changes of the membranes which have to be taken into consideration when PT-cubosomes are employed as drug carriers.
Collapse
Affiliation(s)
| | - Dorota Matyszewska
- Faculty of Chemistry , University of Warsaw , Pasteura 1 , 02-093 Warsaw , Poland
- Faculty of Chemistry, Biological and Chemical Research Centre , University of Warsaw , Żwirki i Wigury 101 , 02-089 Warsaw , Poland
| | - Ewa Nazaruk
- Faculty of Chemistry , University of Warsaw , Pasteura 1 , 02-093 Warsaw , Poland
| | | | - Renata Bilewicz
- Faculty of Chemistry , University of Warsaw , Pasteura 1 , 02-093 Warsaw , Poland
| |
Collapse
|
9
|
Khairalla B, Juhaniewicz-Debinska J, Sek S, Brand I. The shape of lipid molecules affects potential-driven molecular-scale rearrangements in model cell membranes on electrodes. Bioelectrochemistry 2019; 132:107443. [PMID: 31869700 DOI: 10.1016/j.bioelechem.2019.107443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/04/2019] [Accepted: 12/05/2019] [Indexed: 12/24/2022]
Abstract
Planar asymmetric lipid bilayers composed of phosphatidylethanolamine and phosphatidylglycerol lipids are transferred onto a gold electrode surface. Lipids containing two saturated, one monounsaturated and two monounsaturated hydrocarbon chains compose the model membranes. Results of electrochemically controlled polarization modulation infrared reflection absorption spectroscopy and quartz crystal microbalance with energy dissipation studies reveal two different types of electric potential-dependent structural rearrangements in the bilayers. They are correlated with the geometry of the lipid molecule. Packing parameter correlates the cross-section area of the hydrophobic and hydrophilic parts of amphiphilic molecules. In bilayers composed of lipids with the packing parameter <1, the hydrocarbon chains are tilted with respect to the bilayer plane and the polar head groups are well hydrated. At a threshold potential an abrupt flow of water through the bilayer is connected with membrane dehydration and upward orientation of the chains. In bilayers composed of lipids with packing parameter ≥1, electric potentials have negligible effect on the membrane structure. A simple rule correlating the packing parameter with molecular scale changes occurring at electrified membranes has a large diagnostic implication for biomimetic studies and our understanding of molecular processes occurring in biological cell membranes.
Collapse
Affiliation(s)
- Bishoy Khairalla
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany
| | - Joanna Juhaniewicz-Debinska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02089 Warsaw, Poland
| | - Slawomir Sek
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw, Zwirki i Wigury 101, 02089 Warsaw, Poland
| | - Izabella Brand
- Department of Chemistry, Carl von Ossietzky University of Oldenburg, 26111 Oldenburg, Germany.
| |
Collapse
|
10
|
Brand I, Koch KW. Impact of the protein myristoylation on the structure of a model cell membrane in a protein bound state. Bioelectrochemistry 2018; 124:13-21. [PMID: 29990597 DOI: 10.1016/j.bioelechem.2018.06.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 06/18/2018] [Indexed: 12/18/2022]
Abstract
The neuronal calcium sensor protein recoverin is expressed in retinal rod and cone cells and is involved in the calcium-dependent control of receptor (rhodopsin) phosphorylation and receptor inactivation. In its Ca2+-saturated form recoverin is attached to membranes by an exposed myristoyl group and responds to oscillating changes of intracellular Ca2+-concentration by performing a so-called Ca2+-myristoyl switch. In this work we analyze changes in a liquid lipid bilayer interacting with myristoylated and non-myristoylated recoverin by employing polarization modulation infrared reflection absorption spectroscopy (PM IRRAS) with electrochemical control. The lipid bilayer is transferred onto a polycrystalline gold electrode using Langmuir-Blodgett Langmuir-Schaefer transfer at the surface pressure π = 30 mN m-1 which ensures, necessary for the lipid-protein interaction, liquid state of the hydrocarbon chains of phospholipids. The model lipid bilayers are adsorbed directly on the Au electrode surface at transmembrane potentials -0.2 < ∆ϕM|S < 0.25 V. The interaction with recoverin leads to a stabilization of the adsorbed state of the lipid bilayer at positive transmembrane potentials. The interaction leads to a decrease in the surface charge density that accumulates on the membrane covered electrode surface, indicating changes in the lateral interactions in the lipid membrane. In situ spectroelectrochemical studies confirm orientation changes in the hydrophobic environment of the model membrane. Insertion of the myristoyl group of recoverin into the membrane is connected with an increase in the tilt of the hydrocarbon chains with respect to the surface normal and decrease in the bilayer thickness. Potential-induced pore formation and desorption of the lipid bilayer from the membrane surface is accompanied by the removal of the acyl chains of recoverin from the membrane.
Collapse
Affiliation(s)
- Izabella Brand
- University of Oldenburg, Department of Chemistry, D-26111 Oldenburg, Germany.
| | - Karl-Wilhelm Koch
- University of Oldenburg, Department of Neuroscience, D-26111 Oldenburg, Germany
| |
Collapse
|
11
|
Kijewska K, Blanchard GJ. Using Diffusion To Characterize Interfacial Heterogeneity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:1155-1161. [PMID: 28094955 DOI: 10.1021/acs.langmuir.6b04341] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
We report on the use of molecular diffusional motion over a range of length scales to characterize compositional heterogeneity in monolayer structures. This work focuses on the diffusional motion of perylene in two types of films supported on functionalized silica surfaces: single-component (stearic acid) and two-component (hydrocarbon/fluorocarbon) films. Langmuir-Blodgett (LB) monolayers were deposited directly on silica or were bound to surface-modified silica by means of metal ion complexation. The LB films were characterized by their π-A isotherms and by Brewster angle microscopy (BAM) during formation and deposition. Chromophore mobility and monolayer structural heterogeneity were evaluated by comparing rotational diffusion data (fluorescence anisotropy decay imaging) and translational diffusion data (fluorescence recovery after photobleaching) on the same LB films. Our results indicate that the mobility of the chromophore depends sensitively on both metal ion identity and film composition.
Collapse
Affiliation(s)
- Krystyna Kijewska
- Department of Chemistry, Michigan State University , 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
- Department of Chemistry, University of Warsaw , Pasteura 1, 02-093 Warsaw, Poland
| | - Gary J Blanchard
- Department of Chemistry, Michigan State University , 578 S. Shaw Lane, East Lansing, Michigan 48824, United States
| |
Collapse
|
12
|
Pieta P, Majewska M, Su Z, Grossutti M, Wladyka B, Piejko M, Lipkowski J, Mak P. Physicochemical Studies on Orientation and Conformation of a New Bacteriocin BacSp222 in a Planar Phospholipid Bilayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:5653-62. [PMID: 27124645 DOI: 10.1021/acs.langmuir.5b04741] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
The behavior, secondary structure, and orientation of a recently discovered bacteriocin-like peptide BacSp222 in a lipid model system supported at a gold electrode was investigated by chronocoulometry, polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS), and attenuated total reflectance infrared (ATR-IR) spectroscopy. The IR spectra show that the secondary structure of BacSp222 is predominantly α-helical. Analysis of the spectra in the amide I region shows that the α-helical fragment of the peptide is inserted into bilayer at the potential range at which the bilayer is stable and attached to the Au(111) surface, i.e., from -0.5 to 0.3 V vs Ag/AgCl. Insertion of BacSp222 to the membrane significantly changes the conformation of the acyl chains of lipid molecules, from all-trans to partially melted; however, the chains become less tilted. Based on these results, we propose that BacSp222 interacts with the DMPC bilayer through the barrel-stave pore formation. In this model, α-helix of BacSp222 inserts into the membrane with an angle between the α-helix axis and membrane normal equal to ∼18°. The changes in orientation of the α-helical fragment of the peptide indicate that the orientation of BacSp222 with respect to the bilayer surface is potential-dependent. The peptide is inserted into the membrane driven by the electrostatic field generated by negative charge at the metal surface. It is not inserted at negative potentials where the membrane is detached from the metal and no longer exposed to the electrostatic field of the metal.
Collapse
Affiliation(s)
- Piotr Pieta
- Institute of Physical Chemistry Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marta Majewska
- Institute of Physical Chemistry Polish Academy of Sciences , Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | | | - Benedykt Wladyka
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Gronostajowa 7, 30-387 Krakow, Poland
| | - Marcin Piejko
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Gronostajowa 7, 30-387 Krakow, Poland
- 3rd Department of General Surgery, Jagiellonian University Medical College , Pradnicka 35-37, 31-008 Krakow, Poland
| | | | - Pawel Mak
- Department of Analytical Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University , Gronostajowa 7, 30-387 Krakow, Poland
| |
Collapse
|
13
|
Matyszewska D, Bilewicz R, Su Z, Abbasi F, Leitch JJ, Lipkowski J. PM-IRRAS Studies of DMPC Bilayers Supported on Au(111) Electrodes Modified with Hydrophilic Monolayers of Thioglucose. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1791-1798. [PMID: 26829620 DOI: 10.1021/acs.langmuir.5b04052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
A phospholipid bilayer composed of 1,2-dimyristoyl-d54-sn-glycero-3-phosphocholine (d54-DMPC) was deposited onto the Au(111) electrode modified with a self-assembled monolayer of 1-thio-β-d-glucose (β-Tg) via the Langmuir-Blodgett and Langmuir-Schaefer (LB-LS) techniques. Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) measurements were used to characterize structural and orientational changes in this model biological membrane on a hydrophilic surface modified gold electrode. The results of the spectroscopic measurements showed that the tilt angle of acyl chains obtained for deuterated DMPC bilayers supported on the β-Tg-modified gold is significantly lower than that reported previously for DMPC bilayers deposited directly on Au(111) electrodes. Moreover, tilt angles of ∼18° were obtained for d54-DMPC bilayers on β-Tg self-assembled monolayers (SAMs) at positive potentials, which are similar to the values calculated for h-DMPC deposited on bare gold in the desorbed state and to those observed for a stack of hydrated DMPC bilayers. This data confirms that the β-thioglucose SAM promotes the formation of a water cushion that separates the phospholipid bilayer from the metal surface. As a result, the DMPC polar heads are not in direct contact with the electrode and can adopt a zigzag configuration, which strengthens the chain-chain interactions and allows for an overall decrease in the tilt of the acyl chains. These novel supported model membranes may be especially useful in studies pertaining to the incorporation of peptides and proteins into phospholipid bilayers.
Collapse
Affiliation(s)
- Dorota Matyszewska
- Faculty of Chemistry, Biological and Chemical Research Centre, University of Warsaw , Żwirki i Wigury 101, 02089 Warsaw, Poland
| | - Renata Bilewicz
- Faculty of Chemistry, University of Warsaw , ul. Pasteura 1, 02093 Warsaw, Poland
| | - ZhangFei Su
- Department of Chemistry, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - Fatemah Abbasi
- Department of Chemistry, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - J Jay Leitch
- Department of Chemistry, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | - Jacek Lipkowski
- Department of Chemistry, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| |
Collapse
|
14
|
Hidalgo RS, López-Díaz D, Velázquez MM. Graphene oxide thin films: influence of chemical structure and deposition methodology. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:2697-2705. [PMID: 25695857 DOI: 10.1021/la5029178] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
We synthesized graphene oxide sheets of different functionalization by oxidation of two different starting materials, graphite and GANF nanofibers, followed by purification based on alkaline washing. The chemical structure of graphene oxide materials was determined by X-ray photoelectron spectroscopy (XPS), and the nanoplatelets were characterized by ζ potential and dynamic light scattering (DLS) measurements. The XPS results indicated that the chemical structure depends on the starting material. Two different deposition methodologies, Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS), were employed to build the graphene oxide thin films. The film morphology was analyzed by scanning electron microscopy (SEM). The SEM images allow us to conclude that the LB methodology provides the highest coverage. This coverage is almost independent of the chemical composition of sheets. Conversely, the coverage obtained by the LS methodology increases with the percentage of C-O groups attached to sheets. Surface-pressure isotherms of these materials were interpreted according to the Volmer model.
Collapse
Affiliation(s)
- R S Hidalgo
- Departamento de Química Física, Facultad de Ciencias Químicas, Universidad de Salamanca , E-37008 Salamanca, Spain
| | | | | |
Collapse
|
15
|
Geboes B, Baert K, Hubin A, Breugelmans T. Investigation of the Adsorption Mechanism of Heterocyclic Molecules on Copper using Potentiodynamic ORP-EIS and In-situ Ramans pectroscopy. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.01.036] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
16
|
Vieira L, Schennach R, Gollas B. In situ PM-IRRAS of a glassy carbon electrode/deep eutectic solvent interface. Phys Chem Chem Phys 2015; 17:12870-80. [DOI: 10.1039/c5cp00070j] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Firstin situPM-IRRAS studies of a carbon electrode/deep eutectic solvent interface show ad- and desorption of electrolyte components.
Collapse
Affiliation(s)
- Luciana Vieira
- CEST Competence Centre for Electrochemical Surface Technology GmbH
- 2700 Wiener Neustadt
- Austria
- Institute for Chemistry and Technology of Materials
- Graz University of Technology
| | - Robert Schennach
- Institute of Solid State Physics
- Graz University of Technology
- 8010 Graz
- Austria
| | - Bernhard Gollas
- CEST Competence Centre for Electrochemical Surface Technology GmbH
- 2700 Wiener Neustadt
- Austria
- Institute for Chemistry and Technology of Materials
- Graz University of Technology
| |
Collapse
|
17
|
Park H, Rosencrantz RR, Elling L, Böker A. Glycopolymer Brushes for Specific Lectin Binding by Controlled Multivalent Presentation ofN-Acetyllactosamine Glycan Oligomers. Macromol Rapid Commun 2014; 36:45-54. [DOI: 10.1002/marc.201400453] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 09/28/2014] [Indexed: 12/18/2022]
Affiliation(s)
- Hyunji Park
- DWI - Leibniz-Institut für Interaktive Materialien; Lehrstuhl für Makromolekulare Materialien und Oberflächen; RWTH Aachen University; Forckenbeckstr. 50 52074 Aachen Germany
| | - Ruben R. Rosencrantz
- Laboratory for Biomaterials; Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstr. 20 52074 Aachen Germany
| | - Lothar Elling
- Laboratory for Biomaterials; Institute for Biotechnology and Helmholtz-Institute for Biomedical Engineering; RWTH Aachen University; Pauwelsstr. 20 52074 Aachen Germany
| | - Alexander Böker
- DWI - Leibniz-Institut für Interaktive Materialien; Lehrstuhl für Makromolekulare Materialien und Oberflächen; RWTH Aachen University; Forckenbeckstr. 50 52074 Aachen Germany
| |
Collapse
|
18
|
Grossutti M, Seenath R, Conlon S, Leitch JJ, Li J, Lipkowski J. Spectroscopic and permeation studies of phospholipid bilayers supported by a soft hydrogel scaffold. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:10862-10870. [PMID: 25147944 DOI: 10.1021/la502925p] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Polarized attenuated total reflection infrared (ATR-IR) spectroscopy, fluorescence microscopy, and fluorescence spectroscopy were used to characterize a lipid coating composed of 70 mol % 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 30 mol % cholesterol, supported on a spherical hydrogel scaffold. The fluorescence microscopy images show an association between the lipid coating and the hydrogel scaffold. Fluorescence permeability measurements revealed that the phospholipid coating acts as a permeability barrier, exhibiting characteristics of a lamellar bilayer coating structure. Variable evanescent wave penetration depth ATR-IR spectroscopy studies validated the determination of quantitative molecular orientation information for a lipid coating supported on a spherical scaffold. These polarized ATR-IR studies measured an average DMPC acyl chain tilt angle of ∼21-25°, with respect to the surface normal.
Collapse
Affiliation(s)
- Michael Grossutti
- Department of Chemistry, University of Guelph , Guelph, Ontario N1G 2W1, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Obraztsov I, Noworyta K, Hart A, Gobeze HB, Kc CB, Kutner W, D'Souza F. Langmuir-Blodgett films of self-assembled (alkylether-derivatized Zn phthalocyanine)-(C₆₀ imidazole adduct) dyad with controlled intermolecular distance for photoelectrochemical studies. ACS APPLIED MATERIALS & INTERFACES 2014; 6:8688-8701. [PMID: 24785360 DOI: 10.1021/am501446g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A multilayer Langmuir-Blodgett (LB) film of the self-assembled electron donor-acceptor dyad of Zn phthalocyanine, appended with four long-chain aliphatic ether peripheral substituents, and an imidazole adduct of C60 was prepared and applied as a photoactive material in a photoelectrochemical cell. Changes in the simultaneously recorded surface pressure and surface potential vs area per molecule compression isotherms for Langmuir films of the dyad and, separately, of its components helped to identify phase transitions and mutual interactions of molecules in films. The Brewster angle microscopy (BAM) imaging of the Langmuir films showed circular condensed phase domains of the dyad molecules. The determined area per molecule was lower than that estimated for the dyad and its components, separately. The multilayer LB films of the dyad were transferred onto hydrophobized fluorine-doped tin oxide-coated (FTO) glass slides under different conditions. The presence of both components in the dyad LB films was confirmed with the UV-vis spectroscopy measurements. For the LB films transferred at different surface pressures, the PM-IRRAS measurements revealed that the phthalocyanine macrocycle planes and ether moieties in films were tilted with respect to the FTO surface. The AFM imaging of the LB films indicated formation of relatively uniform dyad LB films. Then, the femtosecond transient absorption spectral studies evidenced photoinduced electron transfer in the LB film. The obtained transient signals corresponding to both Zn(TPPE)(•+) and C60im(•-) confirmed the occurrence of intramolecular electron transfer. The determined rate constants of charge separation, kcs = 2.6 × 10(11) s(-1), and charge recombination, kcr = 9.7 × 10(9) s(-1), indicated quite efficient electron transfer within the film. In the photoelectrochemical studies, either photoanodic or photocathodic current was generated depending on the applied bias potential when the dyad LB film-coated FTO was used as the working electrode and ascorbic acid or methylviologen, respectively, as the charge mediator in an aqueous solution.
Collapse
Affiliation(s)
- Ievgen Obraztsov
- Institute of Physical Chemistry, Polish Academy of Sciences , 44/52 Kasprzaka, 01-224 Warsaw, Poland
| | | | | | | | | | | | | |
Collapse
|
20
|
Lipid bilayers supported on bare and modified gold – Formation, characterization and relevance of lipid rafts. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2013.07.117] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
21
|
Uchida T, Osawa M, Lipkowski J. SEIRAS studies of water structure at the gold electrode surface in the presence of supported lipid bilayer. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.10.015] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Biomimetic Membrane Supported at a Metal Electrode Surface. ADVANCES IN PLANAR LIPID BILAYERS AND LIPOSOMES 2014. [DOI: 10.1016/b978-0-12-418698-9.00001-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
|
23
|
Caseli L, Gruber J, Li RWC, Péres LO. Investigation of the conformational changes of a conducting polymer in gas sensor active layers by means of polarization-modulation infrared reflection absorption spectroscopy (PM-IRRAS). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:2640-2645. [PMID: 23373530 DOI: 10.1021/la3050797] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Polarization-Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS) was employed to observe the changes in the molecular conformation of poly(2-phenyl-1,4-xylylene) (PPPX) films that occurred after exposure to organic solvent vapors. The PPPX films were supported on solid matrixes by casting, spin-coating, and Langmuir-Blodgett (LB) techniques. The results show that the polymer is sensitive to the solvent vapors, which affect some of the vibration dipole moments, as detected by PM-IRRAS. The sensitivity depends on the method employed to immobilize the polymer, with more significant changes in films formed using techniques that result in a less systematically organized conformation. This feature enables the use of surface vibration spectroscopy to detect organic solvent vapors and may be applied in an artificial nose.
Collapse
Affiliation(s)
- Luciano Caseli
- Laboratory of Hybrid Materials, Federal University of São Paulo, Diadema, SP, Brazil.
| | | | | | | |
Collapse
|
24
|
Leitch JJ, Brosseau CL, Roscoe SG, Bessonov K, Dutcher JR, Lipkowski J. Electrochemical and PM-IRRAS characterization of cholera toxin binding at a model biological membrane. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:965-76. [PMID: 23256886 DOI: 10.1021/la304939k] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
A mixed phospholipid-cholestrol bilayer, with cholera toxin B (CTB) units attached to the monosialotetrahexosylganglioside (GM1) binding sites in the distal leaflet, was deposited on a Au(111) electrode surface. Polarization modulation infrared reflection absorption spectroscopy (PM-IRRAS) measurements were used to characterize structural and orientational changes in this model biological membrane upon binding CTB and the application of the electrode potential. The data presented in this article show that binding cholera toxin to the membrane leads to an overall increase in the tilt angle of the fatty acid chains; however, the conformation of the bilayer remains relatively constant as indicated by the small decrease in the total number of gauche conformers of acyl tails. In addition, the bound toxin caused a significant decrease in the hydration of the ester group contained within the lipid bilayer. Furthermore, changes in the applied potential had a minimal effect on the overall structure of the membrane. In contrast, our results showed significant voltage-dependent changes in the average orientation of the protein α-helices that may correspond to the voltage-gated opening and closing of the central pore that resides within the B subunit of cholera toxin.
Collapse
Affiliation(s)
- J Jay Leitch
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
25
|
Application of Infrared Spectroscopy for Structural Analysis of Planar Lipid Bilayers Under Electrochemical Control. ACTA ACUST UNITED AC 2013. [DOI: 10.1016/b978-0-12-411515-6.00002-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
26
|
Su Z, Jiang Y, Velázquez-Manzanares M, Jay Leitch J, Kycia A, Lipkowski J. Electrochemical and PM-IRRAS studies of floating lipid bilayers assembled at the Au(111) electrode pre-modified with a hydrophilic monolayer. J Electroanal Chem (Lausanne) 2013. [DOI: 10.1016/j.jelechem.2012.09.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
27
|
Kycia AH, Wang J, Merrill AR, Lipkowski J. Atomic force microscopy studies of a floating-bilayer lipid membrane on a Au(111) surface modified with a hydrophilic monolayer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10867-77. [PMID: 21766864 DOI: 10.1021/la2016269] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
The surface of a gold electrode was functionalized with a hydrophilic monolayer of 1-thio-β-D-glucose formed by spontaneous self-assembly. The Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) method was then used to assemble a bilayer onto the modified Au(111) surface. The bilayer lipid membrane (BLM) was separated from the Au(111) electrode surface by incorporating the monosialoganglioside GM1 into the inner leaflet of a bilayer composed of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and cholesterol. To make the inner leaflet, monolayers of GM1/DMPC/cholesterol with mole ratios of 1:6:3, 2:5:3, and 3:4:3 were used. The outer leaflet was composed of a 7:3 mole ratio of DMPC/cholesterol. Because of the amphiphilic properties of GM1, the hydrophobic acyl chains were incorporated into the BLM, whereas the large hydrophilic carbohydrate headgroups were physically adsorbed to the Au(111) electrode surface, creating a "floating" BLM (fBLM). This model contained a water-rich reservoir between the BLM and the gold surface. In addition, because of the bilayer being physically adsorbed onto the support, the fluidity of the BLM was maintained. The compression isotherms were measured at the air/water interface to determine the phase behavior and optimal transfer conditions. The images acquired using atomic force microscopy (AFM) and the force-distance measurements showed that the structure of the fBLM evolved with increasing GM1 content from 10 to 30 mol %, undergoing a transition from a corrugated to a homogeneous phase. This change was associated with a significant increase in bilayer thickness (from ∼5.3 to 7.3 nm). The highest-quality fBLM was produced with 30 mol % GM1.
Collapse
Affiliation(s)
- Annia H Kycia
- Department of Chemistry, University of Guelph, Guelph, Ontario, Canada N1G 2W1
| | | | | | | |
Collapse
|
28
|
Laredo T, Dutcher JR, Lipkowski J. Electric field driven changes of a gramicidin containing lipid bilayer supported on a Au(111) surface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:10072-10087. [PMID: 21707110 DOI: 10.1021/la201625c] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Langmuir-Blodgett and Langmuir-Schaeffer methods were employed to deposit a mixed bilayer consisting of 90% of 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and 10% of gramicidin (GD), a short 15 residue ion channel forming peptide, onto a Au(111) electrode surface. This architecture allowed us to investigate the effect of the electrostatic potential applied to the electrode on the orientation and conformation of DMPC molecules in the bilayer containing the ion channel. The charge density data were determined from chronocoulometry experiments. The electric field and the potential across the membrane were determined through the use of charge density curves. The magnitudes of potentials across the gold-supported biomimetic membrane were comparable to the transmembrane potential acting on a natural membrane. The information regarding the orientation and conformation of DMPC and GD molecules in the bilayer was obtained from photon polarization modulation infrared reflection absorption spectroscopy (PMIRRAS) measurements. The results show that the bilayer is adsorbed, in direct contact with the metal surface, when the potential across the interface is more positive than -0.4 V and is lifted from the gold surface when the potential across the interface is more negative than -0.4 V. This change in the state of the bilayer has a significant impact on the orientation and conformation of the phospholipid and gramicidin molecules. The potential induced changes in the membrane containing peptide were compared to the changes in the structure of the pure DMPC bilayer determined in earlier studies.
Collapse
Affiliation(s)
- Thamara Laredo
- Department of Chemistry, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | | | | |
Collapse
|
29
|
Ishii J, Chikae M, Toyoshima M, Ukita Y, Miura Y, Takamura Y. Electrochemical assay for saccharide–protein interactions using glycopolymer-modified gold nanoparticles. Electrochem commun 2011. [DOI: 10.1016/j.elecom.2011.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
30
|
Zafiu C, Trettenhahn G, Pum D, Sleytr UB, Kautek W. Structural control of surface layer proteins at electrified interfaces investigated by in situ Fourier transform infrared spectroscopy. Phys Chem Chem Phys 2011; 13:13232-7. [PMID: 21698313 DOI: 10.1039/c0cp02127j] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In situ Fourier Transform Infrared (FTIR) Spectroscopy complemented by Electrochemical Quartz Microbalance (EQMB) investigations allowed a detailed insight into the influence of the electrode potential on competing adsorption processes and bonding mechanisms of buffer ions and S-layer protein molecules of Lysinibacillus sphaericus CCM2177 at an electrified liquid/gold interface. The S-layer proteins adsorb on gold polarized positively of the point of zero charge by displacing perchlorate anions in the Helmholtz plane by their carboxylate groups. This is indicated by an increase of the peptide and carboxylate infrared absorption signals accompanied by a decrease of the perchlorate signal. S-layers interlinked laterally with Ca(2+) ions, positive of the point of zero charge, resulted in the formation of a crystalline layer participating in the Helmholtz layer. In contrast to the absence of the Ca(2+)-linkers, S-layers remain structurally intact also in the negative polarization domain where the Helmholtz layer is solely sustained by mainly solvated cations without participation of the negatively charged protein carboxylate functions.
Collapse
Affiliation(s)
- Christian Zafiu
- University of Vienna, Department of Physical Chemistry, Währinger Strasse 42, A-1090 Vienna, Austria
| | | | | | | | | |
Collapse
|
31
|
Nullmeier M, Koliwer-Brandl H, Kelm S, Zägel P, Koch KW, Brand I. Impact of Strong and Weak Lipid-Protein Interactions on the Structure of a Lipid Bilayer on a Gold Electrode Surface. Chemphyschem 2011; 12:1066-79. [DOI: 10.1002/cphc.201100036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 02/07/2011] [Indexed: 01/13/2023]
|
32
|
Huckabay HA, Dunn RC. Hydration effects on membrane structure probed by single molecule orientations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:2658-2666. [PMID: 21319764 DOI: 10.1021/la104792w] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Single molecule fluorescence measurements are used to probe the structural changes in glass-supported DPPC bilayers as a function of relative humidity (RH). Defocused polarized total internal reflection fluorescence microscopy is employed to determine the three-dimensional orientation of the fluorescent lipid analogue BODIPY-PC, doped into DPPC membranes in trace amounts. Supported DPPC bilayers formed using vesicle fusion and Langmuir-Blodgett/Langmuir-Schäfer (LB/LS) transfer are compared and show similar trends as a function of relative humidity. Population histograms of the emission dipole tilt angle reveal bimodal distributions as observed previously for BODIPY-PC in DPPC. These distributions are dominated by large populations of BODIPY-PC molecules with emission dipoles oriented parallel (≥81°) and normal (≤10°) to the membrane plane, with less than 25% oriented at intermediate tilts. As the relative humidity is increased from 13% to 95%, the population of molecules oriented normal to the surface decreases with a concomitant increase in those oriented parallel to the surface. The close agreement in trends observed for bilayers formed from vesicle fusion and LB/LS transfer supports the assignment of an equivalent surface pressure of 23 mN/m for bilayers formed from vesicle fusion. At each RH condition, a small population of BODIPY-PC dye molecules are laterally mobile in both bilayer preparations. This population exponentially increases with RH but never exceeds 6% of the total population. Interestingly, even under conditions where there is little lateral diffusion, fluctuations in the single molecule orientations can be observed which suggests there is appreciable freedom in the acyl chain region. Dynamic measurements of single molecule orientation changes, therefore, provide a new view into membrane properties at the single molecule level.
Collapse
Affiliation(s)
- Heath A Huckabay
- Ralph N. Adams Institute for Bioanalytical Chemistry, University of Kansas , 2030 Becker Drive, Lawrence, Kansas 66047, United States
| | | |
Collapse
|
33
|
Scheibe P, Schoenhentz J, Platen T, Hoffmann-Röder A, Zentel R. Langmuir-Blodgett films of fluorinated glycolipids and polymerizable lipids and their phase separating behavior. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:18246-18255. [PMID: 21058675 DOI: 10.1021/la1029917] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
This paper describes the phase separating behavior of Langmuir monolayers from mixtures of different lipids that (i) either carry already a glycopeptide recognition site or can be easily modified to carry one and (ii) polymerizable lipids. To ensure demixing during compression, we used fluorinated lipids for the biological headgroups and hydrocarbon based lipids as polymerizable lipids. As a representative for a lipid monomer, which can be polymerized in the hydrophilic headgroup, a methacrylic monomer was used. As a monomer, which can be polymerized in the hydrophobic tail, a lipid with a diacetylene unit was used (pentacosadiynoic acid, PDA). The fluorinated lipids were on the one hand a perfluorinated lipid with three chains and on the other hand a partially fluorinated lipid with a T(N)-antigen headgroup. The macroscopic phase separation was observed by Brewster angle microscopy, whereas the phase separation on the nanoscale level was observed by atomic force microscopy. It turned out that all lipid mixtures showed (at least) a partial miscibility of the hydrocarbon compounds in the fluorinated compounds. This is positive for pattern formation, as it allows the formation of small demixed 2D patterned structures during crystallization from the homogeneous phase. For miscibility especially a liquid analogue phase proved to be advantageous. As lipid 3 with three fluorinated lipid chains (very stable monolayer) is miscible with the polymerizable lipids 1 and 2, it was mostly used for further investigations. For all three lipid mixtures, a phase separation on both the micrometer and the nanometer level was observed. The size of the crystalline domains could be controlled not only by varying the surface pressure but also by varying the molar composition of the mixtures. Furthermore, we showed that the binary mixture can be stabilized via UV polymerization. After polymerization and subsequent expansion of the barriers, the locked-in polymerized structures are stable even at low surface pressures (10 mN/m), where the unpolymerized mixture did not show any segregation.
Collapse
Affiliation(s)
- Patrick Scheibe
- Institute of Organic Chemistry, Johannes Gutenberg-University Mainz, Duesbergweg 10-14, 55099 Mainz, Germany
| | | | | | | | | |
Collapse
|
34
|
PM IRRAS spectroelectrochemistry of layer-by-layer self-assembled polyelectrolyte multilayers. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2010.02.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Interaction of siglec protein with glycolipids in a lipid bilayer deposited on a gold electrode surface. J Electroanal Chem (Lausanne) 2010. [DOI: 10.1016/j.jelechem.2010.03.033] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
36
|
Abstract
This article describes efforts to build a model biological membrane at a surface of a gold electrode. In this architecture, the membrane may be exposed to static electric fields on the order of 10(7) to 10(8) V m(-1). These fields are comparable in magnitude to the static electric field acting on a natural biological membrane. The field may be conveniently used to manipulate organic molecules within the membrane. By turning a knob on the control instrument one can deposit or lift the membrane from the gold surface. Electrochemical techniques can be used to control the physical state of the film while the infrared reflection absorption spectroscopy (IRRAS), surface imaging by STM and AFM and neutron scattering techniques can be employed to study conformational changes of organic molecules and their ordering within the membrane. This is shown on examples of membranes built of a simple zwitterionic phospholipid such as 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and a mixed membrane composed of DMPC and cholesterol. The results illustrate the tremendous effect of cholesterol on the membrane structure. Two methods of membrane deposition at the electrode surface, namely by unilamellar vesicles fusion and using the Langmuir-Blodgett technique, are compared. Applications of these model systems to study interactions of small antibiotic peptides with lipids are discussed.
Collapse
Affiliation(s)
- Jacek Lipkowski
- Department of Chemistry, University of Guelph, Guelph, Ontario, CanadaN1G 2W1.
| |
Collapse
|