1
|
Mandriota G, Avugadda SK, Sadeghi E, Silvestri N, Marotta R, Gavilán H, Olsson U, Giannini C, Tsai YH, Samia ACS, Pellegrino T. Magnetic nanosheets: from iron oxide nanocubes to polydopamine embedded 2D clusters and their multi-purpose properties. NANOSCALE HORIZONS 2025. [PMID: 40191967 PMCID: PMC11973963 DOI: 10.1039/d4nh00566j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 02/19/2025] [Indexed: 04/10/2025]
Abstract
We here develop stable bidimensional magnetic nanoclusters (2D-MNCs) of iron oxide nanocubes (IONCs) arranged in thin nanosheets of closed-packed nanocubes. The assembly occurs by means of a two-step approach: in the first one, the ionic surfactant, sodium dodecyl sulfate (SDS), acts as a transient water transfer agent and as 2D clustering agent to induce formation of a monolayer of nanocubes arranged in thin nanosheets. Next, the addition of dopamine followed by solution basification, induces the in situ polymerization of dopamine with a tunable shell tickness depending on the dopamine amount, which helps to compact the clusters and ensures the long term water stability of the clusters. TEM, cryo-EM, and SAXS techniques helped to reveal structural features of the 2D-clusters. The pH-dependent degradation properties of polydopamine, enable to disassemble the clusters in acidic tumour microenviroment leading to a four-fold increase in the magnetic particle imaging signal and a concomitant increase of the magnetic heat losses of these clusters, makes them appealing in magnetic hyperthermia, while the shortening of T2 relaxation time suggests their use as contrast in magnetic resonance imaging. Finally, with crystal violet dye, used as drug molecule, the feasibility to release payloads pre-encapsulated with the polydopamine polymer shell has been also shown.
Collapse
Affiliation(s)
- Giacomo Mandriota
- Italian Institute of Technology, via Morego 30, 16163, Genoa, Italy.
| | | | - Ehsan Sadeghi
- Italian Institute of Technology, via Morego 30, 16163, Genoa, Italy.
- Chemical and Chemical Industry Department, via Dodecaneso, 31, Genoa, 16146, Italy
| | - Niccolò Silvestri
- Italian Institute of Technology, via Morego 30, 16163, Genoa, Italy.
| | - Roberto Marotta
- Italian Institute of Technology, via Morego 30, 16163, Genoa, Italy.
| | - Helena Gavilán
- Italian Institute of Technology, via Morego 30, 16163, Genoa, Italy.
| | - Ulf Olsson
- Physical Chemistry, Lund University, Box 124, Lund SE-22100, Sweden
| | - Cinzia Giannini
- Institute of Crystallography, National Research Council, via Amendola 122/O, 70126, Bari, Italy
| | - Yu Hsin Tsai
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Anna Cristina S Samia
- Department of Chemistry, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, Ohio 44106, USA
| | - Teresa Pellegrino
- Italian Institute of Technology, via Morego 30, 16163, Genoa, Italy.
| |
Collapse
|
2
|
Muthukumaran T, Philip J. A review on synthesis, capping and applications of superparamagnetic magnetic nanoparticles. Adv Colloid Interface Sci 2024; 334:103314. [PMID: 39504854 DOI: 10.1016/j.cis.2024.103314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 09/09/2024] [Accepted: 10/12/2024] [Indexed: 11/08/2024]
Abstract
Magnetic nanoparticles (MNPs) have garnered significant attention from researchers due to their numerous technologically significant applications in diverse fields, including biomedicine, diagnostics, agriculture, optics, mechanics, electronics, sensing technology, catalysis, and environmental remediation. The superparamagnetic nature of MNP is exploited for many applications and remains fascinating to study many fundamental phenomena. The uniqueness of this review is that it gives an in-depth review of different synthesis approaches adopted for preparing magnetic nanoparticles and nanoparticle formation mechanisms, functionalizing them with different capping agents, and applying different functionalized magnetic nanoparticles. The important synthesis techniques covered include coprecipitation, microwave-assisted, sonochemical, sol-gel, microemulsion, hydrothermal/solvothermal, thermal decomposition, and mechano-chemical synthesis. Further, the advantages and disadvantages of each technique are discussed, and tables show important results of prepared particles. Other aspects covered in this review are the dispersion of magnetic nanoparticles in the continuous matrix, the influence of surface capping on high-temperature thermal stability, the long-term stability of ferrofluids, and applications of functionalized magnetic nanoparticles. For effective utilization of the ferrite nanoparticles, it is essential to formulate thermally and colloidally stable magnetic nanoparticles with desired magnetic properties. Capping enhances the phase transition temperature and long-term colloidal stability. Magnetic nanoparticles capped or functionalized with specific binding species, specific components like drugs, or other functional groups make them suitable for applications in biotechnology/biomedicine. Recent studies reveal the tremendous scope of MNPs in therapeutics and theranostics. The requirements for nanoparticle size, morphology, and physio-chemical properties, especially magnetic properties, functionalization, and stability, vary with applications. There are also challenges for precise size control and the cost-effective production of nanoparticles in large quantities. The review should be an ideal material for researchers working on magnetic nanomaterials and an excellent reference for freshers.
Collapse
Affiliation(s)
- T Muthukumaran
- Smart Materials Section, MCG, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, India
| | - John Philip
- Smart Materials Section, MCG, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, HBNI, Kalpakkam, Tamil Nadu, India; Department of Physics, Cochin University of Science and Technology, Kochi -22, India.
| |
Collapse
|
3
|
Wang J, Zhao W, Zhang Z, Liu X, Xie T, Wang L, Xue Y, Zhang Y. A Journey of Challenges and Victories: A Bibliometric Worldview of Nanomedicine since the 21st Century. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308915. [PMID: 38229552 DOI: 10.1002/adma.202308915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/18/2023] [Indexed: 01/18/2024]
Abstract
Nanotechnology profoundly affects the advancement of medicine. Limitations in diagnosing and treating cancer and chronic diseases promote the growth of nanomedicine. However, there are very few analytical and descriptive studies regarding the trajectory of nanomedicine, key research powers, present research landscape, focal investigative points, and future outlooks. Herein, articles and reviews published in the Science Citation Index Expanded of Web of Science Core Collection from first January 2000 to 18th July 2023 are analyzed. Herein, a bibliometric visualization of publication trends, countries/regions, institutions, journals, research categories, themes, references, and keywords is produced and elaborated. Nanomedicine-related academic output is increasing since the COVID-19 pandemic, solidifying the uneven global distribution of research performance. While China leads in terms of publication quantity and has numerous highly productive institutions, the USA has advantages in academic impact, commercialization, and industrial value. Nanomedicine integrates with other disciplines, establishing interdisciplinary platforms, in which drug delivery and nanoparticles remain focal points. Current research focuses on integrating nanomedicine and cell ferroptosis induction in cancer immunotherapy. The keyword "burst testing" identifies promising research directions, including immunogenic cell death, chemodynamic therapy, tumor microenvironment, immunotherapy, and extracellular vesicles. The prospects, major challenges, and barriers to addressing these directions are discussed.
Collapse
Affiliation(s)
- Jingyu Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Wenling Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Laboratory of Colloid and Interface and Thermodynamics CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Zhao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Xingzi Liu
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Tong Xie
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Lan Wang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| | - Yuzhou Xue
- Department of Cardiology, Institute of Vascular Medicine, NHC Key Laboratory of Cardiovascular Molecular Biology and Regulatory Peptides, State Key Laboratory of Vascular Homeostasis and Remodeling Peking University, Beijing Key Laboratory of Cardiovascular Receptors Research, Peking University Third Hospital, Beijing, 100191, China
| | - Yuemiao Zhang
- Renal Division, Peking University First Hospital, Peking University Institute of Nephrology, Key Laboratory of Renal Disease, Ministry of Health of China, Key Laboratory of Chronic Kidney Disease Prevention and Treatment (Peking University), Ministry of Education, Beijing, 100034, China
| |
Collapse
|
4
|
Okonogi S, Chittasupho C, Sassa-deepaeng T, Khumpirapang N, Anuchpreeda S. Modification of Polyethylene Glycol-Hydroxypropyl Methacrylate Polymeric Micelles Loaded with Curcumin for Cellular Internalization and Cytotoxicity to Wilms Tumor 1-Expressing Myeloblastic Leukemia K562 Cells. Polymers (Basel) 2024; 16:917. [PMID: 38611175 PMCID: PMC11013463 DOI: 10.3390/polym16070917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
Curcumin loaded in micelles of block copolymers of ω-methoxypoly(ethylene glycol) and N-(2-hydroxypropyl) methacrylamide modified with aliphatic dilactate (CD) or aromatic benzoyl group (CN) were previously reported to inhibit human ovarian carcinoma (OVCAR-3), human colorectal adenocarcinoma (Caco-2), and human lymphoblastic leukemia (Molt-4) cells. Myeloblastic leukemia cells (K562) are prone to drug resistance and differ in both cancer genotype and phenotype from the three mentioned cancer cells. In the present study, CD and CN micelles were prepared and their effects on K562 and normal cells were explored. The obtained CD and CN showed a narrow size distribution with diameters of 63 ± 3 and 50 ± 1 nm, respectively. The curcumin entrapment efficiency of CD and CN was similarly high, above 80% (84 ± 8% and 91 ± 3%). Both CD and CN showed suppression on WT1-expressing K562 and high cell-cycle arrest at the G2/M phase. However, CD showed significantly higher cytotoxicity to K562, with faster cellular uptake and internalization than CN. In addition, CD showed better compatibility with normal red blood cells and peripheral blood mononuclear cells than CN. The promising CD will be further investigated in rodents and possibly in clinical studies for leukemia treatment.
Collapse
Affiliation(s)
- Siriporn Okonogi
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Chuda Chittasupho
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand;
- Center of Excellent in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Tanongsak Sassa-deepaeng
- Agricultural Biochemistry Research Unit, Faculty of Sciences and Agricultural Technology, Rajamangala University of Technology Lanna Lampang, Lampang 52000, Thailand;
| | - Nattakanwadee Khumpirapang
- Department of Pharmaceutical Chemistry and Pharmacognosy, Faculty of Pharmaceutical Sciences, Naresuan University, Phitsanulok 65000, Thailand;
| | - Songyot Anuchpreeda
- Center of Excellent in Pharmaceutical Nanotechnology, Faculty of Pharmacy, Chiang Mai University, Chiang Mai 50200, Thailand
- Department of Medical Technology, Faculty of Associated Medical Sciences, Chiang Mai University, Chiang Mai 50200, Thailand
| |
Collapse
|
5
|
Guo B, Sofias AM, Lammers T, Xu J. Image-guided drug delivery: Nanoparticle and probe advances. Adv Drug Deliv Rev 2024; 206:115188. [PMID: 38272185 DOI: 10.1016/j.addr.2024.115188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Affiliation(s)
- Bing Guo
- School of Science, Shenzhen Key Laboratory of Flexible Printed Electronics Technology, Shenzhen Key Laboratory of Advanced Functional Carbon Materials Research and Comprehensive Application, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Alexandros Marios Sofias
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany.
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging (ExMI), RWTH Aachen University Hospital, Aachen, Germany.
| | - Jian Xu
- Institute of Low-Dimensional Materials Genome Initiative, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
6
|
Jiang Q, Zhang S. Stimulus-Responsive Drug Delivery Nanoplatforms for Osteoarthritis Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206929. [PMID: 36905239 DOI: 10.1002/smll.202206929] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/16/2023] [Indexed: 06/08/2023]
Abstract
Osteoarthritis (OA) is one of the most prevalent age-related degenerative diseases. With an increasingly aging global population, greater numbers of OA patients are providing clear economic and societal burdens. Surgical and pharmacological treatments are the most common and conventional therapeutic strategies for OA, but often fall considerably short of desired or optimal outcomes. With the development of stimulus-responsive nanoplatforms has come the potential for improved therapeutic strategies for OA. Enhanced control, longer retention time, higher loading rates, and increased sensitivity are among the potential benefits. This review summarizes the advanced application of stimulus-responsive drug delivery nanoplatforms for OA, categorized by either those that depend on endogenous stimulus (reactive oxygen species, pH, enzyme, and temperature), or those that depend on exogenous stimulus (near-infrared ray, ultrasound, magnetic fields). The opportunities, restrictions, and limitations related to these various drug delivery systems, or their combinations, are discussed in areas such as multi-functionality, image guidance, and multi-stimulus response. The remaining constraints and potential solutions that are represented by the clinical application of stimulus-responsive drug delivery nanoplatforms are finally summarized.
Collapse
Affiliation(s)
- Qi Jiang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| | - Shufang Zhang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Department of Orthopedic Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310058, China
- Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou, 310058, China
- China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, 310058, China
| |
Collapse
|
7
|
Chen X, Gholizadeh S, Ghovvati M, Wang Z, Jellen MJ, Mostafavi A, Dana R, Annabi N. Engineering a drug eluting ocular patch for delivery and sustained release of anti-inflammatory therapeutics. AIChE J 2023; 69:e18067. [PMID: 38250665 PMCID: PMC10798673 DOI: 10.1002/aic.18067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 01/25/2023] [Indexed: 01/23/2024]
Abstract
Ocular inflammation is commonly associated with eye disease or injury. Effective and sustained ocular delivery of therapeutics remains a challenge due to the eye physiology and structural barriers. Herein, we engineered a photocrosslinkable adhesive patch (GelPatch) incorporated with micelles (MCs) loaded with Loteprednol etabonate (LE) for delivery and sustained release of drug. The engineered drug loaded adhesive hydrogel, with controlled physical properties, provided a matrix with high adhesion to the ocular surfaces. The incorporation of MCs within the GelPatch enabled solubilization of LE and its sustained release within 15 days. In vitro studies showed that MC loaded GelPatch supported cell viability and growth. In addition, subcutaneous implantation of the MC loaded GelPatch in rats confirmed its in vivo biocompatibility and stability within 28 days. This non-invasive, adhesive, and biocompatible drug eluting patch can be used as a matrix for the delivery and sustained release of hydrophobic drugs.
Collapse
Affiliation(s)
- Xi Chen
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
| | - Shima Gholizadeh
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
| | - Mahsa Ghovvati
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
| | - Ziqing Wang
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
| | - Marcus J. Jellen
- Department of Chemistry and Biochemistry, University of California- Los Angeles, Los Angeles, CA, USA
| | - Azadeh Mostafavi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
| | - Reza Dana
- Schepens Eye Research Institute, Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California- Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California- Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
8
|
Saladino GM, Kakadiya R, Ansari SR, Teleki A, Toprak MS. Magnetoresponsive fluorescent core-shell nanoclusters for biomedical applications. NANOSCALE ADVANCES 2023; 5:1323-1330. [PMID: 36866251 PMCID: PMC9972542 DOI: 10.1039/d2na00887d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Nowadays, superparamagnetic iron oxide nanoparticles (SPIONs) have a dominant role in many subfields of biomedicine. Owing to their peculiar properties, they can be employed for magnetic separation, drug delivery, diagnostics, and hyperthermia treatments. However, these magnetic nanoparticles (NPs) suffer from low unit magnetization due to size constraints (up to 20-30 nm) to exhibit superparamagnetic character. In this work, we have designed and synthesized superparamagnetic nanoclusters (SP-NCs) with diameters of up to 400 nm with high unit magnetization for enhanced loading capacity. These were synthesized with conventional or microwave-assisted solvothermal methods, in the presence of either of the two biomolecules (citrate or l-lysine) as the capping agent. Primary particle size, SP-NC size, surface chemistry, and the resultant magnetic properties were observed to be significantly influenced by the choice of synthesis route and capping agent. Selected SP-NCs were then coated with a fluorophore-doped silica shell to provide fluorescence properties, in the near-infrared spectrum region, while silica provided high chemical and colloidal stability. Heating efficiency studies were performed under alternating magnetic field on the synthesized SP-NCs, highlighting their potential in hyperthermia treatment. We envision that their enhanced magnetically-active content, fluorescence, magnetic property, and heating efficiency will pave the way to more effective uses in biomedical applications.
Collapse
Affiliation(s)
- Giovanni Marco Saladino
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology SE 10691 Stockholm Sweden
| | - Ronak Kakadiya
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology SE 10691 Stockholm Sweden
| | - Shaquib Rahman Ansari
- Department of Pharmacy, Science for Life Laboratory, Uppsala University SE 75123 Uppsala Sweden
| | - Alexandra Teleki
- Department of Pharmacy, Science for Life Laboratory, Uppsala University SE 75123 Uppsala Sweden
| | - Muhammet Sadaka Toprak
- Department of Applied Physics, Biomedical and X-ray Physics, KTH Royal Institute of Technology SE 10691 Stockholm Sweden
| |
Collapse
|
9
|
Gonçalves A, Simões BT, Almeida FV, Fernandes SN, Valente M, Vieira T, Henriques C, Borges JP, Soares PIP. Engineering dual-stimuli responsive poly(vinyl alcohol) nanofibrous membranes for cancer treatment by magnetic hyperthermia. BIOMATERIALS ADVANCES 2023; 145:213275. [PMID: 36608438 DOI: 10.1016/j.bioadv.2022.213275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 11/30/2022] [Accepted: 12/27/2022] [Indexed: 01/01/2023]
Abstract
The development of new cancer treatment options, such as multifunctional devices, allows for a more personalized treatment, avoiding the known severe side effects of conventional options. In this context, on-demand drug delivery systems can actively control the rate of drug release offering a precise control of treatment. Magnetically and thermally controlled drug delivery systems have been explored as on-demand devices to treat chronic diseases and cancer tumors. In the present work, dual-stimuli responsive systems were developed by incorporating Fe3O4 magnetic nanoparticles (NPs) and poly(N-isopropylacrylamide) (PNIPAAm) microgels into electrospun polymeric fibers for application in cancer treatment. First, Fe3O4 NPs with an average diameter of 8 nm were synthesized by chemical precipitation technique and stabilized with dimercaptosuccinic acid (DMSA) or oleic acid (OA). PNIPAAm microgels were synthesized by surfactant-free emulsion polymerization (SFEP). Poly(vinyl alcohol) (PVA) was used as a fiber template originating fibers with an average diameter of 179 ± 14 nm. Stress tests of the membranes showed that incorporating both microgels and Fe3O4 NPs in electrospun fibers increases their Young's modulus. Swelling assays indicate that PVA membranes have a swelling ratio of around 3.4 (g/g) and that the presence of microgels does not affect its swelling ability. However, with the incorporation of Fe3O4 NPs, the swelling ratio of the membranes decreases. Magnetic hyperthermia assays show that a higher concentration of NPs leads to a higher heating ability. The composite membrane with the most promising results is the one incorporated with DMSA-coated NPs, since it shows the highest temperature variation, 5.1 °C. To assess the membranes biocompatibility and ability to promote cell proliferation, indirect and direct contact cell viability assays were performed, as well as cell adhesion assays. Following an extract method viability assay, all membrane designs did not reveal cytotoxic effects on dermal fibroblasts and melanoma cancer cells, after 48 h exposure and support long-term viability. The present work demonstrates the potential of dual-stimuli composite membranes for magnetic hyperthermia and may in the future be used as an alternative cancer treatment particularly in anatomically reachable solid tumors.
Collapse
Affiliation(s)
- Adriana Gonçalves
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Beatriz T Simões
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Filipe V Almeida
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Susete N Fernandes
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Manuel Valente
- i3N and Physics Department, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Tânia Vieira
- i3N/CENIMAT, Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Célia Henriques
- i3N/CENIMAT, Department of Physics, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal
| | - João Paulo Borges
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Paula I P Soares
- i3N/CENIMAT, Department of Materials Science, NOVA School of Science and Technology, NOVA University Lisbon, Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
10
|
Image-guided drug delivery in nanosystem-based cancer therapies. Adv Drug Deliv Rev 2023; 192:114621. [PMID: 36402247 DOI: 10.1016/j.addr.2022.114621] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/18/2022] [Accepted: 11/13/2022] [Indexed: 11/18/2022]
Abstract
The past decades have shown significant advancements in the development of solid tumor treatment. For instance, implementation of nanosystems for drug delivery has led to a reduction in side effects and improved delivery to the tumor region. However, clinical translation has faced challenges, as tumor drug levels are still considered to be inadequate. Interdisciplinary research has resulted in the development of more advanced drug delivery systems. These are coined "smart" due to the ability to be followed and actively manipulated in order to have better control over local drug release. Therefore, image-guided drug delivery can be a powerful strategy to improve drug activity at the target site. Being able to visualize the inflow of the administered smart nanosystem within the tumor gives the potential to determine the right moment to apply the facilitator to initiate drug release. Here we provide an overview of available nanosystems, imaging moieties, and imaging techniques. We discuss preclinical application of these smart drug delivery systems, the strength of image-guided drug delivery, and the future of personalized treatment.
Collapse
|
11
|
Philip J. Magnetic nanofluids (Ferrofluids): Recent advances, applications, challenges, and future directions. Adv Colloid Interface Sci 2023; 311:102810. [PMID: 36417827 DOI: 10.1016/j.cis.2022.102810] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/28/2022] [Accepted: 11/05/2022] [Indexed: 11/16/2022]
Abstract
Impelled by the need to find solutions to new challenges of modern technologies new materials with unique properties are being explored. Among various new materials that emerged over the decades, magnetic fluids exhibiting interesting physiochemical properties (optical, thermal, magnetic, rheological, apparent density, etc.) under a magnetic stimulus have been at the forefront of research. In the initial phase, there has been a fervent scientific curiosity to understand the field-induced intriguing properties of such fluids but later a plethora of technological applications emerged. Magnetic nanofluid, popularly known as ferrofluid, is a colloidal suspension of fine magnetic nanoparticles, has been at the forefront of research because of its magnetically tunable physicochemical properties and applications. Due to their stimuli-responsive behaviour, they have been finding more applications in biology and other engineering disciplines in recent years. Therefore, a critical review of this topic highlighting the necessary background, the potential of this material for emerging technologies, and the latest developments is warranted. This review also provides a summary of various applications, along with the key challenges and future research directions. The first part of the review addresses the different types of magnetic fluids, the genesis of magnetic fluids, their synthesis methodologies, properties, and stabilization techniques are discussed in detail. The second part of the review highlights the applications of magnetic nanofluids and nanoemulsions (as model systems) in probing order-disorder transitions, scattering, diffraction, magnetically reconfigurable internal structures, molecular interaction, and weak forces between colloidal particles, conformational changes of macromolecules at interfaces and polymer-surfactant complexation at the oil-water interface. The last part of the review summarizes the interesting applications of magnetic fluids such as heat transfer, sensors (temperature, pH, urea detection, cations, defect detection sensors), tunable optical filters, removal of dyes, dynamic seals, magnetic hyperthermia-based cancer therapy and other biomedical applications. The applications of magnetic nanofluids in diverse disciplines are growing day by day, yet there are challenges in their practical adaptation as field-worthy or packaged products. This review provides a pedagogical description of magnetic fluids, with the necessary background, key concepts, physics, experimental protocols, design of experiments, challenges and future directions.
Collapse
Affiliation(s)
- John Philip
- Smart Materials Section, Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, India.
| |
Collapse
|
12
|
Advances in Polymeric Colloids for Cancer Treatment. Polymers (Basel) 2022; 14:polym14245445. [PMID: 36559812 PMCID: PMC9788371 DOI: 10.3390/polym14245445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 12/01/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Polymer colloids have remarkable features and are gaining importance in many areas of research including medicinal science. Presently, the innovation of cancer drugs is at the top in the world. Polymer colloids have been used as drug delivery and diagnosis agents in cancer treatment. The polymer colloids may be of different types such as micelles, liposomes, emulsions, cationic carriers, and hydrogels. The current article describes the state-of-the-art polymer colloids for the treatment of cancer. The contents of this article are about the role of polymeric nanomaterials with special emphasis on the different types of colloidal materials and their applications in targeted cancer therapy including cancer diagnoses. In addition, attempts are made to discuss future perspectives. This article will be useful for academics, researchers, and regulatory authorities.
Collapse
|
13
|
Bauer TA, Horvat NK, Marques O, Chocarro S, Mertens C, Colucci S, Schmitt S, Carrella LM, Morsbach S, Koynov K, Fenaroli F, Blümler P, Jung M, Sotillo R, Hentze MW, Muckenthaler MU, Barz M. Core Cross-Linked Polymeric Micelles for Specific Iron Delivery: Inducing Sterile Inflammation in Macrophages. Adv Healthc Mater 2021; 10:e2100385. [PMID: 34137217 PMCID: PMC11468145 DOI: 10.1002/adhm.202100385] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Indexed: 01/01/2023]
Abstract
Iron is an essential co-factor for cellular processes. In the immune system, it can activate macrophages and represents a potential therapeutic for various diseases. To specifically deliver iron to macrophages, iron oxide nanoparticles are embedded in polymeric micelles of reactive polysarcosine-block-poly(S-ethylsulfonyl-l-cysteine). Upon surface functionalization via dihydrolipoic acid, iron oxide cores act as crosslinker themselves and undergo chemoselective disulfide bond formation with the surrounding poly(S-ethylsulfonyl-l-cysteine) block, yielding glutathione-responsive core cross-linked polymeric micelles (CCPMs). When applied to primary murine and human macrophages, these nanoparticles display preferential uptake, sustained intracellular iron release, and induce a strong inflammatory response. This response is also demonstrated in vivo when nanoparticles are intratracheally administered to wild-type C57Bl/6N mice. Most importantly, the controlled release concept to deliver iron oxide in redox-responsive CCPMs induces significantly stronger macrophage activation than any other iron source at identical iron levels (e.g., Feraheme), directing to a new class of immune therapeutics.
Collapse
Affiliation(s)
- Tobias A. Bauer
- Leiden Academic Centre for Drug Research (LACDR)Leiden UniversityEinsteinweg 55Leiden2333CCThe Netherlands
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐14Mainz55128Germany
| | - Natalie K. Horvat
- European Molecular Biology Laboratory (EMBL)Collaboration for Joint PhD Degree between EMBL and the Faculty of BiosciencesUniversity of HeidelbergMeyerhofstr.1Heidelberg69117Germany
- Molecular Medicine Partnership Unit (MMPU)Otto‐Meyerhof‐ZentrumIm Neuenheimer Feld 350Heidelberg69120Germany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)University of HeidelbergIm Neuenheimer Feld 350Heidelberg69120Germany
| | - Oriana Marques
- Molecular Medicine Partnership Unit (MMPU)Otto‐Meyerhof‐ZentrumIm Neuenheimer Feld 350Heidelberg69120Germany
- Department of Pediatric Oncology, Hematology, Immunology, and PulmonologyHeidelberg University HospitalIm Neuenheimer Feld 350Heidelberg69120Germany
| | - Sara Chocarro
- Department of Molecular Thoracic OncologyGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 280Heidelberg69120Germany
| | - Christina Mertens
- Molecular Medicine Partnership Unit (MMPU)Otto‐Meyerhof‐ZentrumIm Neuenheimer Feld 350Heidelberg69120Germany
- Department of Pediatric Oncology, Hematology, Immunology, and PulmonologyHeidelberg University HospitalIm Neuenheimer Feld 350Heidelberg69120Germany
| | - Silvia Colucci
- Molecular Medicine Partnership Unit (MMPU)Otto‐Meyerhof‐ZentrumIm Neuenheimer Feld 350Heidelberg69120Germany
- Department of Pediatric Oncology, Hematology, Immunology, and PulmonologyHeidelberg University HospitalIm Neuenheimer Feld 350Heidelberg69120Germany
| | - Sascha Schmitt
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Luca M. Carrella
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐14Mainz55128Germany
| | - Svenja Morsbach
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Kaloian Koynov
- Max Planck Institute for Polymer ResearchAckermannweg 10Mainz55128Germany
| | - Federico Fenaroli
- Department for BiosciencesUniversity of OsloBlindernveien 31Oslo0371Norway
| | - Peter Blümler
- Institute of PhysicsJohannes Gutenberg University MainzStaudingerweg 9Mainz55128Germany
| | - Michaela Jung
- Institute of Biochemistry IFaculty of MedicineGoethe‐University FrankfurtTheodor‐Stern‐Kai 7Frankfurt am Main60590Germany
| | - Rocio Sotillo
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)University of HeidelbergIm Neuenheimer Feld 350Heidelberg69120Germany
- Department of Molecular Thoracic OncologyGerman Cancer Research Center (DKFZ)Im Neuenheimer Feld 280Heidelberg69120Germany
| | - Matthias W. Hentze
- European Molecular Biology Laboratory (EMBL)Collaboration for Joint PhD Degree between EMBL and the Faculty of BiosciencesUniversity of HeidelbergMeyerhofstr.1Heidelberg69117Germany
| | - Martina U. Muckenthaler
- Molecular Medicine Partnership Unit (MMPU)Otto‐Meyerhof‐ZentrumIm Neuenheimer Feld 350Heidelberg69120Germany
- Translational Lung Research Center Heidelberg (TLRC)German Center for Lung Research (DZL)University of HeidelbergIm Neuenheimer Feld 350Heidelberg69120Germany
- Department of Pediatric Oncology, Hematology, Immunology, and PulmonologyHeidelberg University HospitalIm Neuenheimer Feld 350Heidelberg69120Germany
| | - Matthias Barz
- Leiden Academic Centre for Drug Research (LACDR)Leiden UniversityEinsteinweg 55Leiden2333CCThe Netherlands
- Department of ChemistryJohannes Gutenberg University MainzDuesbergweg 10‐14Mainz55128Germany
| |
Collapse
|
14
|
Monteserín M, Larumbe S, Martínez AV, Burgui S, Francisco Martín L. Recent Advances in the Development of Magnetic Nanoparticles for Biomedical Applications. JOURNAL OF NANOSCIENCE AND NANOTECHNOLOGY 2021; 21:2705-2741. [PMID: 33653440 DOI: 10.1166/jnn.2021.19062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The unique properties of magnetic nanoparticles have led them to be considered materials with significant potential in the biomedical field. Nanometric size, high surface-area ratio, ability to function at molecular level, exceptional magnetic and physicochemical properties, and more importantly, the relatively easy tailoring of all these properties to the specific requirements of the different biomedical applications, are some of the key factors of their success. In this paper, we will provide an overview of the state of the art of different aspects of magnetic nanoparticles, specially focusing on their use in biomedicine. We will explore their magnetic properties, synthetic methods and surface modifications, as well as their most significative physicochemical properties and their impact on the in vivo behaviour of these particles. Furthermore, we will provide a background on different applications of magnetic nanoparticles in biomedicine, such as magnetic drug targeting, magnetic hyperthermia, imaging contrast agents or theranostics. Besides, current limitations and challenges of these materials, as well as their future prospects in the biomedical field will be discussed.
Collapse
Affiliation(s)
- Maria Monteserín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Silvia Larumbe
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Alejandro V Martínez
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - Saioa Burgui
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| | - L Francisco Martín
- Centre of Advanced Surface Engineering and Advanced Materials, Asociación de la Industria Navarra, Ctra. Pamplona, s/n, Edificio AIN, C.P. 31191, Cordovilla, Navarra (Spain)
| |
Collapse
|
15
|
Gonçalves A, Almeida FV, Borges JP, Soares PIP. Incorporation of Dual-Stimuli Responsive Microgels in Nanofibrous Membranes for Cancer Treatment by Magnetic Hyperthermia. Gels 2021; 7:gels7010028. [PMID: 33807693 PMCID: PMC8005962 DOI: 10.3390/gels7010028] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/22/2021] [Accepted: 03/02/2021] [Indexed: 11/16/2022] Open
Abstract
The delivery of multiple anti-cancer agents holds great promise for better treatments. The present work focuses on developing multifunctional materials for simultaneous and local combinatory treatment: Chemotherapy and hyperthermia. We first produced hybrid microgels (MG), synthesized by surfactant-free emulsion polymerization, consisting of Poly (N-isopropyl acrylamide) (PNIPAAm), chitosan (40 wt.%), and iron oxide nanoparticles (NPs) (5 wt.%) as the inorganic component. PNIPAAm MGs with a hydrodynamic diameter of about 1 μm (in their swollen state) were successfully synthesized. With the incorporation of chitosan and NPs in PNIPAAm MG, a decrease in MG diameter and swelling capacity was observed, without affecting their thermosensitivity. We then sought to produce biocompatible and mechanically robust membranes containing these dual-responsive MG. To achieve this, MG were incorporated in poly (vinyl pyrrolidone) (PVP) fibers through colloidal electrospinning. The presence of NPs in MG decreases the membrane swelling ratio from 10 to values between 6 and 7, and increases the material stiffness, raising its Young modulus from 20 to 35 MPa. Furthermore, magnetic hyperthermia assay shows that PVP-MG-NP composites perform better than any other formulation, with a temperature variation of about 1 °C. The present work demonstrates the potential of using multifunctional colloidal membranes for magnetic hyperthermia and may in the future be used as an alternative treatment for cancer.
Collapse
|
16
|
Ali I, Alsehli M, Scotti L, Tullius Scotti M, Tsai ST, Yu RS, Hsieh MF, Chen JC. Progress in Polymeric Nano-Medicines for Theranostic Cancer Treatment. Polymers (Basel) 2020; 12:E598. [PMID: 32155695 PMCID: PMC7182942 DOI: 10.3390/polym12030598] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/31/2019] [Accepted: 01/01/2020] [Indexed: 12/24/2022] Open
Abstract
Cancer is a life-threatening disease killing millions of people globally. Among various medical treatments, nano-medicines are gaining importance continuously. Many nanocarriers have been developed for treatment, but polymerically-based ones are acquiring importance due to their targeting capabilities, biodegradability, biocompatibility, capacity for drug loading and long blood circulation time. The present article describes progress in polymeric nano-medicines for theranostic cancer treatment, which includes cancer diagnosis and treatment in a single dosage form. The article covers the applications of natural and synthetic polymers in cancer diagnosis and treatment. Efforts were also made to discuss the merits and demerits of such polymers; the status of approved nano-medicines; and future perspectives.
Collapse
Affiliation(s)
- Imran Ali
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia;
- Department of Chemistry, Jamia Millia Islamia (Central University), New Delhi 110025, India
| | - Mosa Alsehli
- Department of Chemistry, College of Sciences, Taibah University, Al-Medina Al-Munawara 41477, Saudi Arabia;
| | - Luciana Scotti
- Cheminformatics Laboratory—Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, João Pessoa 58051-970, PB, Brazil; (L.S.); (M.T.S.)
| | - Marcus Tullius Scotti
- Cheminformatics Laboratory—Postgraduate Program in Natural Products and Synthetic Bioactive, Federal University of Paraíba-Campus I, João Pessoa 58051-970, PB, Brazil; (L.S.); (M.T.S.)
| | - Shang-Ting Tsai
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan; (S.-T.T.); (R.-S.Y.); (M.F.H.)
- Center for Minimally-Invasive Medical Devices and Technologies, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan
| | - Ruei-Siang Yu
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan; (S.-T.T.); (R.-S.Y.); (M.F.H.)
- Department of Pharmacy, Kaohsiung Armed Forces General Hospital, No.2, Zhongzheng 1st Rd., Lingya Dist., Kaohsiung 80284, Taiwan
| | - Ming Fa Hsieh
- Department of Biomedical Engineering, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan; (S.-T.T.); (R.-S.Y.); (M.F.H.)
- Center for Minimally-Invasive Medical Devices and Technologies, Chung Yuan Christian University, 200 Chung Pei Road, Chung Li District, Taoyuan 32023, Taiwan
| | - Jung-Chih Chen
- Institute of Biomedical Engineering, National Chiao Tung University, 1001 University Rd., Hsinchu 300, Taiwan;
| |
Collapse
|
17
|
Qin XY, Liu XX, Li ZY, Guo LY, Zheng ZZ, Guan HT, Song L, Zou YH, Fan TY. MRI Detectable Polymer Microspheres Embedded With Magnetic Ferrite Nanoclusters For Embolization: In Vitro And In Vivo Evaluation. Int J Nanomedicine 2019; 14:8989-9006. [PMID: 31819414 PMCID: PMC6873973 DOI: 10.2147/ijn.s209603] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 09/25/2019] [Indexed: 12/29/2022] Open
Abstract
OBJECTIVE The objective of this study was to develop magnetic embolic microspheres that could be visualized by clinical magnetic resonance imaging (MRI) scanners aiming to improve the efficiency and safety of embolotherapy. METHODS AND DISCUSSION Magnetic ferrite nanoclusters (FNs) were synthesized with microwave-assisted solvothermal method, and their morphology, particle size, crystalline structure, magnetic properties as well as T2 relaxivity were characterized to confirm the feasibility of FNs as an MRI probe. Magnetic polymer microspheres (FNMs) were then produced by inverse suspension polymerization with FNs embedded inside. The physicochemical and mechanical properties (including morphology, particle size, infrared spectra, elasticity, etc.) of FNMs were investigated, and the magnetic properties and MRI detectable properties of FNMs were also assayed by vibrating sample magnetometer and MRI scanners. Favorable biocompatibility and long-term MRI detectability of FNMs were then studied in mice by subcutaneous injection. FNMs were further used to embolize rabbits' kidneys to evaluate the embolic property and detectability by MRI. CONCLUSION FNMs could serve as a promising MRI-visualized embolic material for embolotherapy in the future.
Collapse
Affiliation(s)
- Xiao-Ya Qin
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Xiao-Xin Liu
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Zi-Yuan Li
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Li-Ying Guo
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| | - Zhuo-Zhao Zheng
- Department of Nuclear Medicine, Beijing Tsinghua Changgung Hospital, Beijing, People’s Republic of China
| | - Hai-Tao Guan
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, People’s Republic of China
| | - Li Song
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, People’s Republic of China
| | - Ying-Hua Zou
- Department of Interventional Radiology and Vascular Surgery, Peking University First Hospital, Beijing, People’s Republic of China
| | - Tian-Yuan Fan
- The State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, School of Pharmaceutical Sciences, Peking University, Beijing, People’s Republic of China
| |
Collapse
|
18
|
Sakhtianchi R, Darvishi B, Mirzaie Z, Dorkoosh F, Shanehsazzadeh S, Dinarvand R. Pegylated magnetic mesoporous silica nanoparticles decorated with AS1411 Aptamer as a targeting delivery system for cytotoxic agents. Pharm Dev Technol 2019; 24:1063-1075. [PMID: 30654677 DOI: 10.1080/10837450.2019.1569678] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Fulfilling the purpose of developing a NP with theragnostic capabilities, the current study describes the synthesis of an aptamer-functionalized PEG-coated SPION/mesoporous silica core-shell nanoparticle for concurrent cancer targeted therapy and magnetic resonance imaging. SPIONs were synthesized according to a thermal decomposition method and served as cores for SPION/mesoporous silica core/shell nanoparticles (MMSNs). Doxorubicin was then successfully loaded in MMSNs which were then coated with di-carboxylic acid functionalized polyethylene glycol (PEG-MMSNs). AS1411 aptamers were at the end covalently attached to NPs (APT-PEG-MMSNs). The mean diameter of synthesized NPs was about 89 nm and doxorubicin encapsulation efficacy was ≈67.47%. Results of MTT based cell cytotoxicity assay demonstrated a significantly higher toxicity profile for APT-PEG-MMSNs against MCF7 cells compared to non-decorated MMSNs, while no significant differences were spotted against NIH-3T3 cells. Meanwhile, formation of protein corona around APT-PEG-MMSNs in biological medium significantly attenuated observed cytotoxicity against MCF7 cell line. Examining NPs uptake by MCF7 cells using confocal laser scanning microscopy also confirmed superiority of APT-PEG-MMSNs over PEG-MMSNs. Finally, APT decorated NPs induced highest signal intensity reduction in T2-weighted images during in vitro MRI assay. In conclusion, developed NPs may serve as promising multifunctional vehicles for simultaneous cancer targeted therapy and MRI imaging.
Collapse
Affiliation(s)
- Ramin Sakhtianchi
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Behrad Darvishi
- Recombinant Proteins Department, Breast Cancer Research Center, ACECR , Tehran , Iran
| | - Zahra Mirzaie
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Farid Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Saeed Shanehsazzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| | - Rassoul Dinarvand
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran , Iran
| |
Collapse
|
19
|
Patsula V, Tulinska J, Trachtová Š, Kuricova M, Liskova A, Španová A, Ciampor F, Vavra I, Rittich B, Ursinyova M, Dusinska M, Ilavska S, Horvathova M, Masanova V, Uhnakova I, Horák D. Toxicity evaluation of monodisperse PEGylated magnetic nanoparticles for nanomedicine. Nanotoxicology 2019; 13:510-526. [DOI: 10.1080/17435390.2018.1555624] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Vitalii Patsula
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| | - Jana Tulinska
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Štěpánka Trachtová
- Institute of Food Science and Biotechnology, Brno University of Technology, Brno, Czech Republic
| | | | - Aurelia Liskova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Alena Španová
- Institute of Food Science and Biotechnology, Brno University of Technology, Brno, Czech Republic
| | - Fedor Ciampor
- Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ivo Vavra
- Institute of Electrical Engineering, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Bohuslav Rittich
- Institute of Food Science and Biotechnology, Brno University of Technology, Brno, Czech Republic
| | - Monika Ursinyova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Mária Dusinska
- Health Effects Laboratory, Department of Environmental Chemistry, NILU-Norwegian Institute for Air Research, Jeller, Norway
| | - Silvia Ilavska
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Mira Horvathova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Vlasta Masanova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Iveta Uhnakova
- Faculty of Medicine, Slovak Medical University, Bratislava, Slovakia
| | - Daniel Horák
- Institute of Macromolecular Chemistry, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
20
|
Delivery of Superparamagnetic Polymeric Micelles Loaded With Quercetin to Hepatocellular Carcinoma Cells. J Pharm Sci 2019; 108:996-1006. [DOI: 10.1016/j.xphs.2018.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 08/06/2018] [Accepted: 08/07/2018] [Indexed: 12/22/2022]
|
21
|
Cheng CT, Castro G, Liu CH, Lau P. Advanced nanotechnology: An arsenal to enhance immunotherapy in fighting cancer. Clin Chim Acta 2019; 492:12-19. [PMID: 30711524 DOI: 10.1016/j.cca.2019.01.027] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 12/15/2022]
Abstract
Cancer remains a major disease process with considerable healthcare and socioeconomic impact worldwide. Unfortunately, standard treatments using chemotherapy often do not effectively control cancer progression or prevent relapse. Over the past decades, the development of targeted therapies has substantially improved outcomes. Recently, immunotherapy has emerged as a new alternative for more effective cancer treatment and may even bring hope of a cure. Cancer immunotherapy functions by reinforcing a patient's immune defense system to fight the disease. Clinically, promising immunotherapy approaches have, however, been limited by unpredictable response and strong adverse effects. A drug delivery system (DDS) that effectively targets tumor and reduces drug exposure to normal tissue would mitigate these limitations. In this regard, nanotechnology has been intensively studied as a DDS for targeting tumors with various oncologic drugs. Several have resulted in improved treatment and outcome. Research has shown that nanoparticle drug delivery technologies can also be applied to immunotherapy. In this review, the current state of nanotechnology will be discussed. Because most cancer immunotherapies approved in recent years are protein drugs, this article will focus on a micellar nanocomplex (MNC) technology, a DDS platform especially suited for targeted delivery of these therapeutics to solid tumors.
Collapse
Affiliation(s)
- Chun-Ting Cheng
- Suntec Medical, Inc., 28F., No. 27-2, Sec. 2, Zhongzheng E. Rd., Tamsui Dist., New Taipei City 251, Taiwan
| | - Gabriel Castro
- Suntec Medical, Inc., 28F., No. 27-2, Sec. 2, Zhongzheng E. Rd., Tamsui Dist., New Taipei City 251, Taiwan
| | - Chun-Hsin Liu
- Suntec Medical, Inc., 28F., No. 27-2, Sec. 2, Zhongzheng E. Rd., Tamsui Dist., New Taipei City 251, Taiwan
| | - Pauline Lau
- Suntec Medical, Inc., 28F., No. 27-2, Sec. 2, Zhongzheng E. Rd., Tamsui Dist., New Taipei City 251, Taiwan; Suntec Medical, Inc, 4008 Blair Ridge Drive, Chino Hills, CA 91709, USA.
| |
Collapse
|
22
|
Sun J, Wang Z, Cao A, Sheng R. Synthesis of crosslinkable diblock terpolymers PDPA-b-P(NMS-co-OEG) and preparation of shell-crosslinked pH/redox-dual responsive micelles as smart nanomaterials. RSC Adv 2019; 9:34535-34546. [PMID: 35529956 PMCID: PMC9073896 DOI: 10.1039/c9ra05082e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 09/25/2019] [Indexed: 12/16/2022] Open
Abstract
Crosslinked polymer nanomaterials have attracted great attention due to their stability and highly controllable drug delivery; herein, a series of well-defined amphiphilic PDPA-b-P(NMS-co-OEG) diblock terpolymers (P1–P3) were designed and prepared via RAFT polymerization and were self-assembled into non-cross-linked (NCL) nanomicelles, which were further prepared into shell-cross-linked (SCL) micelles via cystamine-based in situ shell cross-linking. Using P3 as an optimized polymer, SCL-P3 micelles were prepared, which demonstrated remarkable pH/redox-dual responsive behaviour. For drug delivery, camptothecin (CPT)-loaded SCL-P3 micelles were prepared and showed much higher CPT-loading capability than their NCL-P3 counterparts. Notably, the SCL-P3 micelles showed good synergistic pH/redox-dual responsive CPT release properties, making them potential “smart” nanocarriers for drug delivery. A series of well-defined amphiphilic PDPA-b-P(NMS-co-OEG) diblock terpolymers were prepared via RAFT polymerization and self-assembled into non-cross-linked nanomicelles, and then shell-cross-linked micelles via cystamine-based in situ shell cross-linking.![]()
Collapse
Affiliation(s)
- Jingjing Sun
- Department of Radiology
- Shanghai Tenth People's Hospital
- School of Medicine
- Tongji University
- Shanghai 200072
| | - Zhao Wang
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- CAS
- Shanghai
- China
| | - Amin Cao
- Key Laboratory of Synthetic and Self-assembly Chemistry for Organic Functional Molecules
- Shanghai Institute of Organic Chemistry
- CAS
- Shanghai
- China
| | - Ruilong Sheng
- Department of Radiology
- Shanghai Tenth People's Hospital
- School of Medicine
- Tongji University
- Shanghai 200072
| |
Collapse
|
23
|
Image-Guided Drug Delivery. Bioanalysis 2019. [DOI: 10.1007/978-3-030-01775-0_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
24
|
Dadfar SM, Roemhild K, Drude NI, von Stillfried S, Knüchel R, Kiessling F, Lammers T. Iron oxide nanoparticles: Diagnostic, therapeutic and theranostic applications. Adv Drug Deliv Rev 2019; 138:302-325. [PMID: 30639256 PMCID: PMC7115878 DOI: 10.1016/j.addr.2019.01.005] [Citation(s) in RCA: 639] [Impact Index Per Article: 106.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/19/2018] [Accepted: 01/04/2019] [Indexed: 12/27/2022]
Abstract
Many different iron oxide nanoparticles have been evaluated over the years, for a wide variety of biomedical applications. We here summarize the synthesis, surface functionalization and characterization of iron oxide nanoparticles, as well as their (pre-) clinical use in diagnostic, therapeutic and theranostic settings. Diagnostic applications include liver, lymph node, inflammation and vascular imaging, employing mostly magnetic resonance imaging but recently also magnetic particle imaging. Therapeutic applications encompass iron supplementation in anemia and advanced cancer treatments, such as modulation of macrophage polarization, magnetic fluid hyperthermia and magnetic drug targeting. Because of their properties, iron oxide nanoparticles are particularly useful for theranostic purposes. Examples of such setups, in which diagnosis and therapy are intimately combined and in which iron oxide nanoparticles are used, are image-guided drug delivery, image-guided and microbubble-mediated opening of the blood-brain barrier, and theranostic tissue engineering. Together, these directions highlight the versatility and the broad applicability of iron oxide nanoparticles, and indicate the integration in future medical practice of multiple iron oxide nanoparticle-based materials.
Collapse
Affiliation(s)
- Seyed Mohammadali Dadfar
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Karolin Roemhild
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Institute of Pathology, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Natascha I Drude
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Nuclear Medicine, RWTH Aachen University Clinic, Aachen, Germany; Leibniz Institute for Interactive Materials - DWI, RWTH Aachen University, Aachen, Germany
| | - Saskia von Stillfried
- Institute of Pathology, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Ruth Knüchel
- Institute of Pathology, Medical Faculty, RWTH Aachen University Clinic, Aachen, Germany
| | - Fabian Kiessling
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany
| | - Twan Lammers
- Department of Nanomedicine and Theranostics, Institute for Experimental Molecular Imaging, RWTH Aachen University Clinic, Aachen, Germany; Department of Pharmaceutics, Utrecht University, Utrecht, The Netherlands; Department of Targeted Therapeutics, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
25
|
Yuan Y, He Y, Bo R, Ma Z, Wang Z, Dong L, Lin TY, Xue X, Li Y. A facile approach to fabricate self-assembled magnetic nanotheranostics for drug delivery and imaging. NANOSCALE 2018; 10:21634-21639. [PMID: 30457141 PMCID: PMC6317527 DOI: 10.1039/c8nr05141k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Superparamagnetic iron oxide (SPIO) nanoparticles have been extensively employed for theranostic applications due to their good biocompatibility and excellent magnetic resonance imaging (MRI) properties. However, these particles typically require surface modification due to their hydrophobic surfaces caused by the oil-phase surfactants used in the fabrication and thus, the drug loading on their surface is usually limited. Here, we provided a novel and facile approach to conveniently perform surface modification of SPIO while simultaneously loading a large amount of drug. By synthesizing an amphiphilic irinotecan-based compound with a hydrophobic tail enabling insertion into the SPIO assembly, an excellent SPIO-based theranostic nanomedicine (SPIO@IR) was produced. SPIO@IR not only extensively improved the drug efficacy, but also allowed visualization by MRI in biological systems.
Collapse
Affiliation(s)
- Ye Yuan
- School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070,P.R. China
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA, ,
| | - Yixuan He
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA, ,
| | - Ruonan Bo
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA, ,
| | - Zhao Ma
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA, ,
| | - Zhongling Wang
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA, ,
| | - Lijie Dong
- School of Materials Science and Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, 430070,P.R. China
| | - Tzu-yin Lin
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA 95817, USA
| | - Xiangdong Xue
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA, ,
| | - Yuanpei Li
- Department of Biochemistry and Molecular Medicine, UC Davis Comprehensive Cancer Center, University of California Davis, Sacramento, CA 95817, USA, ,
| |
Collapse
|
26
|
Matos RJR, Chaparro CIP, Silva JC, Valente MA, Borges JP, Soares PIP. Electrospun composite cellulose acetate/iron oxide nanoparticles non-woven membranes for magnetic hyperthermia applications. Carbohydr Polym 2018; 198:9-16. [PMID: 30093046 DOI: 10.1016/j.carbpol.2018.06.048] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 05/28/2018] [Accepted: 06/12/2018] [Indexed: 01/23/2023]
Abstract
In the present work composite membranes were produced by combining magnetic nanoparticles (NPs) with cellulose acetate (CA) membranes for magnetic hyperthermia applications. The non-woven CA membranes were produced by electrospinning technique, and magnetic NPs were incorporated by adsorption at fibers surface or by addition to the electrospinning solution. Therefore, different designs of composite membranes were obtained. Superparamagnetic NPs synthesized by chemical precipitation were stabilized either with oleic acid (OA) or dimercaptosuccinic acid (DMSA) to obtain stable suspensions at physiological pH. The incorporation of magnetic NP into CA matrix was confirmed by scanning and transmission electron microscopy. The results showed that adsorption of magnetic NPs at fibers' surface originates composite membranes with higher heating ability than those produced by incorporation of magnetic NPs inside the fibers. However, adsorption of magnetic NPs at fibers' surface can cause cytotoxicity depending on the NPs concentration. Tensile tests demonstrated a reinforcement effect caused by the incorporation of magnetic NPs in the non-woven membrane.
Collapse
Affiliation(s)
- Ricardo J R Matos
- CENIMAT/i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Catarina I P Chaparro
- CENIMAT/i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Jorge C Silva
- CENIMAT/i3N, Departamento de Física, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Manuel Almeida Valente
- Physics Department (i3N), University of Aveiro, Campus Universitário de Santiago, Aveiro, Portugal
| | - João Paulo Borges
- CENIMAT/i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Paula I P Soares
- CENIMAT/i3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
27
|
Vanparijs N, Nuhn L, De Geest BG. Transiently thermoresponsive polymers and their applications in biomedicine. Chem Soc Rev 2018; 46:1193-1239. [PMID: 28165097 DOI: 10.1039/c6cs00748a] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The focus of this review is on the class of transiently thermoresponsive polymers. These polymers are thermoresponsive, but gradually lose this property upon chemical transformation - often a hydrolysis reaction - in the polymer side chain or backbone. An overview of the different approaches used for the design of these polymers along with their physicochemical properties is given. Their amphiphilic properties and degradability into fully soluble compounds make this class of responsive polymers attractive for drug delivery and tissue engineering applications. Examples of these are also provided in this review.
Collapse
Affiliation(s)
- Nane Vanparijs
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Lutz Nuhn
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Bruno G De Geest
- Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
28
|
Upponi JR, Jerajani K, Nagesha DK, Kulkarni P, Sridhar S, Ferris C, Torchilin VP. Polymeric micelles: Theranostic co-delivery system for poorly water-soluble drugs and contrast agents. Biomaterials 2018; 170:26-36. [PMID: 29649747 DOI: 10.1016/j.biomaterials.2018.03.054] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Revised: 03/21/2018] [Accepted: 03/31/2018] [Indexed: 11/15/2022]
Abstract
Interest in theranostic agents has continued to grow because of their promise for simultaneous cancer detection and therapy. A platform-based nanosized combination agent suitable for the enhanced diagnosis and treatment of cancer was prepared using polymeric polyethylene glycol-phosphatidylethanolamine-based micelles loaded with both, poorly soluble chemotherapeutic agent paclitaxel and hydrophobic superparamagnetic iron oxide nanoparticles (SPION), a Magnetic Resonance Imaging contrast agent. The co-loaded paclitaxel and SPION did not affect each other's functional properties in vitro. In vivo, the resulting paclitaxel-SPION-co-loaded PEG-PE micelles retained their Magnetic Resonance contrast properties and apoptotic activity in breast and melanoma tumor mouse models. Such theranostic systems are likely to play a significant role in the combined diagnosis and therapy that leads to a more personalized and effective form of treatment.
Collapse
Affiliation(s)
- Jaydev R Upponi
- Center for Pharmaceutical Biotechnology & Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA 02115, USA
| | - Kaushal Jerajani
- Center for Pharmaceutical Biotechnology & Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA 02115, USA
| | - Dattatri K Nagesha
- Electronic Materials Research Institute, Department of Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Praveen Kulkarni
- Center for Translational NeuroImaging, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Srinivas Sridhar
- Electronic Materials Research Institute, Department of Physics, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Craig Ferris
- Center for Translational NeuroImaging, Department of Pharmaceutical Sciences, Northeastern University, 360 Huntington Ave, Boston, MA 02115, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology & Nanomedicine, Department of Pharmaceutical Sciences, Northeastern University, 140 The Fenway, Boston, MA 02115, USA.
| |
Collapse
|
29
|
Ding S, Attia MF, Wallyn J, Taddei C, Serra CA, Anton N, Kassem M, Schmutz M, Er-Rafik M, Messaddeq N, Collard A, Yu W, Giordano M, Vandamme TF. Microfluidic-Assisted Production of Size-Controlled Superparamagnetic Iron Oxide Nanoparticles-Loaded Poly(methyl methacrylate) Nanohybrids. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:1981-1991. [PMID: 29334739 DOI: 10.1021/acs.langmuir.7b01928] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this paper, superparamagnetic iron oxide nanoparticles (SPIONs, around 6 nm) encapsulated in poly(methyl methacrylate) nanoparticles (PMMA NPs) with controlled sizes ranging from 100 to 200 nm have been successfully produced. The hybrid polymeric NPs were prepared following two different methods: (1) nanoprecipitation and (2) nanoemulsification-evaporation. These two methods were implemented in two different microprocesses based on the use of an impact jet micromixer and an elongational-flow microemulsifier. SPIONs-loaded PMMA NPs synthesized by the two methods presented completely different physicochemical properties. The polymeric NPs prepared with the micromixer-assisted nanoprecipitation method showed a heterogeneous dispersion of SPIONs inside the polymer matrix, an encapsulation efficiency close to 100 wt %, and an irregular shape. In contrast, the polymeric NPs prepared with the microfluidic-assisted nanoemulsification-evaporation method showed a homogeneous dispersion, an almost complete encapsulation, and a spherical shape. The properties of the polymeric NPs have been characterized by dynamic light scattering, thermogravimetric analysis, and transmission electron microscope. In vitro cytotoxicity assays were also performed on the nanohybrids and pure PMMA NPs.
Collapse
Affiliation(s)
- Shukai Ding
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
- Institute of Atomic and Molecular Science, Shaanxi University of Science & Technology , CN-710021 Xi'an, Shaanxi, China
| | - Mohamed F Attia
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg, France
- National Research Centre , 12622 Cairo, Egypt
- Department of Bioengineering, Clemson University , Clemson, South Carolina 29634, United States
| | - Justine Wallyn
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg, France
| | - Chiara Taddei
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR , Portici 80055, Italy
| | | | - Nicolas Anton
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg, France
| | - Mohamad Kassem
- Vascular and Tissue Stress in Transplantation: Microparticles and Environment EA7293, Université de Strasbourg , F-67000 Strasbourg, France
| | - Marc Schmutz
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
| | - Meriem Er-Rafik
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
| | - Nadia Messaddeq
- Université de Strasbourg CNRS, INSERM, Collège de France, IGBMC UMR 7104/UMR_S 964 , F-67000 Strasbourg, France
| | - Alexandre Collard
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
| | - Wei Yu
- Université de Strasbourg, CNRS, ICS UPR 22 , F-67000 Strasbourg, France
| | - Michele Giordano
- Institute for Polymers, Composites and Biomaterials (IPCB), CNR , Portici 80055, Italy
| | - Thierry F Vandamme
- Université de Strasbourg, CNRS, CAMB UMR 7199 , F-67000 Strasbourg, France
| |
Collapse
|
30
|
Kemal E, Peters R, Bourke S, Fairclough S, Bergstrom-Mann P, Owen DM, Sandiford L, Dailey LA, Green M. Magnetic conjugated polymer nanoparticles doped with a europium complex for biomedical imaging. Photochem Photobiol Sci 2018; 17:718-721. [DOI: 10.1039/c7pp00402h] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Self-assembling conjugated polymer nanoparticles containing PVK and PLGA-PEG as a matrix polymer were doped with both a luminescent rare-earth complex and magnetic nanoparticles (SPIONs), giving rise to materials that are both luminescent and magnetic.
Collapse
Affiliation(s)
- E. Kemal
- Department of Physics
- King's College London
- Strand
- London
- UK
| | - R. Peters
- Department of Physics
- King's College London
- Strand
- London
- UK
| | - S. Bourke
- Department of Physics
- King's College London
- Strand
- London
- UK
| | - S. Fairclough
- Department of Physics
- King's College London
- Strand
- London
- UK
| | | | - D. M. Owen
- Department of Physics
- King's College London
- Strand
- London
- UK
| | - L. Sandiford
- Department of Physics
- King's College London
- Strand
- London
- UK
| | - L. A. Dailey
- Department of Pharmacy
- Martin-Luther-Universität Halle-Wittenberg
- 06120 Halle (Saale)
- Germany
| | - M. Green
- Department of Physics
- King's College London
- Strand
- London
- UK
| |
Collapse
|
31
|
Skandalis A, Sergides A, Bakandritsos A, Pispas S. PLMA-b-POEGMA Amphiphilic Block Copolymers as Nanocarriers for the Encapsulation of Magnetic Nanoparticles and Indomethacin. Polymers (Basel) 2017; 10:E14. [PMID: 30966050 PMCID: PMC6415048 DOI: 10.3390/polym10010014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 12/15/2017] [Accepted: 12/20/2017] [Indexed: 12/04/2022] Open
Abstract
We report here on the utilization of poly(lauryl methacrylate)-b-poly(oligo ethylene glycol methacrylate) (PLMA-b-POEGMA) amphiphilic block copolymers, which form compound micelles in aqueous solutions, as nanocarriers for the encapsulation of either magnetic iron oxide nanoparticles or iron oxide nanoparticles, and the model hydrophobic drug indomethacin in the their hydrophobic core. The mixed nanostructures were characterized using dynamic light scattering (DLS) and transmission electron microscopy (TEM) in terms of their structure and solution properties. Magnetophoresis experiments showed that the mixed solutions maintain the magnetic properties of the initial iron oxide nanoparticles. Results indicate that the cumulative hydrophilic/hydrophobic balance of all components determines the colloidal stability of the nanosystems. The effect of salt and bovine serum albumin (BSA) protein concentration on the structure of the mixed nanostructures was also investigated. Disintegration of the mixed nanostructures was observed in both cases, showing the importance of these parameters in the structure formation and stability of such complex mixed nanosystems.
Collapse
Affiliation(s)
- Athanasios Skandalis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| | - Andreas Sergides
- Department of Pharmacy, University of Patras, 26504 Rio Patras, Greece.
- Department of Materials Science, University of Patras, 25604 Rio Patras, Greece.
- UCL Healthcare Biomagnetic and Nanomaterials Laboratories, Department of Physics and Astronomy, The Royal Institution of Great Britain, 21 Albemarle street, London W1S 4BS, UK.
| | - Aristides Bakandritsos
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University, Šlechtitelů 27, 783 71 Olomouc, Czech Republic.
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.
| |
Collapse
|
32
|
Sun Y, Mei L, Han N, Ding X, Yu C, Yang W, Ruan G. Examining the Roles of Emulsion Droplet Size and Surfactant in the Interfacial Instability-Based Fabrication Process of Micellar Nanocrystals. NANOSCALE RESEARCH LETTERS 2017; 12:434. [PMID: 28709375 PMCID: PMC5509569 DOI: 10.1186/s11671-017-2202-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Accepted: 06/16/2017] [Indexed: 06/07/2023]
Abstract
The interfacial instability process is an emerging general method to fabricate nanocrystal-encapsulated micelles (also called micellar nanocrystals) for biological detection, imaging, and therapy. The present work utilized fluorescent semiconductor nanocrystals (quantum dots or QDs) as the model nanocrystals to investigate the interfacial instability-based fabrication process of nanocrystal-encapsulated micelles. Our experimental results suggest intricate and intertwined roles of the emulsion droplet size and the surfactant poly (vinyl alcohol) (PVA) used in the fabrication process of QD-encapsulated poly (styrene-b-ethylene glycol) (PS-PEG) micelles. When no PVA is used, no emulsion droplet and thus no micelle is successfully formed; Emulsion droplets with large sizes (~25 μm) result in two types of QD-encapsulated micelles, one of which is colloidally stable QD-encapsulated PS-PEG micelles while the other of which is colloidally unstable QD-encapsulated PVA micelles; In contrast, emulsion droplets with small sizes (~3 μm or smaller) result in only colloidally stable QD-encapsulated PS-PEG micelles. The results obtained in this work not only help to optimize the quality of nanocrystal-encapsulated micelles prepared by the interfacial instability method for biological applications but also offer helpful new knowledge on the interfacial instability process in particular and self-assembly in general.
Collapse
Affiliation(s)
- Yuxiang Sun
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, China
| | - Ling Mei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, China
| | - Ning Han
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, China
| | - Xinyi Ding
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, China
| | - Caihao Yu
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, China
| | - Wenjuan Yang
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, China
- Department of Materials Science and Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Gang Ruan
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing University, Nanjing, China.
- Collaborative Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing, China.
| |
Collapse
|
33
|
Bixner O, Gal N, Zaba C, Scheberl A, Reimhult E. Fluorescent Magnetopolymersomes: A Theranostic Platform to Track Intracellular Delivery. MATERIALS (BASEL, SWITZERLAND) 2017; 10:E1303. [PMID: 29137172 PMCID: PMC5706250 DOI: 10.3390/ma10111303] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2017] [Revised: 11/07/2017] [Accepted: 11/10/2017] [Indexed: 12/19/2022]
Abstract
We present a potential theranostic delivery platform based on the amphiphilic diblock copolymer polybutadiene-block-poly (ethylene oxide) combining covalent fluorescent labeling and membrane incorporation of superparamagnetic iron oxide nanoparticles for multimodal imaging. A simple self-assembly and labeling approach to create the fluorescent and magnetic vesicles is described. Cell uptake of the densely PEGylated polymer vesicles could be altered by surface modifications that vary surface charge and accessibility of the membrane active species. Cell uptake and cytotoxicity were evaluated by confocal microscopy, transmission electron microscopy, iron content and metabolic assays, utilizing multimodal tracking of membrane fluorophores and nanoparticles. Cationic functionalization of vesicles promoted endocytotic uptake. In particular, incorporation of cationic lipids in the polymersome membrane yielded tremendously increased uptake of polymersomes and magnetopolymersomes without increase in cytotoxicity. Ultrastructure investigations showed that cationic magnetopolymersomes disintegrated upon hydrolysis, including the dissolution of incorporated iron oxide nanoparticles. The presented platform could find future use in theranostic multimodal imaging in vivo and magnetically triggered delivery by incorporation of thermorepsonsive amphiphiles that can break the membrane integrity upon magnetic heating via the embedded superparamagnetic nanoparticles.
Collapse
Affiliation(s)
- Oliver Bixner
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.
| | - Noga Gal
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.
| | - Christoph Zaba
- Institute for Synthetic Bioarchitectures, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.
| | - Andrea Scheberl
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.
| | - Erik Reimhult
- Institute for Biologically Inspired Materials, Department of Nanobiotechnology, University of Natural Resources and Life Sciences, Muthgasse 11, 1190 Vienna, Austria.
| |
Collapse
|
34
|
Chen H, Lou R, Chen Y, Chen L, Lu J, Dong Q. Photonic crystal materials and their application in biomedicine. Drug Deliv 2017; 24:775-780. [PMID: 28475387 PMCID: PMC8241077 DOI: 10.1080/10717544.2017.1321059] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Revised: 04/14/2017] [Accepted: 04/17/2017] [Indexed: 01/31/2023] Open
Abstract
Photonic crystal (PC) materials exhibit unique structural colors that originate from their intrinsic photonic band gap. Because of their highly ordered structure and distinct optical characteristics, PC-based biomaterials have advantages in the multiplex detection, biomolecular screening and real-time monitoring of biomolecules. In addition, PCs provide good platforms for drug loading and biomolecule modification, which could be applied to biosensors and biological carriers. A number of methods are now available to fabricate PC materials with variable structure colors, which could be applied in biomedicine. Emphasis is given to the description of various applications of PC materials in biomedicine, including drug delivery, biodetection and tumor screening. We believe that this article will promote greater communication among researchers in the fields of chemistry, material science, biology, medicine and pharmacy.
Collapse
Affiliation(s)
| | | | - Yanxiao Chen
- Center of Evidence Based Medicine, Affiliated Dongyang Hospital of Wenzhou Medical University, Dongyang 322100, China
| | | | | | | |
Collapse
|
35
|
Justin C, Philip SA, Samrot AV. Synthesis and characterization of superparamagnetic iron-oxide nanoparticles (SPIONs) and utilization of SPIONs in X-ray imaging. APPLIED NANOSCIENCE 2017. [DOI: 10.1007/s13204-017-0583-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
36
|
Xin Y, Yin M, Zhao L, Meng F, Luo L. Recent progress on nanoparticle-based drug delivery systems for cancer therapy. Cancer Biol Med 2017; 14:228-241. [PMID: 28884040 PMCID: PMC5570600 DOI: 10.20892/j.issn.2095-3941.2017.0052] [Citation(s) in RCA: 173] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 05/24/2017] [Indexed: 12/19/2022] Open
Abstract
The development of cancer nanotherapeutics has attracted great interest in the recent decade. Cancer nanotherapeutics have overcome several limitations of conventional therapies, such as nonspecific biodistribution, poor water solubility, and limited bioavailability. Nanoparticles with tuned size and surface characteristics are the key components of nanotherapeutics, and are designed to passively or actively deliver anti-cancer drugs to tumor cells. We provide an overview of nanoparticle-based drug delivery methods and cancer therapies based on tumor-targeting delivery strategies that have been developed in recent years.
Collapse
Affiliation(s)
- Yanru Xin
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mingming Yin
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liyuan Zhao
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fanling Meng
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Liang Luo
- College of Life Science and Technology, National Engineering Research Center for Nanomedicine, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
37
|
Asem H, Zhao Y, Ye F, Barrefelt Å, Abedi-Valugerdi M, El-Sayed R, El-Serafi I, Abu-Salah KM, Hamm J, Muhammed M, Hassan M. Biodistribution of biodegradable polymeric nano-carriers loaded with busulphan and designed for multimodal imaging. J Nanobiotechnology 2016; 14:82. [PMID: 27993139 PMCID: PMC5168852 DOI: 10.1186/s12951-016-0239-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 12/03/2016] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Multifunctional nanocarriers for controlled drug delivery, imaging of disease development and follow-up of treatment efficacy are promising novel tools for disease diagnosis and treatment. In the current investigation, we present a multifunctional theranostic nanocarrier system for anticancer drug delivery and molecular imaging. Superparamagnetic iron oxide nanoparticles (SPIONs) as an MRI contrast agent and busulphan as a model for lipophilic antineoplastic drugs were encapsulated into poly (ethylene glycol)-co-poly (caprolactone) (PEG-PCL) micelles via the emulsion-evaporation method, and PEG-PCL was labelled with VivoTag 680XL fluorochrome for in vivo fluorescence imaging. RESULTS Busulphan entrapment efficiency was 83% while the drug release showed a sustained pattern over 10 h. SPION loaded-PEG-PCL micelles showed contrast enhancement in T 2 *-weighted MRI with high r 2* relaxivity. In vitro cellular uptake of PEG-PCL micelles labeled with fluorescein in J774A cells was found to be time-dependent. The maximum uptake was observed after 24 h of incubation. The biodistribution of PEG-PCL micelles functionalized with VivoTag 680XL was investigated in Balb/c mice over 48 h using in vivo fluorescence imaging. The results of real-time live imaging were then confirmed by ex vivo organ imaging and histological examination. Generally, PEG-PCL micelles were highly distributed into the lungs during the first 4 h post intravenous administration, then redistributed and accumulated in liver and spleen until 48 h post administration. No pathological impairment was found in the major organs studied. CONCLUSIONS Thus, with loaded contrast agent and conjugated fluorochrome, PEG-PCL micelles as biodegradable and biocompatible nanocarriers are efficient multimodal imaging agents, offering high drug loading capacity, and sustained drug release. These might offer high treatment efficacy and real-time tracking of the drug delivery system in vivo, which is crucial for designing of an efficient drug delivery system.
Collapse
Affiliation(s)
- Heba Asem
- Division of Functional Materials (FNM), Department of Materials and Nanophysics, Royal Institute of Technology (KTH), 164 40 Stockholm, Sweden
- Division of Experimental Cancer Medicine (ECM), Department of Laboratory Medicine (LABMED), Karolinska Institutet (KI), 141 86 Stockholm, Sweden
| | - Ying Zhao
- Division of Experimental Cancer Medicine (ECM), Department of Laboratory Medicine (LABMED), Karolinska Institutet (KI), 141 86 Stockholm, Sweden
- Clinical Research Center (KFC), Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| | - Fei Ye
- Division of Experimental Cancer Medicine (ECM), Department of Laboratory Medicine (LABMED), Karolinska Institutet (KI), 141 86 Stockholm, Sweden
| | - Åsa Barrefelt
- Division of Experimental Cancer Medicine (ECM), Department of Laboratory Medicine (LABMED), Karolinska Institutet (KI), 141 86 Stockholm, Sweden
| | - Manuchehr Abedi-Valugerdi
- Division of Experimental Cancer Medicine (ECM), Department of Laboratory Medicine (LABMED), Karolinska Institutet (KI), 141 86 Stockholm, Sweden
| | - Ramy El-Sayed
- Division of Experimental Cancer Medicine (ECM), Department of Laboratory Medicine (LABMED), Karolinska Institutet (KI), 141 86 Stockholm, Sweden
| | - Ibrahim El-Serafi
- Division of Experimental Cancer Medicine (ECM), Department of Laboratory Medicine (LABMED), Karolinska Institutet (KI), 141 86 Stockholm, Sweden
| | - Khalid M. Abu-Salah
- Department of Nanomedicine, King Abdullah International Medical Research Center, King Abdulaziz Medical City, PO Box 22490, Riyadh, 11426 Saudi Arabia
| | - Jörg Hamm
- PerkinElmer, 68 Elm St., Hopkinton, MA 01748 USA
| | - Mamoun Muhammed
- Division of Functional Materials (FNM), Department of Materials and Nanophysics, Royal Institute of Technology (KTH), 164 40 Stockholm, Sweden
| | - Moustapha Hassan
- Division of Experimental Cancer Medicine (ECM), Department of Laboratory Medicine (LABMED), Karolinska Institutet (KI), 141 86 Stockholm, Sweden
- Clinical Research Center (KFC), Karolinska University Hospital Huddinge, 141 86 Stockholm, Sweden
| |
Collapse
|
38
|
Kilcoyne A, Harisinghani MG, Mahmood U. Prostate Cancer Imaging and Therapy: Potential Role of Nanoparticles. J Nucl Med 2016; 57:105S-110S. [DOI: 10.2967/jnumed.115.170738] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Accepted: 08/16/2016] [Indexed: 12/17/2022] Open
|
39
|
Span K, Verhoef JJF, Hunt H, van Nostrum CF, Brinks V, Schellekens H, Hennink WE. A novel oral iron-complex formulation: Encapsulation of hemin in polymeric micelles and its in vitro absorption. Eur J Pharm Biopharm 2016; 108:226-234. [PMID: 27600943 DOI: 10.1016/j.ejpb.2016.09.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/01/2016] [Accepted: 09/02/2016] [Indexed: 01/26/2023]
Abstract
Anemia resulting from iron deficiency is one of the most prevalent diseases in the world. As iron has important roles in several biological processes such as oxygen transport, DNA synthesis and cell growth, there is a high need for iron therapies that result in high iron bioavailability with minimal toxic effects to treat patients suffering from anemia. This study aims to develop a novel oral iron-complex formulation based on hemin-loaded polymeric micelles composed of the biodegradable and thermosensitive polymer methoxy-poly(ethylene glycol)-b-poly[N-(2-hydroxypropyl)methacrylamide-dilactate], abbreviated as mPEG-b-p(HPMAm-Lac2). Hemin-loaded micelles were prepared by addition of hemin dissolved in DMSO:DMF (1:9, one volume) to an aqueous polymer solution (nine volumes) of mPEG-b-p(HPMAm-Lac2) followed by rapidly heating the mixture at 50°C to form hemin-loaded micelles that remain intact at room and physiological temperature. The highest loading capacity for hemin in mPEG-b-p(HPMAm-Lac2) micelles was 3.9%. The average particle diameter of the hemin-micelles ranged from 75 to 140nm, depending on the concentration of hemin solution that was used to prepare the micelles. The hemin-loaded micelles were stable at pH 2 for at least 3 h which covers the residence time of the formulation in the stomach after oral administration and up to 17 h at pH 7.4 which is sufficient time for uptake of the micelles by the enterocytes. Importantly, incubation of Caco-2 cells with hemin-micelles for 24 h at 37°C resulted in ferritin levels of 2500ng/mg protein which is about 10-fold higher than levels observed in cells incubated with iron sulfate under the same conditions. The hemin formulation also demonstrated superior cell viability compared to iron sulfate with and without ascorbic acid. The study presented here demonstrates the development of a promising novel iron complex for oral delivery.
Collapse
Affiliation(s)
- Kimberley Span
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Johan J F Verhoef
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Hedi Hunt
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Cornelus F van Nostrum
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Vera Brinks
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Huub Schellekens
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands
| | - Wim E Hennink
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences (UIPS), Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
40
|
Thermal and magnetic properties of chitosan-iron oxide nanoparticles. Carbohydr Polym 2016; 149:382-90. [DOI: 10.1016/j.carbpol.2016.04.123] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/01/2016] [Accepted: 04/28/2016] [Indexed: 11/22/2022]
|
41
|
Soares PIP, Sousa AI, Ferreira IMM, Novo CMM, Borges JP. Towards the development of multifunctional chitosan-based iron oxide nanoparticles: Optimization and modelling of doxorubicin release. Carbohydr Polym 2016; 153:212-221. [PMID: 27561489 DOI: 10.1016/j.carbpol.2016.07.109] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/20/2016] [Accepted: 07/25/2016] [Indexed: 01/27/2023]
Abstract
In the present work composite nanoparticles with a magnetic core and a chitosan-based shell were produced as drug delivery systems for doxorubicin (DOX). The results show that composite nanoparticles with a hydrodynamic diameter within the nanometric range are able to encapsulate more DOX than polymeric nanoparticles alone corresponding also to a higher drug release. Moreover the synthesis method of the iron oxide nanoparticles influences the total amount of DOX released and a high content of iron oxide nanoparticles inhibits DOX release. The modelling of the experimental results revealed a release mechanism dominated by Fickian diffusion.
Collapse
Affiliation(s)
- Paula I P Soares
- i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Ana Isabel Sousa
- i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal
| | - Isabel M M Ferreira
- i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| | - Carlos M M Novo
- Instituto de Higiene e Medicina Tropical, Universidade Nova de Lisboa, IHMT/UNL, 1349-008 Lisboa, Portugal
| | - João Paulo Borges
- i3N/CENIMAT, Department of Materials Science, Faculty of Science and Technology, Universidade NOVA de Lisboa, Campus de Caparica, 2829-516 Caparica, Portugal.
| |
Collapse
|
42
|
Mandrycky C, Wang Z, Kim K, Kim DH. 3D bioprinting for engineering complex tissues. Biotechnol Adv 2016; 34:422-434. [PMID: 26724184 PMCID: PMC4879088 DOI: 10.1016/j.biotechadv.2015.12.011] [Citation(s) in RCA: 962] [Impact Index Per Article: 106.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 12/10/2015] [Accepted: 12/22/2015] [Indexed: 02/07/2023]
Abstract
Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.
Collapse
Affiliation(s)
- Christian Mandrycky
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Zongjie Wang
- School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada
| | - Keekyoung Kim
- School of Engineering, The University of British Columbia, Kelowna, BC V1V 1V7, Canada.
| | - Deok-Ho Kim
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
43
|
Mandal S, Chaudhuri K. Engineered magnetic core shell nanoprobes: Synthesis and applications to cancer imaging and therapeutics. World J Biol Chem 2016; 7:158-167. [PMID: 26981204 PMCID: PMC4768120 DOI: 10.4331/wjbc.v7.i1.158] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 09/23/2015] [Accepted: 12/04/2015] [Indexed: 02/05/2023] Open
Abstract
Magnetic core shell nanoparticles are composed of a highly magnetic core material surrounded by a thin shell of desired drug, polymer or metal oxide. These magnetic core shell nanoparticles have a wide range of applications in biomedical research, more specifically in tissue imaging, drug delivery and therapeutics. The present review discusses the up-to-date knowledge on the various procedures for synthesis of magnetic core shell nanoparticles along with their applications in cancer imaging, drug delivery and hyperthermia or cancer therapeutics. Literature in this area shows that magnetic core shell nanoparticle-based imaging, drug targeting and therapy through hyperthermia can potentially be a powerful tool for the advanced diagnosis and treatment of various cancers.
Collapse
|
44
|
Angeloni L, Passeri D, Scaramuzzo FA, Di Iorio D, Barteri M, Mantovani D, Rossi M. Measurement of the nonmagnetic coating thickness of core-shell magnetic nanoparticles by controlled magnetization magnetic force microscopy. ACTA ACUST UNITED AC 2016. [DOI: 10.1063/1.4954489] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Zhao G, Li J, Niu X, Tang K, Wang S, Zhu W, Ma X, Ru M, Yang Y. Facile synthesis of Mn-doped Fe2O3 nanostructures: enhanced CO catalytic performance induced by manganese doping. NEW J CHEM 2016. [DOI: 10.1039/c5nj03694a] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A promoting influence of manganese species on the controllable synthesis and catalytic property on CO conversion of the manganese-iron oxide is observed.
Collapse
Affiliation(s)
- Genyuan Zhao
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- P. R. China
| | - Jing Li
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- P. R. China
| | - Xiaoran Niu
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- P. R. China
| | - Ke Tang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- P. R. China
| | - Shuping Wang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- P. R. China
| | - Wenshuang Zhu
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- P. R. China
| | - Xueqin Ma
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- P. R. China
| | - Miaoyan Ru
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- P. R. China
| | - Yanzhao Yang
- Key Laboratory for Special Functional Aggregate Materials of Education Ministry
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan
- P. R. China
| |
Collapse
|
46
|
|
47
|
Loginova TP, Timofeeva GI, Lependina OL, Shandintsev VA, Matyushin AA, Khotina IA, Shtykova EV. Fabrication and study of properties of magnetite nanoparticles in hybrid micelles of polystyrene-block-polyethylene oxide and sodium dodecyl sulfate. CRYSTALLOGR REP+ 2016. [DOI: 10.1134/s1063774516010107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
48
|
Asadi H, Khoee S, Deckers R. Polymer-grafted superparamagnetic iron oxide nanoparticles as a potential stable system for magnetic resonance imaging and doxorubicin delivery. RSC Adv 2016. [DOI: 10.1039/c6ra20398a] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Currently, there is high interest in developing multifunctional theranostic platforms with both imaging and therapeutic functions.
Collapse
Affiliation(s)
- H. Asadi
- Polymer Laboratory
- Chemistry Department
- School of Science
- University of Tehran
- Tehran
| | - S. Khoee
- Polymer Laboratory
- Chemistry Department
- School of Science
- University of Tehran
- Tehran
| | - R. Deckers
- Image Sciences Institute
- University Medical Center Utrecht
- Utrecht
- The Netherlands
| |
Collapse
|
49
|
Soares PIP, Lochte F, Echeverria C, Pereira LCJ, Coutinho JT, Ferreira IMM, Novo CMM, Borges JPMR. Thermal and magnetic properties of iron oxide colloids: influence of surfactants. NANOTECHNOLOGY 2015; 26:425704. [PMID: 26421876 DOI: 10.1088/0957-4484/26/42/425704] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Iron oxide nanoparticles (NPs) have been extensively studied in the last few decades for several biomedical applications such as magnetic resonance imaging, magnetic drug delivery and hyperthermia. Hyperthermia is a technique used for cancer treatment which consists in inducing a temperature of about 41-45 °C in cancerous cells through magnetic NPs and an external magnetic field. Chemical precipitation was used to produce iron oxide NPs 9 nm in size coated with oleic acid and trisodium citrate. The influence of both stabilizers on the heating ability and in vitro cytotoxicity of the produced iron oxide NPs was assessed. Physicochemical characterization of the samples confirmed that the used surfactants do not change the particles' average size and that the presence of the surfactants has a strong effect on both the magnetic properties and the heating ability. The heating ability of Fe3O4 NPs shows a proportional increase with the increase of iron concentration, although when coated with trisodium citrate or oleic acid the heating ability decreases. Cytotoxicity assays demonstrated that both pristine and trisodium citrate Fe3O4 samples do not reduce cell viability. However, oleic acid Fe3O4 strongly reduces cell viability, more drastically in the SaOs-2 cell line. The produced iron oxide NPs are suitable for cancer hyperthermia treatment and the use of a surfactant brings great advantages concerning the dispersion of NPs, also allowing better control of the hyperthermia temperature.
Collapse
Affiliation(s)
- Paula I P Soares
- CENIMAT/I3N, Departamento de Ciência dos Materiais, Faculdade de Ciências e Tecnologia, FCT, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Impact of heating mode in synthesis of monodisperse iron-oxide nanoparticles via oleate decomposition. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0737-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|