1
|
Rathod R, Santra PK. Probing Chemical-Composition-Induced Heterostructures and Interfaces in Lead Halide Perovskites. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12103-12117. [PMID: 36121436 DOI: 10.1021/acs.langmuir.2c01586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Lead halide perovskites (LHP) are of great interest for their optoelectronic properties and photovoltaic applications. Various heterostructures are created in these materials to achieve favorable optical properties and improved stability at the interfaces during the fabrication of devices. Such heterostructures are often assumed to be formed based on the reactivity of precursors and are not directly probed. In this Feature Article, we report how various strategies have been employed in LHP thin films and nanocrystals (NCs) that generate heterostructures to boost their stability and photovoltaic (PV) efficiencies and how variable energy photoelectron spectroscopy (VEPES) can probe the chemical composition variation in heterostructured materials and interfaces. We specifically discussed the internal heterostructures of LHP NCs generated due to the surface chemistry and postsynthesis anion exchange followed by a detailed discussion of the heterostructures induced by the chemical composition (anion, cation, and degradation) of LHP thin films. The difficulties in determining heterostructures as well as the potential scope of the application of VEPES in unwrapping heterostructures in diverse materials are also discussed.
Collapse
Affiliation(s)
- Radha Rathod
- Centre for Nano and Soft Matter Sciences (CeNS), Arkavathi, Bengaluru 562162, India
- Manipal Academy of Higher Education (MAHE), Manipal 576104, India
| | - Pralay K Santra
- Centre for Nano and Soft Matter Sciences (CeNS), Arkavathi, Bengaluru 562162, India
| |
Collapse
|
2
|
A novel p16 protein electrochemiluminescence biosensor using optical multi-metal nanocomposites as excellent nanocarriers. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106183] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
3
|
Sun Y, Zhai X, Xu Y, Liu C, Zou X, Li Z, Shi J, Huang X. Facile fabrication of three-dimensional gold nanodendrites decorated by silver nanoparticles as hybrid SERS-active substrate for the detection of food contaminants. Food Control 2021. [DOI: 10.1016/j.foodcont.2020.107772] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Chen J, Zhou Y, Wang W. Spontaneous Growth of Au Microflowers on Poly( N-isopropylacrylamide) Brushes-grafted-Graphene Oxide Films for Surface-enhanced Raman Spectroscopy. CHEM LETT 2020. [DOI: 10.1246/cl.200468] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jiajun Chen
- School of Materials Science and Chemical Engineering, Ningbo University, No. 818, Fenghua Road, Ningbo 315211, P. R. China
| | - Yumeng Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, No. 818, Fenghua Road, Ningbo 315211, P. R. China
| | - Wenqin Wang
- School of Materials Science and Chemical Engineering, Ningbo University, No. 818, Fenghua Road, Ningbo 315211, P. R. China
| |
Collapse
|
5
|
Ravula S, Essner JB, La WA, Polo-Parada L, Kargupta R, Hull GJ, Sengupta S, Baker GA. Sunlight-assisted route to antimicrobial plasmonic aminoclay catalysts. NANOSCALE 2015; 7:86-91. [PMID: 25407226 DOI: 10.1039/c4nr04544k] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
We present a straightforward, environmentally-benign, one-pot photochemical route to generate alloyed AgAu bimetallic nanoparticle decorated aminoclays in water at room temperature. The protocol uses no reducing agent (e.g., NaBH4) nor is photocatalyst required. These hybrid materials show excellent promise as dual catalysts/antibacterial agents.
Collapse
Affiliation(s)
- Sudhir Ravula
- Department of Chemistry, University of Missouri, Columbia, MO 65211, USA.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Li X, Zheng B, Du J, Yuan H, Xiao D. A self-assembled net structured film for the immobilization of tris(2,2′-bipyridyl)ruthenium(ii) and its ultrasensitive electrogenerated chemiluminescent sensing for phenol. RSC Adv 2014. [DOI: 10.1039/c3ra44059a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
|
7
|
Zhang H, Haba M, Okumura M, Akita T, Hashimoto S, Toshima N. Novel formation of Ag/Au bimetallic nanoparticles by physical mixture of monometallic nanoparticles in dispersions and their application to catalysts for aerobic glucose oxidation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10330-10339. [PMID: 23829515 DOI: 10.1021/la401878g] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Ag/Au bimetallic nanoparticles (BNPs) with a size less than 2 nm were prepared by physical mixture of colloidal dispersions of Ag and Au nanoparticles (NPs). This provides an example of fabrication of BNPs with self-organization by the reaction between metal NPs. Although Ag/Au BNPs having different structures and compositions are one of the most widely studied bimetallic systems in the literature due to their wide range of uses such as in catalysis, electronics, plasmonics, optical sensing, and surface-enhanced Raman scattering, we first prepared such BNPs by physical mixture and characterized them by UV-vis spectroscopy, SERS, XPS, TEM, and EDS in HR-STEM. The present fabrication method has the advantage of avoiding the unfavorable formation of AgCl precipitates in the reaction process which are always produced when Ag(+) ions are used as a starting material in combination with a HAuCl4 precursor. These Ag/Au BNPs showed high catalytic activities for aerobic glucose oxidation, and the highest activity of 11,510 mol of glucose·h(-1)·mol of metal(-1) was observed for the BNPs with a Ag/Au atomic ratio of 1/4; the activity value is about 2 times higher than that of Au NPs with nearly the same particle size. XPS and DFT calculation results show that the negatively charged Au atoms due to the electron charge transfer effects from neighboring Ag atoms and poly(N-vinyl-2-pyrrolidone) act as catalytically active sites and play an important role in the aerobic glucose oxidation.
Collapse
Affiliation(s)
- Haijun Zhang
- College of Materials & Metallurgy, Wuhan University of Science and Technology, Wuhan, Hubei Province 430081, China
| | | | | | | | | | | |
Collapse
|
8
|
Enhanced electrochemical evolution of oxygen by using nanoflowers made from a gold and iridium oxide composite. Mikrochim Acta 2012. [DOI: 10.1007/s00604-012-0818-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
Xia W, Sha J, Fang Y, Lu R, Luo Y, Wang Y. Gold nanoparticles assembling on smooth silver spheres for surface-enhanced Raman spectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:5444-5449. [PMID: 22390727 DOI: 10.1021/la205022v] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
A simple and cost-effective chemical method was introduced to assemble gold (Au) nanoparticles on smooth silver (Ag) spheres for realizing surface-enhanced Raman scattering (SERS) enhancement by the replacement reaction between chloroauric acid and Ag spheres. In addition, the Ag-Au core-shell spheres were fabricated when a certain amount of chloroauric acid was used in the reaction solution. We found that the Ag particles decorated with small Au nanoparticles demonstrated the strongest SERS enhancement, while Ag-Au core-shell spheres showed the weakest enhancement.
Collapse
Affiliation(s)
- Weiwei Xia
- Department of Physics and State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, People's Republic of China
| | | | | | | | | | | |
Collapse
|
10
|
|
11
|
Zhu H, Du M, Yu D, Wang Y, Zou M, Xu C, Fu Y. Selective growth of Au nanograins on specific positions (tips, edges and facets) of Cu2O octahedrons to form Cu2O–Au hierarchical heterostructures. Dalton Trans 2012; 41:13795-9. [DOI: 10.1039/c2dt31487h] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
Wang G, Jin F, Dai N, Zhong Z, Qing Y, Li M, Yuan R, Wang D. Signal-enhanced electrochemiluminescence immunosensor based on synergistic catalysis of nicotinamide adenine dinucleotide hydride and silver nanoparticles. Anal Biochem 2011; 422:7-13. [PMID: 22230283 DOI: 10.1016/j.ab.2011.12.024] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/23/2011] [Accepted: 12/12/2011] [Indexed: 11/29/2022]
Abstract
A new metal-organic nanocomposite with synergistic catalysis function was prepared and developed to construct an electrochemiluminescence (ECL) immunosensor for ultrasensitive detection of tumor biomarker CA125. Silver nanoparticles (AgNPs) and nicotinamide adenine dinucleotide hydride (NADH) that can participate and catalyze the ECL reaction of Ru(bpy)(3)(2+) were employed as the metal component and the organic component to synthesize the metal-organic nanocomposite of NADH-AgNPs (NA). The novel ECL immunosensor was assembled via Ru(bpy)(3)(2+)-doped silica nanoparticles (Ru-SiO(2)) modified electrode with the NA as immune labels. First, the chitosan-suspended Ru-SiO(2) nanoparticles were cast on the gold electrode surface to immobilize the ECL probes of Ru(bpy)(3)(2+) and link gold nanoparticles. Then, the primary antibodies were loaded onto the modified electrode via the gold sulfhydryl covalent binding. After immunobinding the analytes of antigen, NA-attached secondary antibodies could be captured as a sandwich type on the electrode. Finally, based on the circularly synergistic catalysis by the silver and NADH for the solid-phase ECL of Ru(bpy)(3)(2+), the proposed immunosensor sensed the concentration of antigen. The synergistic ECL catalysis of metal-organic nanocomposite amplified response signal and pushed the detection limit down to 0.03 U ml(-1), which initiated a new ECL labeling field and has great significance for ECL immunoassays.
Collapse
Affiliation(s)
- Guangjie Wang
- Cancer Centre, Daping Hospital and Research Institute of Surgery, Third Military Medical University, Chongqing, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Hsiao WH, Chen HY, Yang YC, Chen YL, Lee CY, Chiu HT. Surface-enhanced Raman scattering imaging of a single molecule on urchin-like silver nanowires. ACS APPLIED MATERIALS & INTERFACES 2011; 3:3280-3284. [PMID: 21797226 DOI: 10.1021/am2007239] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Urchin-like silver nanowires are prepared by reacting AgNO(3)(aq) with copper metal in the presence of cetyltrimethylammonium chloride and HNO(3)(aq) on a screen-printed carbon electrode at room temperature. The diameters of the nanowires are about 100 nm, and their lengths are up to 10 μm. Using Raman spectroscopy, the detection limit of Rhodamine 6G (R6G) on the urchin-like silver nanowire substrate can be as low as 10(-16) M, while the analytical enhancement factor is about 10(13). Raman mapping images confirm that a single R6G molecule on the substrate can be detected.
Collapse
Affiliation(s)
- Wei-Han Hsiao
- Department of Applied Chemistry, National Chiao Tung University, Hsinchu, Taiwan 30050, Republic of China
| | | | | | | | | | | |
Collapse
|
14
|
Li L, E Y, Yuan J, Luo X, Yang Y, Fan L. Electrosynthesis of Pd/Au hollow cone-like microstructures for electrocatalytic formic acid oxidation. Electrochim Acta 2011. [DOI: 10.1016/j.electacta.2011.02.096] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
15
|
Zhang Z, Wang Y, Wang X. Nanoporous bimetallic Pt-Au alloy nanocomposites with superior catalytic activity towards electro-oxidation of methanol and formic acid. NANOSCALE 2011; 3:1663-1674. [PMID: 21311802 DOI: 10.1039/c0nr00830c] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
We present a facile route to fabricate novel nanoporous bimetallic Pt-Au alloy nanocomposites by dealloying a rapidly solidified Al(75)Pt(15)Au(10) precursor under free corrosion conditions. The microstructure of the precursor and the as-dealloyed sample was characterized using X-ray diffraction, scanning electron microscopy, transmission electron microscopy, high-resolution transmission electron microscopy, and energy dispersive X-ray (EDX) analysis. The Al(75)Pt(15)Au(10) precursor is composed of a single-phase Al(2)(Au,Pt) intermetallic compound, and can be fully dealloyed in a 20 wt.% NaOH or 5 wt.% HCl aqueous solution. The dealloying leads to the formation of the nanoporous Pt(60)Au(40) nanocomposites (np-Pt(60)Au(40) NCs) with an fcc structure. The morphology, size and crystal orientation of grains in the precursor can be conserved in the resultant nanoporous alloy. The np-Pt(60)Au(40) NCs consist of two zones with distinct ligament/channel sizes and compositions. The formation mechanism of these np-Pt(60)Au(40) NCs can be rationalized based upon surface diffusion of more noble elements and spinodal decomposition during dealloying. Electrochemical measurements demonstrate that the np-Pt(60)Au(40) NCs show superior catalytic activity towards the electro-oxidation of methanol and formic acid in the acid media compared to the commercial JM-Pt/C catalyst. This material can find potential applications in catalysis related areas, such as direct methanol or formic acid fuel cells. Our findings demonstrate that dealloying is an effective and simple strategy to realize the alloying of immiscible systems under mild conditions, and to fabricate novel nanostructures with superior performance.
Collapse
Affiliation(s)
- Zhonghua Zhang
- Key Laboratory for Liquid-Solid Structural Evolution and Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jingshi Road 17923, Jinan, 250061, PR China.
| | | | | |
Collapse
|
16
|
Mao L, Yuan R, Chai Y, Zhuo Y, Jiang W. Potential controlling highly-efficient catalysis of wheat-like silver particles for electrochemiluminescence immunosensor labeled by nano-Pt@Ru and multi-sites biotin/streptavidin affinity. Analyst 2011; 136:1450-5. [DOI: 10.1039/c0an00867b] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|