1
|
Sivakanthan S, Fawzia S, Mundree S, Madhujith T, Karim A. Effect of Cooling Rate on Properties of Beeswax and Stearic Acid Oleogel Based on Rice Bran Oil and Sesame Oil. Gels 2024; 10:697. [PMID: 39590053 PMCID: PMC11594475 DOI: 10.3390/gels10110697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/28/2024] Open
Abstract
This study aimed to investigate how varying cooling rate impacts the characteristics of oleogels prepared using a sesame oil and rice bran oil blend (5:6, w/w) using a combination of beeswax and stearic acid (3:1, w/w at 12%, w/w) as the oleogelators. The study assessed three different cooling rates-0.5, 1.5, and 5 °C/min-with a focus on the attributes of the oleogels. The study revealed that the cooling rate had a substantial impact on the strength of the gel network. The cooling rate of 0.5 °C/min resulted in a higher oil-binding capacity and a stronger gel structure than fast cooling. The thermal properties and molecular interactions of the oleogels were not influenced by the cooling rate. The findings of this study indicated that the characteristics of beeswax and stearic acid oleogel prepared using sesame oil and rice bran oil blend could be tailored by manipulating the cooling rate.
Collapse
Affiliation(s)
- Subajiny Sivakanthan
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia;
- Department of Agricultural Chemistry, Faculty of Agriculture, University of Jaffna, Kilinochchi 44000, Sri Lanka
- Postgraduate Institute of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka
| | - Sabrina Fawzia
- School of Civil and Environmental Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| | - Sagadevan Mundree
- School of Agriculture and Food Sustainability, Faculty of Science, University of Queensland, St Lucia, QLD 4067, Australia;
| | - Terrence Madhujith
- Department of Food Science and Technology, Faculty of Agriculture, University of Peradeniya, Peradeniya 20400, Sri Lanka;
| | - Azharul Karim
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane, QLD 4000, Australia;
| |
Collapse
|
2
|
Du S, Jiang Y, Jiang H, Zhang L, Liu M. Pathway-Dependent Self-Assembly for Control over Helical Nanostructures and Topochemical Photopolymerization. Angew Chem Int Ed Engl 2024; 63:e202316863. [PMID: 38116831 DOI: 10.1002/anie.202316863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/18/2023] [Indexed: 12/21/2023]
Abstract
Pathway-dependent self-assembly, in which a single building block forms two or more types of self-assembled nanostructures, is an important topic due to its mimic to the complexity in biology and manipulation of diverse supramolecular materials. Here, we report a pathway-dependent self-assembly using chiral glutamide derivatives (L or D-PAG), which form chiral nanotwist and nanotube through a cooperative slow cooling and an isodesmic fast cooling process, respectively. Furthermore, pathway-dependent self-assembly can be harnessed to control over the supramolecular co-assembly of PAG with a luminophore β-DCS or a photopolymerizable PCDA. Fast cooling leads to the co-assembled PAG/β-DCS nanotube exhibiting green circularly polarized luminescence (CPL), while slow cooling to nanofiber with blue CPL. Additionally, fast cooling process promotes the photopolymerization of PCDA into a red chiral polymer, whereas slow cooling inhibits the polymerization. This work not only demonstrates the pathway-dependent control over structural characteristics but also highlights the diverse functions emerged from the different assemblies.
Collapse
Affiliation(s)
- Sifan Du
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yuqian Jiang
- Key laboratory of Nanosystem and Hierarchical Fabrication, National Center for Nanoscience and Technology, Beijing, 100190, P. R. China
| | - Hejin Jiang
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Li Zhang
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
| | - Minghua Liu
- National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences (CAS), ZhongGuanCun North First Street 2, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Draper ER, Adams DJ. Controlling supramolecular gels. NATURE MATERIALS 2024; 23:13-15. [PMID: 38172550 DOI: 10.1038/s41563-023-01765-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Affiliation(s)
- Emily R Draper
- School of Chemistry, University of Glasgow, Glasgow, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, UK.
| |
Collapse
|
4
|
Wu Y, Li H, Liu T, Xu M. Versatile Protein and Its Subunit Biomolecules for Advanced Rechargeable Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2305063. [PMID: 37474115 DOI: 10.1002/adma.202305063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Rechargeable batteries are of great significance for alleviating the growing energy crisis by providing efficient and sustainable energy storage solutions. However, the multiple issues associated with the diverse components in a battery system as well as the interphase problems greatly hinder their applications. Proteins and their subunits, peptides, and amino acids, are versatile biomolecules. Functional groups in different amino acids endow these biomolecules with unique properties including self-assembly, ion-conducting, antioxidation, great affinity to exterior species, etc. Besides, protein and its subunit materials can not only work in solid forms but also in liquid forms when dissolved in solutions, making them more versatile to realize materials engineering via diverse approaches. In this review, it is aimed to offer a comprehensive understanding of the properties of proteins and their subunits, and research progress of using these versatile biomolecules to address the engineering issues of various rechargeable batteries, including alkali-ion batteries, lithium-sulfur batteries, metal-air batteries, and flow batteries. The state-of-the-art advances in electrode, electrolyte, separator, binder, catalyst, interphase modification, as well as recycling of rechargeable batteries are involved, and the impacts of biomolecules on electrochemical properties are particularly emphasized. Finally, perspectives on this interesting field are also provided.
Collapse
Affiliation(s)
- Yulun Wu
- School of Metallurgy and Environment, Central South University, Changsha, 410083, P.R. China
| | - Huangxu Li
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, P.R. China
| | - Tiancheng Liu
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Kowloon, 999077, P.R. China
| | - Ming Xu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
5
|
Wang CY, Jia JG, Weng GG, Qin MF, Xu K, Zheng LM. Macroscopic handedness inversion of terbium coordination polymers achieved by doping homochiral ligand analogues. Chem Sci 2023; 14:10892-10901. [PMID: 37829014 PMCID: PMC10566478 DOI: 10.1039/d3sc03230b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Accepted: 09/14/2023] [Indexed: 10/14/2023] Open
Abstract
Inspired by natural biological systems, chiral or handedness inversion by altering external and internal conditions to influence intermolecular interactions is an attractive topic for regulating chiral self-assembled materials. For coordination polymers, the regulation of their helical handedness remains little reported compared to polymers and supramolecules. In this work, we choose the chiral ligands R-pempH2 (pempH2 = (1-phenylethylamino)methylphosphonic acid) and R-XpempH2 (X = F, Cl, Br) as the second ligand, which can introduce C-H⋯π and C-H⋯X interactions, doped into the reaction system of the Tb(R-cyampH)3·3H2O (cyampH2 = (1-cyclohexylethylamino)methylphosphonic acid) coordination polymer, which itself can form a right-handed superhelix by van der Waals forces, and a series of superhelices R-1H-x, R-2F-x, R-3Cl-x, and R-4Br-x with different doping ratios x were obtained, whose handedness is related to the second ligand and its doping ratio, indicating the decisive role of interchain interactions of different strengths in the helical handedness. This study could provide a new pathway for the design and self-assembly of chiral materials with controllable handedness and help the further understanding of the mechanism of self-assembly of coordination polymers forming macroscopic helical systems.
Collapse
Affiliation(s)
- Chang-Yu Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Jia-Ge Jia
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Guo-Guo Weng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Ming-Feng Qin
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Kui Xu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Centre of Advanced Microstructures, Nanjing University Nanjing 210023 P. R. China
| |
Collapse
|
6
|
Kuila S, Singh AK, Shrivastava A, Dey S, Singha T, Roy L, Satpati B, Nanda J. Probing Molecular Chirality on the Self-Assembly and Gelation of Naphthalimide-Conjugated Dipeptides. J Phys Chem B 2023. [PMID: 37196104 DOI: 10.1021/acs.jpcb.3c01273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In this work, 1,8-naphthalimide (NMI)-conjugated three hybrid dipeptides constituted of a β-amino acid and an α-amino acid have been designed, synthesized, and purified. Here, in the design, the chirality of the α-amino acid was varied to study the effect of molecular chirality on the supramolecular assembly. Self-assembly and gelation of three NMI conjugates were studied in mixed solvent systems [water and dimethyl sulphoxide (DMSO)]. Interestingly, chiral NMI derivatives [NMI-βAla-lVal-OMe (NLV) and NMI-βAla-dVal-OMe (NDV)] formed self-supported gels, while the achiral NMI derivative [NMI-βAla-Aib-OMe, (NAA)] failed to form any kind of gel at 1 mM concentration and in a mixed solvent (70% water in DMSO medium). Self-assembly processes were thoroughly investigated using UV-vis spectroscopy, nuclear magnetic resonance (NMR), fluorescence, and circular dichroism (CD) spectroscopy. A J-type molecular assembly was observed in the mixed solvent system. The CD study indicated the formation of chiral assembled structures for NLV and NDV, which were mirror images of one another, and the self-assembled state by NAA was CD-silent. The nanoscale morphology of the three derivatives was studied using scanning electron microscopy (SEM). In the case of NLV and NDV, left- and right-handed fibrilar morphologies were observed, respectively. In contrast, a flake-like morphology was noticed for NAA. The DFT study indicated that the chirality of the α-amino acid influenced the orientation of π-π stacking interactions of naphthalimide units in the self-assembled structure that in turn regulated the helicity. This is a unique work where molecular chirality controls the nanoscale assembly as well as the macroscopic self-assembled state.
Collapse
Affiliation(s)
- Soumen Kuila
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Akash Shrivastava
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Sukantha Dey
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Tukai Singha
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai-IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Biswarup Satpati
- Saha Institute of Nuclear Physics, 1/AF Bidhannagar, Kolkata 700064, West Bengal, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| |
Collapse
|
7
|
Advances in Self-Assembled Peptides as Drug Carriers. Pharmaceutics 2023; 15:pharmaceutics15020482. [PMID: 36839803 PMCID: PMC9964150 DOI: 10.3390/pharmaceutics15020482] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 01/19/2023] [Accepted: 01/28/2023] [Indexed: 02/04/2023] Open
Abstract
In recent years, self-assembled peptide nanotechnology has attracted a great deal of attention for its ability to form various regular and ordered structures with diverse and practical functions. Self-assembled peptides can exist in different environments and are a kind of medical bio-regenerative material with unique structures. These materials have good biocompatibility and controllability and can form nanoparticles, nanofibers and hydrogels to perform specific morphological functions, which are widely used in biomedical and material science fields. In this paper, the properties of self-assembled peptides, their influencing factors and the nanostructures that they form are reviewed, and the applications of self-assembled peptides as drug carriers are highlighted. Finally, the prospects and challenges for developing self-assembled peptide nanomaterials are briefly discussed.
Collapse
|
8
|
Acet Ö, Shcharbin D, Zhogla V, Kirsanov P, Halets-Bui I, Önal Acet B, Gök T, Bryszewska M, Odabaşı M. Dipeptide nanostructures: Synthesis, interactions, advantages and biomedical applications. Colloids Surf B Biointerfaces 2023; 222:113031. [PMID: 36435026 DOI: 10.1016/j.colsurfb.2022.113031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 11/23/2022]
Abstract
Short peptides are important in the design of self-assembled materials due to their versatility and flexibility. Self-assembled dipeptides, a group of peptide nanostructures, have highly attractive uses in the field of biomedicine. Recently these materials have proved to be important nanostructures because of their biocompatibility, low-cost and simplicity of synthesis, functionality/easy tunability and nano dimensions. Although there are different studies on peptide and protein-based nanostructures, more information about self-assembled nanostructures for dipeptides is still required to discover the advantages, challenges, importance, synthesis, interactions, and applications. This review describes and discusses the self-assembled dipeptide nanostructures especially for biomedical applications.
Collapse
Affiliation(s)
- Ömür Acet
- Vocational School of Health Science, Pharmacy Services Program, Tarsus University, Tarsus, Turkey.
| | - Dzmitry Shcharbin
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus.
| | - Victoriya Zhogla
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Pavel Kirsanov
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Inessa Halets-Bui
- Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus, Minsk, Belarus
| | - Burcu Önal Acet
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| | - Tuba Gök
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| | - Maria Bryszewska
- Department of General Biophysics, Faculty of Biology and Environmental Science, University of Lodz, Poland
| | - Mehmet Odabaşı
- Faculty of Arts and Science, Chemistry Department, Aksaray University, Aksaray, Turkey
| |
Collapse
|
9
|
Stimuli-Responsive Properties of Supramolecular Gels Based on Pyridyl- N-oxide Amides. Gels 2023; 9:gels9020089. [PMID: 36826259 PMCID: PMC9956205 DOI: 10.3390/gels9020089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/15/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023] Open
Abstract
The nature of functional groups and their relative position and orientation play an important role in tuning the gelation properties of stimuli-responsive supramolecular gels. In this work, we synthesized and characterized mono-/bis-pyridyl-N-oxide compounds of N-(4-pyridyl)nicotinamide (L1-L3). The gelation properties of these N-oxide compounds were compared with the reported isomeric counterpart mono-/bis-pyridyl-N-oxide compounds of N-(4-pyridyl)isonicotinamide. Hydrogels obtained with L1 and L3 were thermally and mechanically more stable than the corresponding isomeric counterparts. The surface morphology of the xerogels of di-N-oxides (L3 and diNO) obtained from the water was studied using scanning electron microscopy (SEM), which revealed that the relative position of N-oxide moieties did not have a prominent effect on the gel morphology. The solid-state structural analysis was performed using single-crystal X-ray diffraction to understand the key mechanism in gel formation. The versatile nature of N-oxide moieties makes these gels highly responsive toward an external stimulus, and the stimuli-responsive behavior of the gels in water and aqueous mixtures was studied in the presence of various salts. We studied the effect of various salts on the gelation behavior of the hydrogels, and the results indicated that the salts could induce gelation in L1 and L3 below the minimum gelator concentration of the gelators. The mechanical properties were evaluated by rheological experiments, indicating that the modified compounds displayed enhanced gel strength in most cases. Interestingly, cadmium chloride formed supergelator at a very low concentration (0.7 wt% of L3), and robust hydrogels were obtained at higher concentrations of L3. These results show that the relative position of N-oxide moieties is crucial for the effective interaction of the gelator with salts/ions resulting in LMWGs with tunable properties.
Collapse
|
10
|
Misra S, Singh P, Singh AK, Roy L, Kuila S, Dey S, Mahapatra AK, Nanda J. Tuning of the Supramolecular Helicity of Peptide-Based Gel Nanofibers. J Phys Chem B 2022; 126:10882-10892. [PMID: 36516185 DOI: 10.1021/acs.jpcb.2c06897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Helical supramolecular architectures play important structural and functional roles in biological systems. The helicity of synthetic molecules can be tuned mainly by the chiral manipulation of the system. However, tuning of helicity by the achiral unit of the molecules is less studied. In this work, the helicity of naphthalimide-capped peptide-based gel nanofibers is tuned by the alteration of methylene units present in the achiral amino acid. The inversion of supramolecular helicity has been extensively studied by CD spectroscopy and morphological analysis. The density functional theory (DFT) study indicates that methylene spacers influence the orientation of π-π stacking interactions of naphthalimide units in the self-assembled structure that regulates the helicity. This work illustrates a new approach to tuning the supramolecular chirality of self-assembled biomaterials.
Collapse
Affiliation(s)
- Souvik Misra
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India.,Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Pijush Singh
- Department of Biochemistry and Biophysics, University of Kalyani, Kalyani 741235, West Bengal, India
| | - Ajeet Kumar Singh
- Institute of Chemical Technology Mumbai - IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Lisa Roy
- Institute of Chemical Technology Mumbai - IOC Odisha Campus Bhubaneswar, IIT Kharagpur Extension Centre, Bhubaneswar 751013, India
| | - Soumen Kuila
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Sukantha Dey
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| | - Ajit K Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, P.O. Botanic Garden, Howrah 711103, West Bengal, India
| | - Jayanta Nanda
- Department of Chemistry, University of North Bengal, Raja Rammohanpur, Siliguri 734013, West Bengal, India
| |
Collapse
|
11
|
Alnemeh-Al Ali H, Griveau A, Artzner F, Dupont A, Lautram N, Jourdain M, Eyer J. Investigation on the self-assembly of the NFL-TBS.40-63 peptide and its interaction with gold nanoparticles as a delivery agent for glioblastoma. Int J Pharm X 2022; 4:100128. [PMID: 36204592 PMCID: PMC9529584 DOI: 10.1016/j.ijpx.2022.100128] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
| | - A. Griveau
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - F. Artzner
- Univ Rennes, CNRS, IPR (Institut de Physique de Rennes), UMR 6251, F-35000 Rennes, France
| | - A. Dupont
- Univ Rennes, CNRS, Inserm, BIOSIT-UMS 3480, US_S 018, Rennes, France
| | - N. Lautram
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - M.A. Jourdain
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
| | - J. Eyer
- Univ Angers, Inserm, CNRS, MINT, SFR ICAT, F-49000 Angers, France
- Corresponding author.
| |
Collapse
|
12
|
Li T, Lu XM, Zhang MR, Hu K, Li Z. Peptide-based nanomaterials: Self-assembly, properties and applications. Bioact Mater 2022; 11:268-282. [PMID: 34977431 PMCID: PMC8668426 DOI: 10.1016/j.bioactmat.2021.09.029] [Citation(s) in RCA: 134] [Impact Index Per Article: 44.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/21/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022] Open
Abstract
Peptide-based materials that have diverse structures and functionalities are an important type of biomaterials. In former times, peptide-based nanomaterials with excellent stability were constructed through self-assembly. Compared with individual peptides, peptide-based self-assembly nanomaterials that form well-ordered superstructures possess many advantages such as good thermo- and mechanical stability, semiconductivity, piezoelectricity and optical properties. Moreover, due to their excellent biocompatibility and biological activity, peptide-based self-assembly nanomaterials have been vastly used in different fields. In this review, we provide the advances of peptide-based self-assembly nanostructures, focusing on the driving forces that dominate peptide self-assembly and assembly mechanisms of peptides. After that, we outline the synthesis and properties of peptide-based nanomaterials, followed by the applications of functional peptide nanomaterials. Finally, we provide perspectives on the challenges and future of peptide-based nanomaterials. This review summarizes the advances of peptide-based nanomaterials, focusing on the mechanisms, properties, and applications. Outlining the synthesis and properties of peptide nanomaterials is helpful for the relevant research fields. The peptide-based nanomaterials show potential applications in many fields.
Collapse
Affiliation(s)
- Tong Li
- College of Chemistry and Chemical Engineering, Center of Nanoenergy Research, Guangxi University, Nanning, 530004, China.,Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Xian-Mao Lu
- College of Chemistry and Chemical Engineering, Center of Nanoenergy Research, Guangxi University, Nanning, 530004, China.,Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, China
| | - Ming-Rong Zhang
- Department of Advanced Nuclear Medicine Sciences, The National Institute of Radiological Sciences, The National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Kuan Hu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.,Department of Advanced Nuclear Medicine Sciences, The National Institute of Radiological Sciences, The National Institutes for Quantum and Radiological Science and Technology, Chiba, 263-8555, Japan
| | - Zhou Li
- College of Chemistry and Chemical Engineering, Center of Nanoenergy Research, Guangxi University, Nanning, 530004, China.,Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China.,School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
13
|
Guo K, Liu W, Wang Y, Wei H, Li B, Li Y, Yang Y. Handedness inversion of the self-assemblies of lipotetrapeptides regulated by the shift of the methyl group. NEW J CHEM 2022. [DOI: 10.1039/d2nj00465h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four lipotetrapeptides containing three glycines and one l-alanine self-assembled into twisted nanoribbons. Handedness inversion was observed with the movement of l-alanine.
Collapse
Affiliation(s)
- Kexiao Guo
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yong Wang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - He Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Jiangsu Engineering Laboratory of Novel Functional Polymeric Materials, Key Laboratory of Polymeric Materials Design and Synthesis for Biomedical Function, Department of Polymer Science and Engineering, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
14
|
Liao P, Feng X, Fang H, Yang Z, Zhang J. Stabilized nanotube and nanofiber gel materials toward multifunctional adsorption. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
15
|
Panja S, Adams DJ. Stimuli responsive dynamic transformations in supramolecular gels. Chem Soc Rev 2021; 50:5165-5200. [PMID: 33646219 DOI: 10.1039/d0cs01166e] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Supramolecular gels are formed by the self-assembly of small molecules under the influence of various non-covalent interactions. As the interactions are individually weak and reversible, it is possible to perturb the gels easily, which in turn enables fine tuning of their properties. Synthetic supramolecular gels are kinetically trapped and usually do not show time variable changes in material properties after formation. However, such materials potentially become switchable when exposed to external stimuli like temperature, pH, light, enzyme, redox, and chemical analytes resulting in reconfiguration of gel matrix into a different type of network. Such transformations allow gel-to-gel transitions while the changes in the molecular aggregation result in alteration of physical and chemical properties of the gel with time. Here, we discuss various methods that have been used to achieve gel-to-gel transitions by modifying a pre-formed gel material through external perturbation. We also describe methods that allow time-dependent autonomous switching of gels into different networks enabling synthesis of next generation functional materials. Dynamic modification of gels allows construction of an array of supramolecular gels with various properties from a single material which eventually extend the limit of applications of the gels. In some cases, gel-to-gel transitions lead to materials that cannot be accessed directly. Finally, we point out the necessity and possibility of further exploration of the field.
Collapse
Affiliation(s)
- Santanu Panja
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
16
|
Qin P, Wu Z, Li P, Niu D, Liu M, Yin M. Triple-Modulated Chiral Inversion of Co-Assembly System Based on Alanine Amphiphile and Cyanostilbene Derivative. ACS APPLIED MATERIALS & INTERFACES 2021; 13:18047-18055. [PMID: 33834761 DOI: 10.1021/acsami.1c03940] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The construction of chiroptical materials with controllable chirality is of special importance in biology and chemistry. Although tunable chirality can be realized in various systems, it remains a fundamental challenge to realize multimodulated chiral inversion. Herein, we report that chiral alanine derivative and fluorescent cyanostilbene derivative co-assemble to prepare supramolecular chiral systems, where twist nanofibers with totally inverted supramolecular chirality and circularly polarized luminescence are obtained through stoichiometric modulation. The supramolecular handedness can be inverted by means of altering the cooling rate and incorporating metal ions. The mechanism study reveals that the synergistic effect among hydrogen bonds, coordination interactions, and π-π stacking interactions contributes to the chirality inversion. This work establishes an effective strategy to precisely modulate supramolecular chirality in multiple ways, which shows great potential in developing smart chiroptical materials capable of achieving complex functionalities.
Collapse
Affiliation(s)
- Penghua Qin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Zhen Wu
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Pengyu Li
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| | - Dian Niu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Meizhen Yin
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, P. R. China
| |
Collapse
|
17
|
Liao L, Jia X, Lou H, Zhong J, Liu H, Ding S, Chen C, Hong S, Luo X. Supramolecular gel formation regulated by water content in organic solvents: self-assembly mechanism and biomedical applications. RSC Adv 2021; 11:11519-11528. [PMID: 35423629 PMCID: PMC8695936 DOI: 10.1039/d1ra00647a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Accepted: 03/02/2021] [Indexed: 12/11/2022] Open
Abstract
As one of the most important and fruitful methods, supramolecular self-assembly has a significant advantage in designing and fabricating functional soft materials with various nanostructures. In this research, a low-molecular-weight gelator, N,N'-di(pyridin-4-yl)-pyridine-3,5-dicarboxamide (PDA-N4), was synthesized and used to construct self-assembled gels via a solvent-mediated strategy. It was found that PDA-N4 could form supramolecular gels in mixed solvents of water and DMSO (or DMF) at high water fraction (greater than or equal to 50%). By decreasing the water fraction from 50% to 30%, the gel, suspension and solution phases appeared successively, indicating that self-assembled aggregates could be efficiently modulated via water content in organic solvents. Moreover, the as-prepared PDA-N4 supramolecular gels not only displayed solid-like behavior, and pH- and thermo-reversible characteristics, but also showed a solution-gel-crystal transition with the extension of aging time. Further analyses suggested that both the crystal and gel had similar assembled structures. The intermolecular hydrogen bonding between amide groups and the π-π stacking interactions between pyridine groups played key roles in gel formation. Additionally, the release behavior of vitamin B12 (VB12) from PDA-N4 gel (H2O/DMSO, v/v = 90/10) was evaluated, and the drug controlled release process was consistent with a first-order release mechanism. The human umbilical venous endothelial cell culture results showed that the PDA-N4 xerogel has good cytocompatibility, which implied that the gels have potential biological application in tissue engineering and controlled drug release.
Collapse
Affiliation(s)
- Lieqiang Liao
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University Nanchang 330031 P. R. China
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| | - Xinjian Jia
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| | - Haoxiang Lou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| | - Jinlian Zhong
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| | - Huijin Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| | - Shunming Ding
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University Nanchang 330031 P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University Nanchang 330031 P. R. China
| | - Sanguo Hong
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University Nanchang 330031 P. R. China
| | - Xuzhong Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, College of Chemistry and Chemical Engineering, Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
18
|
Liu J, Yin F, Hu J, Ju Y. Fabrication and Applications of Supramolecular Chiral Assemblies. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202008011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
19
|
Osypenko A, Moulin E, Gavat O, Fuks G, Maaloum M, Koenis MAJ, Buma WJ, Giuseppone N. Temperature Control of Sequential Nucleation–Growth Mechanisms in Hierarchical Supramolecular Polymers. Chemistry 2019; 25:13008-13016. [DOI: 10.1002/chem.201902898] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Indexed: 12/23/2022]
Affiliation(s)
- Artem Osypenko
- SAMS Research Group, University of Strasbourg–Institut Charles SadronCNRS 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Emilie Moulin
- SAMS Research Group, University of Strasbourg–Institut Charles SadronCNRS 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Odile Gavat
- SAMS Research Group, University of Strasbourg–Institut Charles SadronCNRS 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Gad Fuks
- SAMS Research Group, University of Strasbourg–Institut Charles SadronCNRS 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Mounir Maaloum
- SAMS Research Group, University of Strasbourg–Institut Charles SadronCNRS 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| | - Mark A. J. Koenis
- Van ‘t Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
| | - Wybren Jan Buma
- Van ‘t Hoff Institute for Molecular SciencesUniversity of Amsterdam Science Park 904 1098 XH Amsterdam The Netherlands
- Institute for Molecules and Materials, FELIX LaboratoryRadboud University Toernooiveld 7c 6525 ED Nijmegen The Netherlands
| | - Nicolas Giuseppone
- SAMS Research Group, University of Strasbourg–Institut Charles SadronCNRS 23 rue du Loess, BP 84047 67034 Strasbourg Cedex 2 France
| |
Collapse
|
20
|
Liu C, Yang D, Zhang L, Liu M. Water inversed helicity of nanostructures from ionic self-assembly of a chiral gelator and an achiral component. SOFT MATTER 2019; 15:6557-6563. [PMID: 31359009 DOI: 10.1039/c9sm01176e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The ionic self-assemblies (ISAs) formed by a cationic chiral organogelator (l-glutamide amphiphile, abbreviated as PULG) and anionic dyes exhibited helical nanostructures. And the formed helical structures can be tuned by water amount in the ethanol/water solvent. In pure ethanol, the chirality of the gelator was successfully transferred to the achiral components, which was confirmed by the appearance of an induced CD signal in the achiral components. Meanwhile, the electrostatic interaction between the gelator and achiral dyes contributed to the chirality amplification, causing the nanofibrous structures of the gelator to be transformed to uniform left-handed helices. Upon adding water to ethanol, the induced CD signal exhibited inversion from positive to negative. Interestingly, the left-handed helices formed by ISA of PULG/anionic dyes in ethanol were inverted to right-handed helices with the addition of water. Based on detailed investigations of the XRD patterns, CD and UV/Vis spectra, the mechanism of helicity inversion was proposed: left-handed helices were dominated by hydrogen bonding and right-handed helices were dominated by π-π stacking. This work exemplifies a feasible method to invert the helicity of chiral nanostructures in co-assembly and gives an insight into the conformation change of biomacromolecules in a biological system.
Collapse
Affiliation(s)
- Changxia Liu
- College of Chemistry and Chemical Engineering, Cangzhou Normal University, Cangzhou, 061001, P. R. China
| | - Dong Yang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Li Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| | - Minghua Liu
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.
| |
Collapse
|
21
|
Liu X, Yang H, Liu W, Wang Y, Yang Y. Synthesis and Properties of New Alkyl Alanine Dipeptides Based on Difluoroboron β
-diketonates. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900600] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Xiaojuan Liu
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| | - Hong Yang
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| | - Wei Liu
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| | - Yong Wang
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| | - Yonggang Yang
- College of Chemistry; Chemical Engineering and Materials Science; Soochow University; 215123 Suzhou China
| |
Collapse
|
22
|
Debnath S, Roy S, Abul‐Haija YM, Frederix PWJM, Ramalhete SM, Hirst AR, Javid N, Hunt NT, Kelly SM, Angulo J, Khimyak YZ, Ulijn RV. Tunable Supramolecular Gel Properties by Varying Thermal History. Chemistry 2019; 25:7881-7887. [DOI: 10.1002/chem.201806281] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Indexed: 01/01/2023]
Affiliation(s)
- Sisir Debnath
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
- Current Address: Department of ChemistrySerampore College 9, William Carey Sarani Serampore, Hooghly West Bengal Pin-712201 India
| | - Sangita Roy
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
| | - Yousef M. Abul‐Haija
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
- Current Address: WestCHEMSchool of ChemistryUniversity of Glasgow Glasgow G12 8QQ UK
| | - Pim W. J. M. Frederix
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
- SUPADepartment of PhysicsUniversity of Strathclyde 107 Rottenrow East Glasgow G4 0NG UK
| | - Susana M. Ramalhete
- School of PharmacyUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Andrew R. Hirst
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
- Current Address: Department of ChemistryUniversity of York York YO10 5DD UK
| | - Nadeem Javid
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
- Current Address: School of Chemistry and BiosciencesUniversity of Bradford Bradford BD7 1DP UK
| | - Neil T. Hunt
- SUPADepartment of PhysicsUniversity of Strathclyde 107 Rottenrow East Glasgow G4 0NG UK
- Current Address: Department of ChemistryUniversity of York York YO10 5DD UK
| | - Sharon M. Kelly
- Institute of Molecular Cell and Systems BiologyUniversity of Glasgow Glasgow G12 8QQ UK
| | - Jesús Angulo
- School of PharmacyUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Yaroslav Z. Khimyak
- School of PharmacyUniversity of East Anglia Norwich Research Park Norwich NR4 7TJ UK
| | - Rein V. Ulijn
- WestCHEMDepartment of Pure and Applied ChemistryUniversity of Strathclyde 295 Cathedral Street Glasgow G1 1XL UK
- Advanced Science Research Center (ASRC) at the Graduate Center of the City University of New York (CUNY) 85 St Nicholas Terrace New York 10031 USA
- Department of ChemistryHunter CollegeCity University of New York 695 Park Avenue New York 10065 USA
- Ph.D. programs in Biochemistry and ChemistryThe Graduate Center of the City University of New York New York 10016 USA
| |
Collapse
|
23
|
Trujillo-Ramírez D, Lobato-Calleros C, Jaime Vernon-Carter E, Alvarez-Ramirez J. Cooling rate, sorbitan and glyceryl monostearate gelators elicit different microstructural, viscoelastic and textural properties in chia seed oleogels. Food Res Int 2019; 119:829-838. [DOI: 10.1016/j.foodres.2018.10.066] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 09/29/2018] [Accepted: 10/22/2018] [Indexed: 11/25/2022]
|
24
|
Chen K, Jiao T, Li J, Han D, Wang R, Tian G, Peng Q. Chiral Nanostructured Composite Films via Solvent-Tuned Self-Assembly and Their Enantioselective Performances. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:3337-3345. [PMID: 30730141 DOI: 10.1021/acs.langmuir.9b00014] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Chiral nanostructures exhibited distinctive functions and attractive applications in complex biological systems, which demonstrated the subject of many outstanding research studies. In this work, various hierarchical composite film nanostructures were designed via supramolecular self-assembly using chiral amphiphilic glutamate derivatives and achiral porphyrin derivatives and their macroscopic enantioselective recognition properties were investigated. We have found that intermolecular hydrogen-bonding interactions between water (donor and acceptor) and N, N-dimethylformamide (DMF) as well as chloroform (CHCl3) (acceptor only) and DMF could subtly alter the molecular packing and significantly affected the supramolecular self-assembled nanostructures and triggered circular dichroism (CD) signal reversal. Present research work exemplified a feasible method to fabricate chiral flower-like and brick-like nanostructure films in different mixed solvents and large-scale chiral transfer from the molecular level to complex structures, which also provided a facile approach to identify certain l-/d-amino acids by means of contact angle detection using present obtained self-assembled composted films.
Collapse
|
25
|
Guo K, Zhang L, Lin S, Li Y, Li B, Yang Y. A “center-determination” phenomenon of C 13H 27CO-Gly-Ala-Ala lipotripetides: relationship between the molecular chirality and handedness of organic self-assemblies. NEW J CHEM 2019. [DOI: 10.1039/c9nj01693g] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The chirality of the central alanine residue dominates the handedness of molecular packing and that of organic self-assemblies.
Collapse
Affiliation(s)
- Kexiao Guo
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Lianglin Zhang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Shuwei Lin
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Baozong Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application
- Department of Polymer Science and Engineering
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials
- College of Chemistry
- Chemical Engineering and Materials Science
| |
Collapse
|
26
|
Wang R, Cui J, Wan X, Zhang J. Controlled chiral arrangement of silver nanoparticles in supramolecular gels modulated by the cooling rate. Chem Commun (Camb) 2019; 55:4949-4952. [DOI: 10.1039/c9cc01015g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Opposite helical arrangements of silver nanoparticles can be in situ achieved in organogels from a single gelator at different cooling rates.
Collapse
Affiliation(s)
- Rong Wang
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Minister of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jiaxi Cui
- INM-Leibniz Institute for New Materials
- Saarbrucken
- Germany
| | - Xinhua Wan
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Minister of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| | - Jie Zhang
- Beijing National Laboratory for Molecular Science
- Key Laboratory of Polymer Chemistry and Physics of Minister of Education
- Center for Soft Matter Science and Engineering
- College of Chemistry and Molecular Engineering
- Peking University
| |
Collapse
|
27
|
Gel formation of puerarin and mechanistic study during its cooling process. Int J Pharm 2018; 548:625-635. [DOI: 10.1016/j.ijpharm.2018.07.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/09/2018] [Accepted: 07/13/2018] [Indexed: 12/26/2022]
|
28
|
Yadav P, Patel V, Ballabh A. Role of S…O non-bonded interaction in controlling supramolecular assemblies in a new series of 2-aminobenzothiazole based organic salts/ co-crystals. J SOLID STATE CHEM 2018. [DOI: 10.1016/j.jssc.2018.04.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
29
|
Chalard A, Vaysse L, Joseph P, Malaquin L, Souleille S, Lonetti B, Sol JC, Loubinoux I, Fitremann J. Simple Synthetic Molecular Hydrogels from Self-Assembling Alkylgalactonamides as Scaffold for 3D Neuronal Cell Growth. ACS APPLIED MATERIALS & INTERFACES 2018; 10:17004-17017. [PMID: 29757611 DOI: 10.1021/acsami.8b01365] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this work, we demonstrated that the hydrogel obtained from a very simple and single synthetic molecule, N-heptyl-galactonamide was a suitable scaffold for the growth of neuronal cells in 3D. We evidenced by confocal microscopy the presence of the cells into the gel up to a depth of around 200 μm, demonstrating that the latter was permissive to cell growth and enabled a true 3D colonization and organization. It also supported successfully the differentiation of adult human neuronal stem cells (hNSCs) into both glial and neuronal cells and the development of a really dense neurofilament network. So the gel appears to be a good candidate for neural tissue regeneration. In contrast with other molecular gels described for cell culture, the molecule can be obtained at the gram scale by a one-step reaction. The resulting gel is very soft, a quality in accordance with the aim of growing neuronal cells, that requires low modulus substrates similar to the brain. But because of its fragility, specific procedures had to be implemented for its preparation and for cell labeling and confocal microscopy observations. Notably, the implementation of a controlled slow cooling of the gel solution was needed to get a very soft but nevertheless cohesive gel. In these conditions, very wide straight and long micrometric fibers were formed, held together by a second network of flexible narrower nanometric fibers. The two kinds of fibers guided the neurite and glial cell growth in a different way. We also underlined the importance of a tiny difference in the molecular structure on the gel performances: parent molecules, differing by a one-carbon increment in the alkyl chain length, N-hexyl-galactonamide and N-octyl-galactonamide, were not as good as N-heptyl-galactonamide. Their differences were analyzed in terms of gel fibers morphology, mechanical properties, solubility, chain parity, and cell growth.
Collapse
Affiliation(s)
- Anaïs Chalard
- IMRCP, Université de Toulouse, CNRS, Bat 2R1 , 118 Route de Narbonne , 31062 Toulouse Cedex 9, France
- TONIC, Toulouse NeuroImaging Center , Université de Toulouse , Inserm , UPS , France
- LAAS-CNRS, Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Laurence Vaysse
- TONIC, Toulouse NeuroImaging Center , Université de Toulouse , Inserm , UPS , France
| | - Pierre Joseph
- LAAS-CNRS, Université de Toulouse, CNRS, UPS , Toulouse , France
| | - Laurent Malaquin
- LAAS-CNRS, Université de Toulouse, CNRS, UPS , Toulouse , France
| | | | - Barbara Lonetti
- IMRCP, Université de Toulouse, CNRS, Bat 2R1 , 118 Route de Narbonne , 31062 Toulouse Cedex 9, France
| | - Jean-Christophe Sol
- TONIC, Toulouse NeuroImaging Center , Université de Toulouse , Inserm , UPS , France
- Centre Hospitalier Universitaire de Toulouse , Pôle Neurosciences , CHU Toulouse , France
| | - Isabelle Loubinoux
- TONIC, Toulouse NeuroImaging Center , Université de Toulouse , Inserm , UPS , France
| | - Juliette Fitremann
- IMRCP, Université de Toulouse, CNRS, Bat 2R1 , 118 Route de Narbonne , 31062 Toulouse Cedex 9, France
| |
Collapse
|
30
|
Li J, Li Y, Li B, Yang Y. Left-handed helical polymer resin nanotubes prepared by using N-palmitoyl glucosamine. Chirality 2017; 30:439-444. [PMID: 29266451 DOI: 10.1002/chir.22804] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 10/30/2017] [Accepted: 11/21/2017] [Indexed: 12/31/2022]
Abstract
Although the preparation of single-handed helical inorganic and hybrid organic-inorganic nanotubes is well developed, approaches to the formation of single-handed organopolymeric nanotubes are limited. Here, left-handed helical m-phenylenediamine-formaldehyde resin and 3-aminophenol-formaldehyde resin nanotubes were prepared by using N-palmitoyl glucosamine that can self-assemble into left-handed twisted nanoribbons in a mixture of methanol and water. In the reaction mixture, the helical pitch of the nanoribbons decreased with increasing reaction time. The resin nanotubes were obtained after removing the N-palmitoyl glucosamine template, and circular dichroism spectroscopy indicated that the organopolymeric nanotubes had optical activity. Carbonaceous nanotubes were then prepared by carbonization of the 3-aminophenol-formaldehyde resin nanotubes.
Collapse
Affiliation(s)
- Jiangang Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yi Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Baozong Li
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| | - Yonggang Yang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, China
| |
Collapse
|
31
|
Reja A, Biswas A, Yadav J, Dev D, Das AK. Induction of Supramolecular Helical Handedness in a Chemical Reaction Directed Self-Healable Soft Material. ChemistrySelect 2017. [DOI: 10.1002/slct.201702212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Antara Reja
- Department of Chemistry; Indian Institute of Technology Indore; Khandwa Road Indore 453552 India
| | - Ankan Biswas
- Department of Chemistry; Indian Institute of Technology Indore; Khandwa Road Indore 453552 India
| | - Jonu Yadav
- Department of Chemistry; Indian Institute of Technology Indore; Khandwa Road Indore 453552 India
| | - Dharm Dev
- Department of Chemistry; Indian Institute of Technology Indore; Khandwa Road Indore 453552 India
| | - Apurba K. Das
- Department of Chemistry; Indian Institute of Technology Indore; Khandwa Road Indore 453552 India
| |
Collapse
|
32
|
Lin C, Maisonneuve S, Métivier R, Xie J. Photoswitchable Carbohydrate-Based Macrocyclic Azobenzene: Synthesis, Chiroptical Switching, and Multistimuli-Responsive Self-Assembly. Chemistry 2017; 23:14996-15001. [PMID: 28858420 DOI: 10.1002/chem.201703461] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Indexed: 12/20/2022]
Abstract
A one-pot O-alkylation mediated macrocyclization approach has been used for the synthesis of carbohydrate-based macrocyclic azobenzene. The synthesized macrocycle can be reversibly isomerized between E and Z isomers upon UV or visible irradiation with excellent photostability and thermal stability (t1/2 =51 days at 20 °C for the Z isomer). A chirality transfer from the chiral sugar unit to azobenzene was observed by circular dichroism (CD). DFT and TD-DFT calculations were performed to calculate the optimal geometry and the theoretical absorption and CD spectra. Comparison of the experimental CD spectra with the theoretical ones suggests that both E- and Z-macrocycles adopt preferentially P-helicity for the azobenzene moiety. Furthermore, the macrocycle showed gelation ability in cyclohexane and ethanol with multistimuli-responsive behavior upon exposure to environmental stimuli including thermal-, photo-, and mechanical responses. Moreover, these organogels display temperature-dependent helical inversion, which can be tuned by a repeated heating-cooling procedure.
Collapse
Affiliation(s)
- Chaoqi Lin
- PPSM, ENS Paris-Saclay, CNRS, Université Paris-Saclay, 94235, Cachan, France
| | | | - Rémi Métivier
- PPSM, ENS Paris-Saclay, CNRS, Université Paris-Saclay, 94235, Cachan, France
| | - Juan Xie
- PPSM, ENS Paris-Saclay, CNRS, Université Paris-Saclay, 94235, Cachan, France
| |
Collapse
|
33
|
Li Y, Yang Y. Single-Handed Helical Carbonaceous Nanotubes: Preparation, Optical Activity, and Applications. CHEM REC 2017; 18:55-64. [PMID: 28675550 DOI: 10.1002/tcr.201700031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Indexed: 01/17/2023]
Abstract
Carbon-based nanomaterials have been widely studied in the past decade. Three approaches have been developed for the preparation of single-handed helical carbonaceous nanotubes. The first approach uses the carbonization of organopolymeric nanotubes, where the organic polymers are polypyrrole, 3-aminophenol-formaldehyde resin, and m-diaminobenzene-formaldehyde resin. The second approach uses the carbonization of aromatic ring-bridged polybissilsesquioxane followed by the removal of silica. Micropores exist within the walls of the carbonaceous nanotubes. The third approach uses the carbonization of organic compounds within silica nanotubes. This hard-templating approach drives the formation of helical carbonaceous nanotubes containing twisted carbonaceous nanoribbons. All of these helical carbonaceous nanotubes exhibit optical activity, which is believed to originate from the chiral π-π stacking of aromatic rings. They can be used as chirality inducers, and for lithium-ion storage.
Collapse
Affiliation(s)
- Yi Li
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| |
Collapse
|
34
|
Fitremann J, Lonetti B, Fratini E, Fabing I, Payré B, Boulé C, Loubinoux I, Vaysse L, Oriol L. A shear-induced network of aligned wormlike micelles in a sugar-based molecular gel. From gelation to biocompatibility assays. J Colloid Interface Sci 2017. [PMID: 28622565 DOI: 10.1016/j.jcis.2017.06.021] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A new low molecular weight hydrogelator with a saccharide (lactobionic) polar head linked by azide-alkyne click chemistry was prepared in three steps. It was obtained in high purity without chromatography, by phase separation and ultrafiltration of the aqueous gel. Gelation was not obtained reproducibly by conventional heating-cooling cycles and instead was obtained by shearing the aqueous solutions, from 2 wt% to 0.25 wt%. This method of preparation favored the formation of a quite unusual network of interconnected large but thin 2D-sheets (7nm-thick) formed by the association side-by-side of long and aligned 7nm diameter wormlike micelles. It was responsible for the reproducible gelation at the macroscopic scale. A second network made of helical fibres with a 10-13nm diameter, more or less intertwined was also formed but was scarcely able to sustain a macroscopic gel on its own. The gels were analysed by TEM (Transmission Electronic Microscopy), cryo-TEM and SAXS (Small Angle X-ray Scattering). Molecular modelling was also used to highlight the possible conformations the hydrogelator can take. The gels displayed a weak and reversible transition near 20°C, close to room temperature, ascribed to the wormlike micelles 2D-sheets network. Heating over 30°C led to the loss of the gel macroscopic integrity, but gel fragments were still observed in suspension. A second transition near 50°C, ascribed to the network of helical fibres, finally dissolved completely these fragments. The gels showed thixotropic behaviour, recovering slowly their initial elastic modulus, in few hours, after injection through a needle. Stable gels were tested as scaffold for neural cell line culture, showing a reduced biocompatibility. This new gelator is a clear illustration of how controlling the pathway was critical for gel formation and how a new kind of self-assembly was obtained by shearing.
Collapse
Affiliation(s)
- Juliette Fitremann
- CNRS - Université de Toulouse III Paul Sabatier, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP, UMR 5623), Bat 2R1, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Barbara Lonetti
- CNRS - Université de Toulouse III Paul Sabatier, Laboratoire des Interactions Moléculaires et Réactivité Chimique et Photochimique (IMRCP, UMR 5623), Bat 2R1, 118 Route de Narbonne, 31062 Toulouse Cedex 9, France
| | - Emiliano Fratini
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, via della Lastruccia 3-Sesto Fiorentino, I-50019 Florence, Italy
| | - Isabelle Fabing
- CNRS UMR 5068, LSPCMIB, Université de Toulouse, Université Paul Sabatier, 118 Route de Narbonne, 31062 Toulouse cedex 9, France
| | - Bruno Payré
- Centre de Microscopie Electronique Appliquée à la Biologie (CMEAB), Faculté de Médecine Rangueil, Université de Toulouse III Paul Sabatier, Bâtiment A5, R.D.C., 133 Route de Narbonne, 31400 Toulouse, France
| | - Christelle Boulé
- Université Claude Bernard UCBL Lyon1, Service de Prestations CTµ EZUS, Bâtiment Darwin B, 5 rue Raphaël Dubois, 69622 Villeurbanne Cedex, France
| | - Isabelle Loubinoux
- TONIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Laurence Vaysse
- TONIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, France
| | - Luis Oriol
- Instituto de Ciencia de Materiales de Aragon (ICMA),Universidad de Zaragoza-CSIC, Dpto. Quimica Organica, Facultad de Ciencias, Pedro Cerbuna 12, 50009 Zaragoza, Spain
| |
Collapse
|
35
|
He Y, Yang Y. Helical Mesoporous Tantalum Oxide Nanotubes: Formation, Optical Activity, and Applications. CHEM REC 2017; 17:1146-1155. [PMID: 28480626 DOI: 10.1002/tcr.201700012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Indexed: 11/10/2022]
Abstract
Nanomaterials with helical morphologies have attracted much attention owing to their potential applications as nanosprings, chirality sensors and in chiral optics. Single-handed helical Ta2 O5 nanotubes prepared through a supramolecular templating approach are described. The handedness is controlled by that of the organic self-assemblies of chiral low-molecular-weight gelators (LMWGs). The chiral LMWGs self-assemble into single-handed twisted nanoribbons through H-bonding, hydrophobic association, and π-π stacking. The Ta2 O5 nanotubes are formed by the adsorption and polycondensation of Ta2 O5 oligomers on the surfaces and edges of the twisted organic nanoribbons followed by removal of the template. The optical activity of the nanotubes is proposed to originate from the chiral defects on the inner surfaces of the tubular structures. Single-handed twisted LiTaO3 nanotubes can also be prepared using Ta2 O5 nanotubes.
Collapse
Affiliation(s)
- Yangyang He
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| | - Yonggang Yang
- Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou, 215123, P.R. China
| |
Collapse
|
36
|
Himabindu M, Palanisamy A. Ultrasound- and Temperature-Induced Gelation of Gluconosemicarbazide Gelator in DMSO and Water Mixtures. Gels 2017; 3:E12. [PMID: 30920509 PMCID: PMC6318682 DOI: 10.3390/gels3020012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 03/31/2017] [Accepted: 04/12/2017] [Indexed: 12/25/2022] Open
Abstract
We have developed amphiphilic supramolecular gelators carrying glucose moiety that could gel a mixture of dimethyl sulfoxide (DMSO) and water upon heating as well as ultrasound treatment. When the suspension of gluconosemicarbazide was subjected to ultrasound treatment, gelation took place at much lower concentrations compared to thermal treatment, and the gels transformed into a solution state at higher temperatures compared to temperature-induced gels. The morphology was found to be influenced by the nature of the stimulus and presence of salts such as KCl, NaCl, CaCl₂ and surfactant (sodium dodecyl sulphate) at a concentration of 0.05 M. The gel exhibited impressive tolerance to these additives, revealing the stability and strength of the gels. Fourier transform infrared spectroscopy (FTIR) revealed the presence of the intermolecular hydrogen bonding interactions while differential scanning calorimetry (DSC) and rheological studies supported better mechanical strength of ultrasound-induced (UI) gels over thermally-induced (TI) gels.
Collapse
Affiliation(s)
- Mothukunta Himabindu
- Polymers and Functional Materials Division, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500007, India.
| | - Aruna Palanisamy
- Polymers and Functional Materials Division, Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad, Telangana 500007, India.
| |
Collapse
|
37
|
Bag BG, Majumdar R. Self-assembly of Renewable Nano-sized Triterpenoids. CHEM REC 2017; 17:841-873. [PMID: 28195390 DOI: 10.1002/tcr.201600123] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Braja Gopal Bag
- Department of Chemistry and Chemical Technology; Vidyasagar Univesity; Midnapore 721102, West Bengal India
| | - Rakhi Majumdar
- Department of Chemistry and Chemical Technology; Vidyasagar Univesity; Midnapore 721102, West Bengal India
| |
Collapse
|
38
|
Zhang Y, Xing P, Yang M, Wang Y, Wang B, Hao A, Ma M. Solvent-polarity-tuned nanostructures assembled from modified octadecylcarbamate with an anthracen moiety. RSC Adv 2016. [DOI: 10.1039/c6ra14563a] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A-9-YMOC tends to form nanofibers whereas it self-assembles in polar solvents and nanoflowers in nonpolar solvents with different molecular arrangements.
Collapse
Affiliation(s)
- Yimeng Zhang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Pengyao Xing
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Minmin Yang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Yajie Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Bo Wang
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Aiyou Hao
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| | - Mingfang Ma
- Key Laboratory of Colloid and Interface Chemistry of Ministry of Education
- School of Chemistry and Chemical Engineering
- Shandong University
- Jinan 250100
- P. R. China
| |
Collapse
|
39
|
Srivastava BK, Manheri MK. Aryl-triazolyl peptides for efficient phase selective gelation and easy removal of dyes from water. RSC Adv 2016. [DOI: 10.1039/c6ra01282e] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Fine-tuning the gelation ability of aryl triazolyl peptide 1 by C-terminal modification led to the identification of 2 with the remarkable ability to form highly transparent gels in a wide range of solvents including oils.
Collapse
|
40
|
Datta S, Bhattacharya S. Multifarious facets of sugar-derived molecular gels: molecular features, mechanisms of self-assembly and emerging applications. Chem Soc Rev 2015; 44:5596-637. [PMID: 26023922 DOI: 10.1039/c5cs00093a] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The remarkable capability of nature to design and create excellent self-assembled nano-structures, especially in the biological world, has motivated chemists to mimic such systems with synthetic molecular and supramolecular systems. The hierarchically organized self-assembly of low molecular weight gelators (LMWGs) based on non-covalent interactions has been proven to be a useful tool in the development of well-defined nanostructures. Among these, the self-assembly of sugar-derived LMWGs has received immense attention because of their propensity to furnish biocompatible, hierarchical, supramolecular architectures that are macroscopically expressed in gel formation. This review sheds light on various aspects of sugar-derived LMWGs, uncovering their mechanisms of gelation, structural analysis, and tailorable properties, and their diverse applications such as stimuli-responsiveness, sensing, self-healing, environmental problems, and nano and biomaterials synthesis.
Collapse
Affiliation(s)
- Sougata Datta
- Department of Organic Chemistry, Indian Institute of Science, Bangalore, India.
| | | |
Collapse
|
41
|
Sandhu S, Kumar R, Singh P, Mahajan A, Kaur M, Kumar S. Ultratrace Detection of Nitroaromatics: Picric Acid Responsive Aggregation/Disaggregation of Self-Assembled p-Terphenylbenzimidazolium-Based Molecular Baskets. ACS APPLIED MATERIALS & INTERFACES 2015; 7:10491-500. [PMID: 25915852 DOI: 10.1021/acsami.5b01970] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
1-(p-Terphenyl)-benzimidazolium (TRIPOD-TP) molecules undergo self-assembly to form rodlike structures in aqueous medium, as shown by field-emission scanning electron microscopy, transmission electron microscopy, and dynamic light scattering studies. Upon gradual addition of picric acid (PA), these aggregates undergo an aggregation/disaggregation process to complex morphological structures (10(-12)-10(-10) M PA) and spherical aggregates (10(-9)-10(-8) M PA). These spherical aggregates undergo further dissolution to well-dispersed spheres between 10(-7)-10(-6) M PA. During fluorescence studies, these aggregates demonstrate superamplified fluorescence quenching (>97%) in the presence of 10(-5) to 0.2 equiv of the probe concentration, an unprecedented process with PA. The lowest detection limits by solution of TRIPOD-TP are 5 × 10(-13) PA, 50 × 10(-12) M 2,4-dinitrophenol, 200 × 10(-12) M 2,4,6-trinitrotoluene, and 1 nM 1-chloro-2,4-dinitrobenzene. Paper strips dipped in the solution of TRIPOD-TP demonstrate quantitative fluorescence quenching between 10(-17) and 10(-6) M PA using front-surface steady state studies and can measure as low as 2.29 × 10(-20) g/cm(2) PA.
Collapse
|
42
|
Zhang L, Wang X, Wang T, Liu M. Tuning soft nanostructures in self-assembled supramolecular gels: from morphology control to morphology-dependent functions. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:1025-38. [PMID: 25384759 DOI: 10.1002/smll.201402075] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 08/17/2014] [Indexed: 05/27/2023]
Abstract
Supramolecular gels are one kind of important soft material, in which small low-molecular weight compounds self-assemble into various nanostructures through non-covalent interactions to immobilize the solvents. While there are many important fundamental issues related to the gelation process, such as the design of the gelator, synergism of various non-covalent interactions between gelators, gelator-solvents, the balances between gelation and crystallization and so on, the self-assembled nanostructures forming during gelation are very interesting. These nanostructures have many unique features, such as the flexibility to respond to external stimuli, morphological diversity, ease of fabrication in large quantities, and so on. This review highlights some important features in tuning the nanostructures in the supramolecular gels from their morphological diversity, morphology control, morphology conversion, and morphology-depended functions.
Collapse
Affiliation(s)
- Li Zhang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | | | | | | |
Collapse
|
43
|
Abstract
We discuss the potential and challenges of multicomponent low molecular weight gels.
Collapse
Affiliation(s)
- Jaclyn Raeburn
- Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| | - Dave J. Adams
- Department of Chemistry
- University of Liverpool
- Liverpool
- UK
| |
Collapse
|
44
|
Rohner SS, Ruiz-Olles J, Smith DK. Speed versus stability – structure–activity effects on the assembly of two-component gels. RSC Adv 2015. [DOI: 10.1039/c5ra01256b] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Modifying the peripheral peptides dramatically changes the time required for gelation under ambient conditions, whilst an enthalpy–entropy balance means that as the temperature increases, the thermal stability of the gels is very similar.
Collapse
|
45
|
Li J, Fan K, Guan X, Yu Y, Song J. Self-assembly mechanism of 1,3:2,4-di(3,4-dichlorobenzylidene)-D-sorbitol and control of the supramolecular chirality. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:13422-13429. [PMID: 25318070 DOI: 10.1021/la5034178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Dibenzylidene-D-sorbitol (DBS) and its derivatives are known to form gels in organic solvents; however, the mechanism of the gel formation has been a subject of much debate. The present work is undertaken to elucidate the organization mechanism of a DBS derivative, 1,3:2,4-di(3,4-dichlorobenzylidene)-D-sorbitol (DCDBS), by taking into account the solvent effects and comparing the experiment data with theoretical calculation. These molecules form smooth nonhelical fibers with a rest circular dichroism (CD) signal in polar solvents, in contrast to rope-liked left-helical fibers with a strong negative CD signal observed in nonpolar solvents. The molecular complexes thus formed were characterized by means of Fourier transform infrared spectra, ultraviolet-visible spectra, X-ray diffraction patterns, static contact angles, and theoretical calculations. It was proposed that the interactions between the gelator and the solvents could subtly change the stacking of the molecules and hence their self-assembled nanostructures. In nonpolar solvents, the gelator molecules appear as a distorted T-shaped structure with the 6-OH forming intermolecular hydrogen bonds with the acetal oxygens of adjacent gelator molecule. In addition, because of differential stacking interactions on both sides of the 10-member ring skeleton of the gelator, the oligomers may assemble in a helix fashion to minimize the energy, leading to helical fibers. In polar solvents, however, the gelator molecules show a rigid planelike structure and thus stack on top of each other because of strong parallel-displaced π interactions. The balanced driving force on both sides of the 10-member ring skeleton made it difficult for the dimers to bend, thus resulting in nonhelical nanostructure. As expected from the mechanisms proposed here, twisted ribbon fibers with a medium strength CD signal were obtained when solvents of different polarities were mixed. Thus, solvent effects revealed in this work represent an effective means of realizing in situ tuning of nanostructures and control of the expression of chirality at supramolecular levels.
Collapse
Affiliation(s)
- Jingjing Li
- School of Chemical Engineering and Technology, Tianjin University , Tianjin, 300072, P. R. China
| | | | | | | | | |
Collapse
|
46
|
Zhang L, Qin L, Wang X, Cao H, Liu M. Supramolecular chirality in self-assembled soft materials: regulation of chiral nanostructures and chiral functions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:6959-6964. [PMID: 24687217 DOI: 10.1002/adma.201305422] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 02/19/2014] [Indexed: 06/03/2023]
Abstract
Supramolecular chirality, which arises from the nonsymmetric spatial arrangement of components in the self-assembly systems, has gained great attention owing to its relation to the natural biological structures and the possible new functions in advanced materials. During the self-assembling process, both chiral and achiral components are possible to form chiral nanostructures. Therefore, it becomes an important issue how to fabricate these molecular components into chiral nanostructures. Furthermore, once the chiral nanostructure is obtained, will it show new functions that simple component molecule could not? In this research news, we report our recent development in the regulation of chiral nanostructures in soft gels or vesicle materials. We have further developed several new functions pertaining to the soft gel materials, which single chiral molecules could not perform, such as the chiroptical switch, chiral recognition and the asymmetry catalysis.
Collapse
Affiliation(s)
- Li Zhang
- Beijing National Laboratory for Molecular Science (BNLMS), CAS Key Laboratory of Colloid, Interface and Chemical Thermodynamics, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | | | | | | | | |
Collapse
|
47
|
Korevaar PA, Grenier C, Meijer EW. Toward model-driven engineering of supramolecular copolymers. ACTA ACUST UNITED AC 2014. [DOI: 10.1002/pola.27446] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Peter A. Korevaar
- Institute for Complex Molecular Systems, Eindhoven University of Technology; PO Box 513 5600 MB Eindhoven The Netherlands
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology; PO Box 513 5600 MB Eindhoven The Netherlands
| | - Christophe Grenier
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology; PO Box 513 5600 MB Eindhoven The Netherlands
| | - E. W. Meijer
- Institute for Complex Molecular Systems, Eindhoven University of Technology; PO Box 513 5600 MB Eindhoven The Netherlands
- Laboratory of Macromolecular and Organic Chemistry, Eindhoven University of Technology; PO Box 513 5600 MB Eindhoven The Netherlands
| |
Collapse
|
48
|
Huang Y, Wang J, Zhai H, Zhu L, Wei Z. Helical supramolecular aggregates of sugar-based perylene dyes: the effect of core-substituted groups. SOFT MATTER 2014; 10:7920-7924. [PMID: 25228101 DOI: 10.1039/c4sm01561d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Here we have shown that it is possible to modulate π-π stacking, hydrogen bonds and hydrophobic and hydrophilic interactions to further adjust the supramolecular helicity by simply changing the core-substituted group. These modulated supramolecular interactions provide a new pathway to the controlled production of helical superstructures.
Collapse
Affiliation(s)
- Yongwei Huang
- Institude of Molecular Medicine, Medical College, Henan University, Kaifeng 475004, China.
| | | | | | | | | |
Collapse
|
49
|
Barclay TG, Constantopoulos K, Matisons J. Nanotubes Self-Assembled from Amphiphilic Molecules via Helical Intermediates. Chem Rev 2014; 114:10217-91. [DOI: 10.1021/cr400085m] [Citation(s) in RCA: 185] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Thomas G. Barclay
- Flinders Centre for Nanoscale Science & Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, South Australia 5042, Australia
| | - Kristina Constantopoulos
- Flinders Centre for Nanoscale Science & Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, South Australia 5042, Australia
| | - Janis Matisons
- Flinders Centre for Nanoscale Science & Technology, School of Chemical and Physical Sciences, Flinders University, Adelaide, South Australia 5042, Australia
| |
Collapse
|
50
|
Xing P, Chu X, Ma M, Li S, Hao A. Melamine as an Effective Supramolecular Modifier and Stabilizer in a Nanotube-Constituted Supergel. Chem Asian J 2014; 9:3440-50. [DOI: 10.1002/asia.201402645] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 07/07/2014] [Indexed: 01/28/2023]
|