1
|
Deb M, Roy S, Hassan N, Chowdhury D, Sanfui MDH, Nandy P, Maiti DK, Chang M, Rahaman M, Hasnat MA, Bhunia K, Chattopadhyay PK, Singha NR. Synthesis and optimization of chitosan-incorporated semisynthetic polymer/α-Fe 2O 3 nanoparticle hybrid polymer to explore optimal efficacy of fluorescence resonance energy transfer/charge transfer for Co(II) and Ni(II) sensing. Int J Biol Macromol 2024; 280:135831. [PMID: 39349075 DOI: 10.1016/j.ijbiomac.2024.135831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/02/2024]
Abstract
Initially, four synthetic fluorescent polymers (SFPs) are synthesized from α-methacrylic acid and methanolacrylamide monomers carrying -C(=O)OH and -C(=O)NH subfluorophores, respectively. Among SFPs, ∼1:1 incorporation of subfluorophores in the optimum SFP3 is explored by spectroscopic analyses. Subsequently, chitosan is incorporated in SFP3 to produce five semi-synthetic fluorescent polymers (SSFPs). The maximum incorporation of chitosan in SSFP4 is supported by different spectroscopies. In SSFP4, strong electrostatic interactions among polar functionalities of chitosan and synthetic polymer favor resonance-associated charge transfer (RCT) from SSFP4-(amide) to SSFP4-(canonical). Finally, three hybrid fluorescent polymers (HFPs) are fabricated encapsulating iron-oxide nanoparticle within SSFP4. The maximum proportion of hematite (α-Fe2O3) phase in HFPs is explored by spectroscopic, magnetometric, microscopic, and light scattering studies. HFP2 shows local/RCT/fluorescence resonance energy transfer (FRET) emission at 393/460/570 nm. In HFP2, FRET, RCT, and ratiometric pH-sensing within 3.0-6.5 phenomena are explored by solvent polarity effects, time-correlated single photon counting, quantum yield measurements, alongside I431/I460 vs pH plots. RCT and FRET emissions of HFP2 are utilized for selective sensing of Co(II)/Ni(II) with limits of detection of 4.990 ppb (460 nm)/4.353 ppb (570 nm) and 45.041 ppb (428 nm)/29.617 ppb (527 nm) in organic and aqueous solutions, respectively.
Collapse
Affiliation(s)
- Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata-700106, West Bengal, India
| | - Shrestha Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata-700106, West Bengal, India; Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, West Bengal, India
| | - Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata-700106, West Bengal, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata-700106, West Bengal, India
| | - M D Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata-700106, West Bengal, India
| | - Preetam Nandy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata-700106, West Bengal, India; Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, West Bengal, India
| | - Dilip K Maiti
- Department of Chemistry, University of Calcutta, 92, A.P.C. Road, Kolkata-700009, West Bengal, India
| | - Mincheol Chang
- Department of Polymer Engineering, Graduate School, Chonnam National University, Gwangju 61186, South Korea
| | - Mostafizur Rahaman
- Department of Chemistry, College of Science, King Saud University, PO Box 2455, Riyadh 11451, Saudi Arabia
| | - Mohammad A Hasnat
- Electrochemistry & Catalysis Research Laboratory (ECRL), Department of Chemistry, School of Physical Sciences, Shahjalal University of Science and Technology, Sylhet 3114, Bangladesh
| | - Kamalendu Bhunia
- Department of Chemical Engineering, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata 700106, West Bengal, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata-700106, West Bengal, India.
| |
Collapse
|
2
|
Altenschmidt L, Sánchez-Paradinas S, Lübkemann F, Zámbó D, Abdelmonem AM, Bradtmüller H, Masood A, Morales I, de la Presa P, Knebel A, García-Tuñón MAG, Pelaz B, Hindricks KDJ, Behrens P, Parak WJ, Bigall NC. Aerogelation of Polymer-Coated Photoluminescent, Plasmonic, and Magnetic Nanoparticles for Biosensing Applications. ACS APPLIED NANO MATERIALS 2021; 4:6678-6688. [PMID: 34327308 PMCID: PMC8314273 DOI: 10.1021/acsanm.1c00636] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 05/26/2021] [Indexed: 06/13/2023]
Abstract
Macroscopic materials with nanoscopic properties have recently been synthesized by self-assembling defined nanoparticles to form self-supported networks, so-called aerogels. Motivated by the promising properties of this class of materials, the search for versatile routes toward the controlled assembly of presynthesized nanoparticles into such ultralight macroscopic materials has become a great interest. Overcoating procedures of colloidal nanoparticles with polymers offer versatile means to produce aerogels from nanoparticles, regardless of their size, shape, or properties while retaining their original characteristics. Herein, we report on the surface modification and assembly of various building blocks: photoluminescent nanorods, magnetic nanospheres, and plasmonic nanocubes with particle sizes between 5 and 40 nm. The polymer employed for the coating was poly(isobutylene-alt-maleic anhydride) modified with 1-dodecylamine side chains. The amphiphilic character of the polymer facilitates the stability of the nanocrystals in aqueous media. Hydrogels are prepared via triggering the colloidally stable solutions, with aqueous cations acting as linkers between the functional groups of the polymer shell. Upon supercritical drying, the hydrogels are successfully converted into macroscopic aerogels with highly porous, open structure. Due to the noninvasive preparation method, the nanoscopic properties of the building blocks are retained in the monolithic aerogels, leading to the powerful transfer of these properties to the macroscale. The open pore system, the universality of the polymer-coating strategy, and the large accessibility of the network make these gel structures promising biosensing platforms. Functionalizing the polymer shell with biomolecules opens up the possibility to utilize the nanoscopic properties of the building blocks in fluorescent probing, magnetoresistive sensing, and plasmonic-driven thermal sensing.
Collapse
Affiliation(s)
- Laura Altenschmidt
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hanover 30167, Germany
| | - Sara Sánchez-Paradinas
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hanover 30167, Germany
| | - Franziska Lübkemann
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hanover 30167, Germany
| | - Dániel Zámbó
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hanover 30167, Germany
| | - Abuelmagd M. Abdelmonem
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hanover 30167, Germany
- Food
Technology Research Institute, Agricultural
Research Center, 9 Cairo
University St., Giza 12619, Egypt
| | - Henrik Bradtmüller
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hanover 30167, Germany
- Institute
of Physical Chemistry, Westfälische
Wilhelms-Universität Münster, Corrensstraße 30, Münster D-48149, Germany
| | - Atif Masood
- Fachbereich
Physik and WZMW, Philipps Universität
Marburg, Marburg 35032, Germany
| | - Irene Morales
- Instituto
de Magnetismo Aplicado, UCM-ADIF-CSIC, Las Rozas 28230, Spain
| | | | - Alexander Knebel
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hanover 30167, Germany
- Institute
of Functional Interfaces (IFG), Karlsruhe
Institute of Technology, Hermann-von-Helmholtz-Platz 1, Eggenstein-Leopoldshafen 76344, Germany
| | | | - Beatriz Pelaz
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CiQUS), Departamento de Química Inorgánica, Universidade de Santiago de Compostela, Santiago de Compostela 15782, Spain
| | - Karen D. J. Hindricks
- Institute
of Inorganic Chemistry, Leibniz Universität
Hannover, Callinstr. 9, Hanover 30167, Germany
- Cluster of Excellence PhoenixD (Photonics,
Optics, and Engineering
− Innovation Across Disciplines), Hanover 30167, Germany
| | - Peter Behrens
- Institute
of Inorganic Chemistry, Leibniz Universität
Hannover, Callinstr. 9, Hanover 30167, Germany
- Cluster of Excellence
Hearing4all, Hanover 30167, Germany
- Cluster of Excellence PhoenixD (Photonics,
Optics, and Engineering
− Innovation Across Disciplines), Hanover 30167, Germany
| | - Wolfgang J. Parak
- Fachbereich
Physik und Chemie, CHyN, Universität
Hamburg, Luruper Chaussee
149, Hamburg 22607, Germany
| | - Nadja C. Bigall
- Institute
of Physical Chemistry and Electrochemistry, Leibniz Universität Hannover, Callinstr. 3a, Hanover 30167, Germany
- Cluster of Excellence PhoenixD (Photonics,
Optics, and Engineering
− Innovation Across Disciplines), Hanover 30167, Germany
| |
Collapse
|
3
|
Zhao X, Zhao X, Yuan M, Han R, Lian J, Zhao X, Ji X, Zhang F. Study on physisorption between phycocyanin and gold nanoparticles. LUMINESCENCE 2019; 34:623-627. [PMID: 31144438 DOI: 10.1002/bio.3654] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 04/27/2019] [Accepted: 05/06/2019] [Indexed: 01/05/2023]
Abstract
Interactions between nanoparticles (NPs) and biomolecules, especially proteins, have attracted increasing attention. Photoresponsive proteins have shown high potential for optogenetic research. The combination between optogenetics and nanotechnology will bring a new biological era in which photoresponsive proteins will inevitably encounter NPs, therefore their interactions will be a key point to investigate. Here, we have systematically studied the interactions between a photoresponsive protein (called phycocyanin, PC) and a typical kind of amphiphilic polymer-coated gold NPs (AP-AuNPs) using fluorescence quenching methods. The results showed that the binding constant between PCs and AP-AuNPs is 4.427 × 106 M-1 with a positive cooperativity, and the robust affinity was hydrophobic interaction driven mortise-tenon conjugation, which could even resist gel electrophoresis. These results could also shed light on potential designs for building up artificial protein-NP light-harvesting systems.
Collapse
Affiliation(s)
- Xiujuan Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Arding Street, Baotou, China
| | - Xinyu Zhao
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Arding Street, Baotou, China.,Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, China
| | - Ming Yuan
- Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, China
| | - Rong Han
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Arding Street, Baotou, China
| | - Jiaqi Lian
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Arding Street, Baotou, China.,Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, China
| | - Xinmin Zhao
- Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiang Ji
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Arding Street, Baotou, China
| | - Feng Zhang
- School of Life Science and Technology, Inner Mongolia University of Science and Technology, 7 Arding Street, Baotou, China.,Biomedical Nanocenter, School of Life Science, Inner Mongolia Agricultural University, 306 Zhaowuda Road, Hohhot, China.,Key Laboratory of Oral Medicine, Guangzhou Institute of Oral Disease, Stomatology Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
4
|
Zhu L, Pelaz B, Chakraborty I, Parak WJ. Investigating Possible Enzymatic Degradation on Polymer Shells around Inorganic Nanoparticles. Int J Mol Sci 2019; 20:E935. [PMID: 30795518 PMCID: PMC6412445 DOI: 10.3390/ijms20040935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 02/01/2019] [Accepted: 02/03/2019] [Indexed: 12/05/2022] Open
Abstract
Inorganic iron oxide nanoparticle cores as model systems for inorganic nanoparticles were coated with shells of amphiphilic polymers, to which organic fluorophores were linked with different conjugation chemistries, including 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) chemistry and two types of "click chemistry". The nanoparticle-dye conjugates were exposed to different enzymes/enzyme mixtures in order to investigate potential enzymatic degradation of the fluorophore-modified polymer shell. The release of the dyes and polymer fragments upon enzymatic digestion was quantified by using fluorescence spectroscopy. The data indicate that enzymatic cleavage of the fluorophore-modified organic surface coating around the inorganic nanoparticles in fact depends on the used conjugation chemistry, together with the types of enzymes to which the nanoparticle-dye conjugates are exposed.
Collapse
Affiliation(s)
- Lin Zhu
- Faculty of Physics, Universität Hamburg, 22761 Hamburg, Germany.
| | - Beatriz Pelaz
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CiQUS), Departamento de Física de Partículas, Universidade de Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | | | - Wolfgang J Parak
- Faculty of Physics, Universität Hamburg, 22761 Hamburg, Germany.
- CIC Biomagune, 20014 San Sebastian, Spain.
| |
Collapse
|
5
|
Datinská V, Klepárník K, Belšánová B, Minárik M, Foret F. Capillary electrophoresis, a method for the determination of nucleic acid ligands covalently attached to quantum dots representing a donor of Förster resonance energy transfer. J Sep Sci 2018; 41:2961-2968. [PMID: 29742317 DOI: 10.1002/jssc.201800248] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 01/24/2023]
Abstract
The synthesis and determination of the structure of a Förster resonance energy transfer probe intended for the detection of specific nucleic acid sequences are described here. The probe is based on the hybridization of oligonucleotide modified quantum dots with a fluorescently labeled nucleic acid sample resulting in changes of the fluorescence emission due to the energy transfer effect. The stoichiometry distribution of oligonucleotides conjugated to quantum dots was determined by capillary electrophoresis separation. The results indicate that one to four molecules of oligonucleotide are conjugated to the surface of a single nanoparticle. This conclusion is confirmed by the course of the dependence of Förster resonance energy transfer efficiency on the concentration of fluorescently labeled complementary single-stranded nucleic acid, showing saturation. While the energy transfer efficiency of the probe hybridized with complementary nucleic acid strands was 30%, negligible efficiency was observed with a noncomplementary strand.
Collapse
Affiliation(s)
- Vladimíra Datinská
- Institute of Analytical Chemistry of the CAS v. v. i., Brno, Czech Republic.,Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Karel Klepárník
- Institute of Analytical Chemistry of the CAS v. v. i., Brno, Czech Republic
| | - Barbora Belšánová
- Center for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Prague, Czech Republic
| | - Marek Minárik
- Center for Applied Genomics of Solid Tumors (CEGES), Genomac Research Institute, Prague, Czech Republic.,Department of Analytical Chemistry, Faculty of Sciences, Charles University, Prague, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry of the CAS v. v. i., Brno, Czech Republic
| |
Collapse
|
6
|
Carrillo-Carrion C, Escudero A, Parak WJ. Optical sensing by integration of analyte-sensitive fluorophore to particles. Trends Analyt Chem 2016. [DOI: 10.1016/j.trac.2016.05.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
7
|
Fedosyuk A, Radchanka A, Antanovich A, Prudnikau A, Kvach MV, Shmanai V, Artemyev M. Determination of Concentration of Amphiphilic Polymer Molecules on the Surface of Encapsulated Semiconductor Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:1955-1961. [PMID: 26866303 DOI: 10.1021/acs.langmuir.5b04602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present a method for the determination of the average number of polymer molecules on the surface of A(II)B(VI) luminescent core-shell nanocrystals (CdSe/ZnS, ZnSe/ZnS quantum dots, and CdS/ZnS nanorods) encapsulated with amphiphilic polymer. Poly(maleic anhydride-alt-1-tetradecene) (PMAT) was quantitatively labeled with amino-derivative of fluorescein and the average amount of PMAT molecules per single nanocrystal was determined using optical absorption of the dye in the visible spectral range. The average amount of PMAT molecules grows linearly with the surface area of all studied nanocrystals. However, the surface density of the monomer units increases nonlinearly with the surface area, because of the increased competition between PMAT molecules for Zn-hexanethiol surface binding sites. The average value of zeta potential (ζ = -35 mV) was found to be independent of the size, shape, and chemical composition of nanocrystals at fixed buffer parameters (carbonate-bicarbonate buffer, pH 9.5 and 5 mM ionic strength). This finding is expected to be useful for the determination of the surface density of remaining carboxyl groups in PMAT-encapsulated nanocrystals.
Collapse
Affiliation(s)
- Aleksandra Fedosyuk
- Institute for Physical Chemical Problems, Belarusian State University , Leningradskaya str. 14, Minsk 220030, Belarus
| | - Aliaksandra Radchanka
- Institute for Physical Chemical Problems, Belarusian State University , Leningradskaya str. 14, Minsk 220030, Belarus
| | - Artsiom Antanovich
- Institute for Physical Chemical Problems, Belarusian State University , Leningradskaya str. 14, Minsk 220030, Belarus
| | - Anatol Prudnikau
- Institute for Physical Chemical Problems, Belarusian State University , Leningradskaya str. 14, Minsk 220030, Belarus
| | - Maksim V Kvach
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus , Minsk 220072, Belarus
| | - Vadim Shmanai
- Institute of Physical Organic Chemistry, National Academy of Sciences of Belarus , Minsk 220072, Belarus
| | - Mikhail Artemyev
- Institute for Physical Chemical Problems, Belarusian State University , Leningradskaya str. 14, Minsk 220030, Belarus
| |
Collapse
|
8
|
Menendez-Miranda M, Costa-Fernández JM, Encinar JR, Parak WJ, Carrillo-Carrion C. Determination of the ratio of fluorophore/nanoparticle for fluorescence-labelled nanoparticles. Analyst 2016; 141:1266-72. [DOI: 10.1039/c5an02405f] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Accurate analytical methodology to determine the ratio of fluorophore molecules attached per nanoparticle; applicable to diverse fluorophore–NP conjugates.
Collapse
Affiliation(s)
- Mario Menendez-Miranda
- Fachbereich Physik
- Philipps Universität Marburg
- 35037 Marburg
- Germany
- Department of Physical and Analytical Chemistry
| | | | - Jorge Ruiz Encinar
- Department of Physical and Analytical Chemistry
- University of Oviedo
- Spain
| | | | | |
Collapse
|
9
|
Yuan M, Zhong R, Yun X, Hou J, Du Q, Zhao G, Zhang F. A fluorimetric study on the interaction between a Trp-containing beta-strand peptide and amphiphilic polymer-coated gold nanoparticles. LUMINESCENCE 2015; 31:47-53. [DOI: 10.1002/bio.2920] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 02/09/2015] [Accepted: 03/14/2015] [Indexed: 12/23/2022]
Affiliation(s)
- Ming Yuan
- School of Life Science; Inner Mongolia Agricultural University; Hohhot China
| | - Ruibo Zhong
- School of Life Science; Inner Mongolia Agricultural University; Hohhot China
| | - Xiaoling Yun
- School of Life Science; Inner Mongolia Agricultural University; Hohhot China
| | - Jiahua Hou
- School of Life Science; Inner Mongolia Agricultural University; Hohhot China
| | - Qiqige Du
- School of Life Science; Inner Mongolia Agricultural University; Hohhot China
| | - Guofen Zhao
- School of Life Science; Inner Mongolia Agricultural University; Hohhot China
| | - Feng Zhang
- School of Life Science; Inner Mongolia Agricultural University; Hohhot China
| |
Collapse
|
10
|
Kantner K, Ashraf S, Carregal-Romero S, Carrillo-Carrion C, Collot M, Del Pino P, Heimbrodt W, De Aberasturi DJ, Kaiser U, Kazakova LI, Lelle M, de Baroja NM, Montenegro JM, Nazarenus M, Pelaz B, Peneva K, Gil PR, Sabir N, Schneider LM, Shabarchina LI, Sukhorukov GB, Vazquez M, Yang F, Parak WJ. Particle-based optical sensing of intracellular ions at the example of calcium - what are the experimental pitfalls? SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:896-904. [PMID: 25504784 DOI: 10.1002/smll.201402110] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 09/24/2014] [Indexed: 06/04/2023]
Abstract
Colloidal particles with fluorescence read-out are commonly used as sensors for the quantitative determination of ions. Calcium, for example, is a biologically highly relevant ion in signaling, and thus knowledge of its spatio-temporal distribution inside cells would offer important experimental data. However, the use of particle-based intracellular sensors for ion detection is not straightforward. Important associated problems involve delivery and intracellular location of particle-based fluorophores, crosstalk of the fluorescence read-out with pH, and spectral overlap of the emission spectra of different fluorophores. These potential problems are outlined and discussed here with selected experimental examples. Potential solutions are discussed and form a guideline for particle-based intracellular imaging of ions.
Collapse
Affiliation(s)
- Karsten Kantner
- Fachbereich Physik, Philipps- Universität Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Zhong R, Liu Y, Zhang P, Liu J, Zhao G, Zhang F. Discrete nanoparticle-BSA conjugates manipulated by hydrophobic interaction. ACS APPLIED MATERIALS & INTERFACES 2014; 6:19465-19470. [PMID: 25372929 DOI: 10.1021/am506497s] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Nanoparticle-protein conjugates are promising probes for biological diagnostics as well as versatile building blocks for nanotechnology. Here we demonstrate a facile method to prepare nanoparticles bearing discrete numbers of BSA simply by physical adsorption and electrophoretic isolation, in which the specific amphiphilic properties of BSA play important roles and the number of adsorbed BSA molecules can also be manipulated by tuning the coating extent of nanoparticles by amphiphilic polymer.
Collapse
Affiliation(s)
- Ruibo Zhong
- School of Life Science, Inner Mongolia Agricultural University , 306 Zhaowuda Road, Hohhot 010018, China
| | | | | | | | | | | |
Collapse
|
12
|
Nazarenus M, Zhang Q, Soliman MG, del Pino P, Pelaz B, Carregal-Romero S, Rejman J, Rothen-Rutishauser B, Clift MJD, Zellner R, Nienhaus GU, Delehanty JB, Medintz IL, Parak WJ. In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far? BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2014; 5:1477-90. [PMID: 25247131 PMCID: PMC4168913 DOI: 10.3762/bjnano.5.161] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/12/2014] [Indexed: 05/20/2023]
Abstract
The interfacing of colloidal nanoparticles with mammalian cells is now well into its second decade. In this review our goal is to highlight the more generally accepted concepts that we have gleaned from nearly twenty years of research. While details of these complex interactions strongly depend, amongst others, upon the specific properties of the nanoparticles used, the cell type, and their environmental conditions, a number of fundamental principles exist, which are outlined in this review.
Collapse
Affiliation(s)
- Moritz Nazarenus
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Qian Zhang
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Mahmoud G Soliman
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Pablo del Pino
- CIC Biomagune, Paseo Miramón 182, 20009 San Sebastian, Spain
| | - Beatriz Pelaz
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | | | - Joanna Rejman
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
| | - Barbara Rothen-Rutishauser
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Route de L’ancienne Papeterie CP 209, Marly 1, 1723, Fribourg, Switzerland
| | - Martin J D Clift
- BioNanomaterials, Adolphe Merkle Institute, University of Fribourg, Route de L’ancienne Papeterie CP 209, Marly 1, 1723, Fribourg, Switzerland
| | - Reinhard Zellner
- Institute of Physical Chemistry, University of Duisburg-Essen, Universitätsstraße 5, 45141 Essen, Germany
| | - G Ulrich Nienhaus
- Institute of Applied Physics and Institute of Toxicology and Genetics, Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Straße 1, 76131 Karlsruhe, Germany
- Department of Physics, University of Illinois at Urbana-Champaign, 1110 West Green Street, Urbana, IL 61801, USA
| | - James B Delehanty
- Center for Bio/Molecular Science & Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington D.C., 20375, USA
| | - Igor L Medintz
- Center for Bio/Molecular Science & Engineering, Code 6900, U.S. Naval Research Laboratory, 4555 Overlook Avenue Southwest, Washington D.C., 20375, USA
| | - Wolfgang J Parak
- Fachbereich Physik, Philipps-Universität Marburg, Renthof 7, 35037 Marburg, Germany
- CIC Biomagune, Paseo Miramón 182, 20009 San Sebastian, Spain
| |
Collapse
|
13
|
Pfeiffer C, Rehbock C, Hühn D, Carrillo-Carrion C, de Aberasturi DJ, Merk V, Barcikowski S, Parak WJ. Interaction of colloidal nanoparticles with their local environment: the (ionic) nanoenvironment around nanoparticles is different from bulk and determines the physico-chemical properties of the nanoparticles. J R Soc Interface 2014; 11:20130931. [PMID: 24759541 PMCID: PMC4032524 DOI: 10.1098/rsif.2013.0931] [Citation(s) in RCA: 206] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 11/27/2013] [Indexed: 12/22/2022] Open
Abstract
The physico-chemical properties of colloidal nanoparticles (NPs) are influenced by their local environment, as, in turn, the local environment influences the physico-chemical properties of the NPs. In other words, the local environment around NPs has a profound impact on the NPs, and it is different from bulk due to interaction with the NP surface. So far, this important effect has not been addressed in a comprehensive way in the literature. The vicinity of NPs can be sensitively influenced by local ions and ligands, with effects already occurring at extremely low concentrations. NPs in the Hückel regime are more sensitive to fluctuations in the ionic environment, because of a larger Debye length. The local ion concentration hereby affects the colloidal stability of the NPs, as it is different from bulk owing to Debye Hückel screening caused by the charge of the NPs. This can have subtle effects, now caused by the environment to the performance of the NP, such as for example a buffering effect caused by surface reaction on ultrapure ligand-free nanogold, a size quenching effect in the presence of specific ions and a significant impact on fluorophore-labelled NPs acting as ion sensors. Thus, the aim of this review is to clarify and give an unifying view of the complex interplay between the NP's surface with their nanoenvironment.
Collapse
Affiliation(s)
| | - Christoph Rehbock
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Dominik Hühn
- Fachbereich Physik, Philipps Universität Marburg, Marburg, Germany
| | | | | | - Vivian Merk
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
| | - Stephan Barcikowski
- Center for Nanointegration Duisburg-Essen (CENIDE), University of Duisburg-Essen, Essen, Germany
| | | |
Collapse
|
14
|
Zamaleeva AI, Collot M, Bahembera E, Tisseyre C, Rostaing P, Yakovlev AV, Oheim M, de Waard M, Mallet JM, Feltz A. Cell-penetrating nanobiosensors for pointillistic intracellular Ca2+-transient detection. NANO LETTERS 2014; 14:2994-3001. [PMID: 24754795 DOI: 10.1021/nl500733g] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Small-molecule chemical calcium (Ca(2+)) indicators are invaluable tools for studying intracellular signaling pathways but have severe shortcomings for detecting local Ca(2+) entry. Nanobiosensors incorporating functionalized quantum dots (QDs) have emerged as promising alternatives but their intracellular use remains a major challenge. We designed cell-penetrating FRET-based Ca(2+) nanobiosensors for the detection of local Ca(2+) concentration transients, using commercially available CANdot565QD as a donor and CaRuby, a custom red-emitting Ca(2+) indicator, as an acceptor. With Ca(2+)-binding affinities covering the range of 3-20 μM, our CaRubies allow building sensors with a scalable affinity for detecting intracellular Ca(2+) transients at various concentrations. To facilitate their cytoplasmic delivery, QDs were further functionalized with a small cell-penetrating peptide (CPP) derived from hadrucalcin (HadUF1-11: H11), a ryanodine receptor-directed scorpion toxin identified within the venom of Hadrurus gertschi. Efficient internalization of QDs doubly functionalized with PEG5-CaRuby and H11 (in a molar ratio of 1:10:10, respectively) is demonstrated. In BHK cells expressing a N-methyl-d-aspartate receptor (NMDAR) construct, these nanobiosensors report rapid intracellular near-membrane Ca(2+) transients following agonist application when imaged by TIRF microscopy. Our work presents the elaboration of cell-penetrating FRET-based nanobiosensors and validates their function for detection of intracellular Ca(2+) transients.
Collapse
Affiliation(s)
- Alsu I Zamaleeva
- Ecole Normale Supérieure, Institut de Biologie de l'ENS (IBENS) , Paris F-75005, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
Quantum Dots (QDs) are semiconductor nanocrystals with distinct photophysical properties finding applications in biology, biosensing, and optoelectronics. Polymeric coatings of QDs are used primarily to provide long-term colloidal stability to QDs dispersed in solutions and also as a source of additional functional groups used in further chemical derivatization of the nanoparticles. We review the coating methods, including multidentate and amphiphilic polymeric coatings, and grafting-to and grafting-from approaches. We highlight the most commonly used polymers and discuss how their chemical structure influences the coating properties.
Collapse
Affiliation(s)
- Nikodem Tomczak
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 3 Research Link, Singapore 117602.
| | | | | |
Collapse
|
16
|
Yen SK, Jańczewski D, Lakshmi JL, Dolmanan SB, Tripathy S, Ho VHB, Vijayaragavan V, Hariharan A, Padmanabhan P, Bhakoo KK, Sudhaharan T, Ahmed S, Zhang Y, Tamil Selvan S. Design and synthesis of polymer-functionalized NIR fluorescent dyes--magnetic nanoparticles for bioimaging. ACS NANO 2013; 7:6796-6805. [PMID: 23869722 DOI: 10.1021/nn401734t] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The fluorescent probes having complete spectral separation between absorption and emission spectra (large Stokes shift) are highly useful for solar concentrators and bioimaging. In bioimaging application, NIR fluorescent dyes have a greater advantage in tissue penetration depth compared to visible-emitting organic dyes or inorganic quantum dots. Here we report the design, synthesis, and characterization of an amphiphilic polymer, poly(isobutylene-alt-maleic anhyride)-functionalized near-infrared (NIR) IR-820 dye and its conjugates with iron oxide (Fe3O4) magnetic nanoparticles (MNPs) for optical and magnetic resonance (MR) imaging. Our results demonstrate that the Stokes shift of unmodified dye can be tuned (from ~106 to 208 nm) by the functionalization of the dye with polymer and MNPs. The fabrication of bimodal probes involves (i) the synthesis of NIR fluorescent dye (IR-820 cyanine) functionalized with ethylenediamine linker in high yield, >90%, (ii) polymer conjugation to the functionalized NIR fluorescent dye, and (iii) grafting the polymer-conjugated dyes on iron oxide MNPs. The resulting uniform, small-sized (ca. 6 nm) NIR fluorescent dye-magnetic hybrid nanoparticles (NPs) exhibit a wider emissive range (800-1000 nm) and minimal cytotoxicity. Our preliminary studies demonstrate the potential utility of these NPs in bioimaging by means of direct labeling of cancerous HeLa cells via NIR fluorescence microscopy and good negative contrast enhancement in T2-weighted MR imaging of a murine model.
Collapse
Affiliation(s)
- Swee Kuan Yen
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research, 3 Research Link, Singapore 117602
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
He X, Wang Y, Wang K, Chen M, Chen S. Fluorescence resonance energy transfer mediated large Stokes shifting near-infrared fluorescent silica nanoparticles for in vivo small-animal imaging. Anal Chem 2012; 84:9056-64. [PMID: 23017033 DOI: 10.1021/ac301461s] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Fluorescent dye-doped silica nanoparticles are increasingly used for in vivo imaging due to their unique biocompatibility and easy surface modification. However, the utility of existing fluorescent dye-doped silica nanoparticles for in vivo imaging is still limited because most studies are focused on doping single near-infrared (NIR) dyes in the silica matrix, which would cause background and crosstalk between the excitation light and the emitting signals due to the small Stokes shift of the traditional NIR dyes. To address this issue, we present a novel large Stokes shifting NIR fluorescent silica nanoparticles (LSS-NFSiNPs) based on the principle of fluorescence resonance energy transfer. Two highly water-soluble dyes, tris(2,2-bipyridyl)dichlororuthenium(II) hexahydrate (RuBpy) and methylene blue (MB), were chose as the model donor-acceptor pair. The LSS-NFSiNPs were prepared by synchronously doping RuBpy and MB in the silica nanoparticles. By optimizing the molar ratio of RuBpy and MB for doping in the silica nanoparticles, the energy transfer from RuBpy to MB occurred in the silica matrix, resulting in a near-infrared fluorescent silica nanoparticles with strong fluorescence and large Stokes shift (>200 nm). As a result, it can effectively help to increase the discrimination of fluorescence signal of interest over other background signals. With a combination of excellent stability, large Stokes shift, and near-infrared spectral properties, this novel LSS-NFSiNPs provides real-time, deep-tissue fluorescent imaging of live animals. More importantly, the LSS-NFSiNPs can also be gradually cleared from the body through the urinary clearance system. We anticipate this design concept can lay a foundation for further development of in vivo optical nanoparticulate contrast toward clinical applications.
Collapse
Affiliation(s)
- Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Biology, Hunan University, Changsha 410082, PR China
| | | | | | | | | |
Collapse
|
18
|
Carregal-Romero S, Montenegro JM, Parak WJ, Rivera_Gil P. Subcellular carrier-based optical ion-selective nanosensors. Front Pharmacol 2012; 3:70. [PMID: 22557969 PMCID: PMC3337447 DOI: 10.3389/fphar.2012.00070] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2012] [Accepted: 04/05/2012] [Indexed: 11/13/2022] Open
Abstract
In this review, two carrier systems based on nanotechnology for real-time sensing of biologically relevant analytes (ions or other biological molecules) inside cells in a non-invasive way are discussed. One system is based on inorganic nanoparticles with an organic coating, whereas the second system is based on organic microcapsules. The sensor molecules presented within this work use an optical read-out. Due to the different physicochemical properties, both sensors show distinctive geometries that directly affect their internalization patterns. The nanoparticles carry the sensor molecule attached to their surfaces whereas the microcapsules encapsulate the sensor within their cavities. Their different size (nano and micro) enable each sensors to locate in different cellular regions. For example, the nanoparticles are mostly found in endolysosomal compartments but the microcapsules are rather found in phagolysosomal vesicles. Thus, allowing creating a tool of sensors that sense differently. Both sensor systems enable to measure ratiometrically however, only the microcapsules have the unique ability of multiplexing. At the end, an outlook on how more sophisticated sensors can be created by confining the nano-scaled sensors within the microcapsules will be given.
Collapse
Affiliation(s)
- Susana Carregal-Romero
- Department of Biophotonics, Institute of Physics and WZMW, Philipps University of MarburgMarburg, Germany
| | - Jose-Maria Montenegro
- Department of Biophotonics, Institute of Physics and WZMW, Philipps University of MarburgMarburg, Germany
| | - Wolfgang J. Parak
- Department of Biophotonics, Institute of Physics and WZMW, Philipps University of MarburgMarburg, Germany
| | - Pilar Rivera_Gil
- Department of Biophotonics, Institute of Physics and WZMW, Philipps University of MarburgMarburg, Germany
| |
Collapse
|
19
|
Zhang F, Lees E, Amin F, Rivera Gil P, Yang F, Mulvaney P, Parak WJ. Polymer-coated nanoparticles: a universal tool for biolabelling experiments. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2011; 7:3113-27. [PMID: 21928301 DOI: 10.1002/smll.201100608] [Citation(s) in RCA: 186] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2011] [Indexed: 05/20/2023]
Abstract
Water solubilization of nanoparticles is a fundamental prerequisite for many biological applications. To date, no single method has emerged as ideal, and several different approaches have been successfully utilized. These 'phase-transfer' strategies are reviewed, indicating key advantages and disadvantages, and a discussion of conjugation strategies is presented. Coating of hydrophobic nanoparticles with amphiphilic polymers provides a generic pathway for the phase transfer of semiconductor, magnetic, metallic, and upconverting nanoparticles from nonpolar to polar environments. Amphiphilic polymers that include maleimide groups can be readily functionalized with chemical groups for specific applications. In the second, experimental part, some of the new chemical features of such polymer-capped nanoparticles are demonstrated. In particular, nanoparticles to which a pH sensitive fluorophore has been attached are described, and their use for intracellular pH-sensing demonstrated. It is shown that the properties of analyte-sensitive fluorophores can be tuned by using interactions with the underlying nanoparticles.
Collapse
Affiliation(s)
- Feng Zhang
- Fachbereich Physik and Wissenschaftliches Zentrum für, Materialwissenschaften, Philipps Universität Marburg, Marburg, Germany
| | | | | | | | | | | | | |
Collapse
|
20
|
|
21
|
Zylstra J, Amey J, Miska NJ, Pang L, Hine CR, Langer J, Doyle RP, Maye MM. A modular phase transfer and ligand exchange protocol for quantum dots. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:4371-4379. [PMID: 21410215 DOI: 10.1021/la104542n] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
In this paper, we describe a quantum dot (qdot) phase transfer protocol using ligand exchange and the amino acid histidine. The phase transfer from nonpolar solvents to aqueous buffers is homogeneous, and no appreciable precipitation occurs. The molecule histidine was chosen in order to first displace the organic encapsulation and second to provide a weakly chemisorbing intermediate at the qdot ionic interface. This allows the histidine to act as an intermediate shell upon which further direct ligand exchange can occur. Since this intermediate encapsulation is easily displaced by an assortment of different molecules while in aqueous buffers, we refer to this approach as modular. Characterization via FTIR and NMR revealed the extent of ligand exchange, and provides insights into the interfacial binding mechanism. The colloidal stability and photostability of the qdots was probed via UV-vis and steady state fluorescence, which revealed promising quantum yield stability of greater than 1 year. The qdots have hydrodynamic diameters of <12 nm and surface charges dependent upon ligand type and coverage. The modularity of this approach is shown by tailoring the qdot surface charge via sequential ligand exchange using mixed monolayers of carboxylic acid and poly(ethylene glycol)-terminated thiols.
Collapse
Affiliation(s)
- Joshua Zylstra
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, USA
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Ali Z, Abbasi AZ, Zhang F, Arosio P, Lascialfari A, Casula MF, Wenk A, Kreyling W, Plapper R, Seidel M, Niessner R, Knöll J, Seubert A, Parak WJ. Multifunctional nanoparticles for dual imaging. Anal Chem 2011; 83:2877-82. [PMID: 21413785 DOI: 10.1021/ac103261y] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
For imaging with different modalities, labels, which provide contrast for all modalities, are required. Colloidal nanoparticles composed out of an inorganic core and a polymer shell offer progress in this direction. Both, the core and the polymer shell, can be synthesized to be fluorescent, magnetic, or radioactive. When different cores are combined with different polymer shells, different types of particles for dual imaging can be obtained, as for example, fluorescent cores with radioactive polymer shells. Properties and perspectives of such nanoparticles for multimodal imaging are discussed.
Collapse
Affiliation(s)
- Z Ali
- Fachbereich Physik and Wissenschaftliches Zentrum für Materialwissenschaften, Philipps Universität Marburg, Marburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Peng X, Yu Q, Ye Z, Ichinose I. Flexible ultrathin free-standing fluorescent films of CdSexS1−x/ZnS nanocrystalline and protein. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c0jm03400b] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Riedinger A, Zhang F, Dommershausen F, Röcker C, Brandholt S, Nienhaus GU, Koert U, Parak WJ. Ratiometric optical sensing of chloride ions with organic fluorophore-gold nanoparticle hybrids: a systematic study of design parameters and surface charge effects. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2010; 6:2590-2597. [PMID: 20957760 DOI: 10.1002/smll.201000868] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Colloidal nanoparticles are often stabilized by high surface charges. These create an electrical potential that may strongly affect the concentration of dissolved ions, which presents a formidable problem for the use of nanoparticles in ion-sensing applications. This effect is investigated systematically with organic fluorophore-gold nanoparticle hybrids, which have a chloride-sensitive fluorophore attached at varying distances from their surface. The distance-dependent fluorescence response is quantitatively assessed using fluorescence spectroscopy.
Collapse
Affiliation(s)
- Andreas Riedinger
- Fachbereich Physik and WZMW, Philipps Universität Marburg, Marburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhang F, Ali Z, Amin F, Feltz A, Oheim M, Parak WJ. Ion and pH Sensing with Colloidal Nanoparticles: Influence of Surface Charge on Sensing and Colloidal Properties. Chemphyschem 2010; 11:730-5. [DOI: 10.1002/cphc.200900849] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Jańczewski D, Tomczak N, Liu S, Han MY, Vancso GJ. Covalent assembly of functional inorganic nanoparticles by “click” chemistry in water. Chem Commun (Camb) 2010; 46:3253-5. [DOI: 10.1039/b921848c] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|