1
|
Allegritti E, Giansanti L, Bordon G, Maggi MA, Luciani P, Aleandri S. Unlocking new dimensions in long-acting injectables using lipid mesophase-based beads. J Colloid Interface Sci 2024; 664:1031-1041. [PMID: 38521004 DOI: 10.1016/j.jcis.2024.03.067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/10/2024] [Indexed: 03/25/2024]
Abstract
In this study, we explored the use of lipid mesophases (LMPs) as a biocompatible and biodegradable material for sustained drug delivery. Our hypothesis centered on leveraging the high surface-to-volume ratio of LMP-based beads to enhance strength, stability, and surface interaction compared to the LMP bulk gel. To modulate drug release, we introduced antioxidant vitamin E into the beads, influencing mesophase topologies and controlling drug diffusion coefficients. Four drugs with distinct chemical properties and intended for three different pathologies and administration routes were successfully loaded into the beads with a drug entrapment efficiency exceeding 80 %. Notably, our findings revealed sustained drug release, irrespective of the drugs' chemical properties, culminating in the development of an injectable formulation. This formulation allows direct administration into the target site, minimizing systemic exposure, and thereby mitigating adverse effects. Our approach demonstrates the potential of LMP-based beads for tailored drug delivery systems with broad applications in diverse therapeutic scenarios.
Collapse
Affiliation(s)
- Elena Allegritti
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, 67100 Coppito, L'Aquila, Italy
| | - Luisa Giansanti
- Dipartimento di Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, 67100 Coppito, L'Aquila, Italy
| | - Gregor Bordon
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland
| | | | - Paola Luciani
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
| | - Simone Aleandri
- Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, 3012 Bern, Switzerland.
| |
Collapse
|
2
|
Shah S, Joga R, Kolipaka T, Sabnis Dushyantrao C, Khairnar P, Phatale V, Pandey G, Srivastava S, Kumar S. Paradigm of lyotropic liquid crystals in tissue regeneration. Int J Pharm 2023; 634:122633. [PMID: 36690130 DOI: 10.1016/j.ijpharm.2023.122633] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/12/2023] [Accepted: 01/17/2023] [Indexed: 01/21/2023]
Abstract
The liquid crystalline phase has attracted tremendous attention from researchers across the globe due to its intriguing properties. In this article, we enumerate the different classes of liquid crystals. Lyotropic liquid crystals (LLCs) exhibit their liquid crystalline nature based on the surrounding solvent media, which opens novel horizons in drug delivery and tissue regeneration. The advantages of LLCs in the said fields and the thermodynamic mechanistic insights responsible for their structural stabilization have been conveyed. Various fabrication and characterization techniques, along with factors influencing the formation of LLCs, have been discussed. Applications in novel therapeutic avenues like bone extracellular matrix, cardiac remodeling, wound management, and implants have been unveiled. Also, regulatory considerations, patent, and clinical portfolios to circumvent the hurdles of clinical translation have been discussed. LLCs could be a promising approach in diverse avenues of tissue regeneration.
Collapse
Affiliation(s)
- Saurabh Shah
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Ramesh Joga
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Tejaswini Kolipaka
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Chetan Sabnis Dushyantrao
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Pooja Khairnar
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Vivek Phatale
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Giriraj Pandey
- Pharmaceutical Innovation and Translational Research Laboratory (PITRL), Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India
| | - Saurabh Srivastava
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| | - Sandeep Kumar
- Department of Regulatory Affairs, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, India.
| |
Collapse
|
3
|
Antioxidant-containing monoolein aqueous dispersions: a preliminary study. Drug Deliv Transl Res 2022; 12:1873-1880. [PMID: 35084708 PMCID: PMC9242904 DOI: 10.1007/s13346-022-01119-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/17/2022] [Indexed: 11/27/2022]
Abstract
The present study describes a preliminary study on the use of monoolein aqueous dispersions (MADs) as delivery systems for antioxidant molecules, namely, ascorbyl palmitate (AP) and alpha-tocopherol (AT). MAD, produced by emulsifying monoolein (4.5% w/w) in water and poloxamer 407 (0.5% w/w) as emulsifier, was characterized in terms of size, morphology, and antioxidant activity by mean of PCS, cryo-TEM, and (2,2-diphenyl-1-picrylhydrazyl) assay. MAD-AP or MAD-AT gave rise to a bimodal size distribution with mean size around 200 nm. All the preparations stored at 25 °C showed quite stable size at least up to 90 days. Cryo-TEM images confirmed MAD size distribution and indicated different MAD morphologies as a function of the loaded antioxidant molecule. Indeed, in the case of MAD-AP, vesicles and cubosomes with the typical inner cubic structure were observed, while vesicles and hexosomes were shown for MAD-AT. The encapsulation efficiency of both antioxidants reached more than 90% with respect to the total amount of drug used for MAD preparation. Moreover, AP and AT antioxidant activity was retained after encapsulation, and in vitro Franz cell experiments showed that the MAD enabled to better control the drug release. These preliminary results suggest that MAD formulations could be further investigated as a potential delivery system for antioxidant supplementation in dietary or cosmetic fields.
Collapse
|
4
|
Wu W, Cao W, Chen J, Cai Y, Dong B, Chu X. In Situ Liquid Crystal Gel as a Promising Strategy for Improving Ocular Administration of Dexamethasone: Preparation, Characterization, and Evaluation. AAPS PharmSciTech 2021; 23:36. [PMID: 34951001 DOI: 10.1208/s12249-021-02193-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 11/29/2021] [Indexed: 01/10/2023] Open
Abstract
The purpose of this study was to design an in situ liquid crystal gel (ISLG) as an ophthalmic drug delivery system for dexamethasone (DEX) to enhance its eye retention and ocular bioavailability. The in situ liquid crystal gels (ISLGs) were prepared using a phytantriol/PEG400/water (65:30:5, w/w) ternary system. Polarized light microscope (PLM), small-angle X-ray scattering (SAXS), and rheology analysis confirmed that the internal structure of the preparations was Pn3m cubic phase liquid crystal gels with pseudoplastic fluid properties. Meanwhile, in vitro release behavior of the preparations conforms to the Higuchi equation. Corneal penetration experiments showed that compared with DEX sodium phosphate eye drops, DEX-ISLGs(F2) produced a 5.45-fold increase in the Papp value, indicating a significant enhancement of corneal penetration. In addition, in vivo experiments have confirmed that the ISLGs have better biocompatibility and longer retention time in the cornea. Simultaneously, corneal hydration level, eye irritation experiments, and histological observations proved the safety of the preparations. Pharmacokinetic studies have shown that the ISLG could maintain the DEX concentration in aqueous humor for at least 12 h after administration, which significantly improves the bioavailability of the drug. Collectively, these results indicated that ISLG would be a potential drug carrier for the treatment of diabetic retinopathy (DR).
Collapse
|
5
|
Selivanova N, Gubaidullin A, Galyametdinov Y. Characterization of hexagonal lyotropic liquid crystal microstructure: Effects of vitamin E molecules. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
6
|
Tian C, Liu L, Xia M, Chu XQ. The Evaluations of Menthol and Propylene Glycol on the Transdermal Delivery System of Dual Drug-Loaded Lyotropic Liquid Crystalline Gels. AAPS PharmSciTech 2020; 21:224. [PMID: 32749554 DOI: 10.1208/s12249-020-01762-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to evaluate the effects of two different structural alcohol permeation enhancers (menthol and propylene glycol) on the internal structure and in vitro properties of the dual drug-loaded lyotropic liquid crystalline (LLC) gels. The LLC gels were prepared and characterized by polarized light microscopy, small-angle X-ray scattering, differential scanning calorimetry, attenuated total reflectance-Fourier transform infrared spectrum, and rheology. Based on the results, the inner structure of the gels was QII mesophase and exhibited a pseudoplastic fluid behavior. The level of internal order in the LLC mesophase would be affected by introduced 2 wt% menthol (MEN) and propylene glycol (PG). The in vitro release experiment showed that the release behavior of sinomenine hydrochloride (SH) and cinnamaldehyde (CA) from the LLC system was dominated by Fickian diffusion (n < 0.43). MEN and PG had the opposite effects on the release of hydrophilic SH, while the MEN and PG both increased the release of lipophilic drug CA. Furthermore, in vitro permeation studies indicated that MEN and PG could both improve the skin permeability of SH and CA, and MEN displayed more pronounced enhancement. All the samples showed no skin irritation on the normal rat skin. Collectively, in our research, monoterpenoid MEN exhibited a better penetration-promoting effect than straight-chain fatty alcohol PG on the dual drug-loaded LLC system.
Collapse
|
7
|
Lachmayr KK, Sita LR. Small‐Molecule Modulation of Soft‐Matter Frank–Kasper Phases: A Method for Adding Function to Form. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201915416] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Kätchen K. Lachmayr
- Department of Chemistry and BiochemistryUniversity of Maryland College Park MD 20742 USA
| | - Lawrence R. Sita
- Department of Chemistry and BiochemistryUniversity of Maryland College Park MD 20742 USA
| |
Collapse
|
8
|
Lachmayr KK, Sita LR. Small‐Molecule Modulation of Soft‐Matter Frank–Kasper Phases: A Method for Adding Function to Form. Angew Chem Int Ed Engl 2020; 59:3563-3567. [DOI: 10.1002/anie.201915416] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Indexed: 01/27/2023]
Affiliation(s)
- Kätchen K. Lachmayr
- Department of Chemistry and BiochemistryUniversity of Maryland College Park MD 20742 USA
| | - Lawrence R. Sita
- Department of Chemistry and BiochemistryUniversity of Maryland College Park MD 20742 USA
| |
Collapse
|
9
|
Chu X, Wang X, Tian C, Liu L, Xia M, Jiang J, Gui S. Dual drug-loaded cubic liquid crystal gels for transdermal delivery: inner structure and percutaneous mechanism evaluations. Drug Dev Ind Pharm 2019; 45:1879-1888. [DOI: 10.1080/03639045.2019.1672716] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaoqin Chu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, People’s Republic of China
- School of Chinese Medicine, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Xingqi Wang
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Chunling Tian
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Liu Liu
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Mengqiu Xia
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
| | - Jianqin Jiang
- School of Chinese Medicine, China Pharmaceutical University, Nanjing, People’s Republic of China
| | - Shuangying Gui
- Department of Pharmaceutics, College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People’s Republic of China
- Institute of Pharmaceutics, Anhui Academy of Chinese Medicine, Hefei, People’s Republic of China
| |
Collapse
|
10
|
Wang X, Zhang Y, Gui S, Huang J, Cao J, Li Z, Li Q, Chu X. Characterization of Lipid-Based Lyotropic Liquid Crystal and Effects of Guest Molecules on Its Microstructure: a Systematic Review. AAPS PharmSciTech 2018; 19:2023-2040. [PMID: 29869308 DOI: 10.1208/s12249-018-1069-1] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 05/01/2018] [Indexed: 12/16/2022] Open
Abstract
Liquid crystals (LCs) are conventionally divided into thermotropic or lyotropic, based on the organization and sequence of the controlled molecular system. Lipid-based lyotropic liquid crystal (LLC), such as lamellar (Lα), bicontinuous cubic (QII), or hexagonal (HII) phases, have attracted wide interest in the last few decades due to their practical potential in diverse applications and notable structural complexity. Various guest molecules, such as biopharmaceuticals, chemicals, and additives, can be solubilized in either aqueous or oily phase. And the LLC microstructure can be altered to affect the rate of drug release eventually. To utilize these microstructural variations to adjust the drug release in drug delivery system (DDS), it is crucial to understand the structure variations of the LLC caused by different types of guest molecules. Therefore, in this article, we review the effect of guest molecules on lipid-based LLC microstructures. In particular, we focus on the different characterization methods to evaluate this change caused by guest substances, such as polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), Fourier-transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), self-diffusion nuclear magnetic resonance (SD-NMR), and so on.
Collapse
|
11
|
Huang Y, Gui S. Factors affecting the structure of lyotropic liquid crystals and the correlation between structure and drug diffusion. RSC Adv 2018; 8:6978-6987. [PMID: 35540315 PMCID: PMC9078419 DOI: 10.1039/c7ra12008g] [Citation(s) in RCA: 87] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 02/05/2018] [Indexed: 12/11/2022] Open
Abstract
Lyotropic liquid crystals (LLCs) formed by the self-assembly of amphiphilic molecules in a solvent (usually water) have attracted increasingly greater attention in the last few decades, especially the lamellar phase (Lα), the reversed bicontinuous cubic phase (Q2) and the reversed hexagonal phase (H2). Such phases offer promising prospects for encapsulation of a wide range of target molecules with various sizes and polarities owing to the unique internal structures. Also, different structures of mesophases can give rise to different diffusion coefficients. The bicontinuous cubic phase and the hexagonal phase have been demonstrated to control and sustain the release of active molecules. Furthermore, the structures are susceptible to many factors such as water content, temperature, pH, the presence of additives etc. Many researchers have been studying these influencing factors in order to accurately fabricate the desired phase. In this paper, we give a review of the characteristics of different structures of liquid crystalline phases, the influencing factors on the phase transition of liquid crystals and the relationship between structures of LLC and drug diffusion. We hope our review will provide some insights into how to manipulate in a controlled manner the rate of incorporating and transferring molecules by altering the structure of lyotropic mesophases. Factors such as amphiphilic molecules , water content, temperature, pressure, light and magnetic field on the structures of LLCs.![]()
Collapse
Affiliation(s)
- Yiming Huang
- Department of Pharmacy
- Anhui University of Chinese Medicine
- Hefei
- China
| | - Shuangying Gui
- Department of Pharmacy
- Anhui University of Chinese Medicine
- Hefei
- China
- Institute of Pharmaceutics
| |
Collapse
|
12
|
Burrell J, Dymond MK, Gillams RJ, Parker DJ, Langley GJ, Labrador A, Nylander T, Attard GS. Using Curvature Power To Map the Domain of Inverse Micellar Cubic Phases: The Case of Aliphatic Aldehydes in 1,2-Dioleoyl-sn-glycero-3-phosphoethanolamine. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12804-12813. [PMID: 28981289 DOI: 10.1021/acs.langmuir.7b02998] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Oxylipins, or fatty aldehydes, are a class of molecules produced from membrane lipids as a result of oxidative stress or enzyme-mediated peroxidation. Here we report the effects of two biologically important fatty aldehydes, trans,trans-2,4-decanedienal (DD) and cis-11-hexadecenal (HD), on the phase behavior of the lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in water. We compare the phase behavior of DD/DOPE and HD/DOPE mixtures to the phase behavior of oleic acid/DOPE mixtures and show that DD, HD, and oleic acid have similar effects on the phase diagrams of DOPE. Notably, both DD and HD, like oleic acid, induce the formation of Fd3m inverse micellar cubic phases in DOPE/water mixtures. This is the first time that Fd3m phases in fatty aldehyde-containing mixtures have been reported. We assess the effects of DD, HD, and oleic acid on DOPE in terms of lipid spontaneous curvatures and propose a method to predict the formation of Fd3m phases from the curvature power of amphiphiles. This methodology predicts that Fd3m phases will become stable if the spontaneous curvature of a lipid mixture is -0.48 ± 0.05 nm-1 or less.
Collapse
Affiliation(s)
- Jamie Burrell
- Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Marcus K Dymond
- Division of Chemistry, School of Pharmacy and Biomolecular Sciences, University of Brighton , Brighton, BN2 4GJ, United Kingdom
| | - Richard J Gillams
- Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Duncan J Parker
- Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - G John Langley
- Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton , Southampton SO17 1BJ, United Kingdom
| | - Ana Labrador
- MAX IV Laboratory, Lund University , P.O. Box 118, SE-221 00, Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Lund University , P.O. Box 124, SE-221 00, Lund, Sweden
| | - George S Attard
- Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton , Southampton SO17 1BJ, United Kingdom
| |
Collapse
|
13
|
Dymond MK, Gillams RJ, Parker DJ, Burrell J, Labrador A, Nylander T, Attard GS. Lipid Spontaneous Curvatures Estimated from Temperature-Dependent Changes in Inverse Hexagonal Phase Lattice Parameters: Effects of Metal Cations. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10083-10092. [PMID: 27603198 DOI: 10.1021/acs.langmuir.6b03098] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recently we reported a method for estimating the spontaneous curvatures of lipids from temperature-dependent changes in the lattice parameter of inverse hexagonal liquid crystal phases of binary lipid mixtures. This method makes use of 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine (DOPE) as a host lipid, which preferentially forms an inverse hexagonal phase to which a guest lipid of unknown spontaneous curvature is added. The lattice parameters of these binary lipid mixtures are determined by small-angle X-ray diffraction at a range of temperatures and the spontaneous curvature of the guest lipid is determined from these data. Here we report the use of this method on a wide range of lipids under different ionic conditions. We demonstrate that our method provides spontaneous curvature values for DOPE, cholesterol, and monoolein that are within the range of values reported in the literature. Anionic lipids 1,2-dioleoyl-sn-glycerol-3-phosphatidic acid (DOPA) and 1,2-dioleoyl-sn-glycerol-3-phosphoserine (DOPS) were found to exhibit spontaneous curvatures that depend on the concentration of divalent cations present in the mixtures. We show that the range of curvatures estimated experimentally for DOPA and DOPS can be explained by a series of equilibria arising from lipid-cation exchange reactions. Our data indicate a universal relationship between the spontaneous curvature of a lipid and the extent to which it affects the lattice parameter of the hexagonal phase of DOPE when it is part of a binary mixture. This universal relationship affords a rapid way of estimating the spontaneous curvatures of lipids that are expensive, only available in small amounts, or are of limited chemical stability.
Collapse
Affiliation(s)
- Marcus K Dymond
- Division of Chemistry, School of Pharmacy and Biomolecular Sciences, University of Brighton , Brighton BN2 4GJ, U.K
| | - Richard J Gillams
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | - Duncan J Parker
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | - Jamie Burrell
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| | - Ana Labrador
- MAX IV Laboratory, Lund University , PO Box 118, SE-221 00 Lund, Sweden
| | - Tommy Nylander
- Physical Chemistry, Lund University , PO Box 124, SE-221 00 Lund, Sweden
| | - George S Attard
- Chemistry, Faculty of Natural & Environmental Sciences, University of Southampton , Southampton SO17 1BJ, U.K
| |
Collapse
|
14
|
Sagalowicz L, Guillot S, Acquistapace S, Schmitt B, Maurer M, Yaghmur A, de Campo L, Rouvet M, Leser M, Glatter O. Influence of vitamin E acetate and other lipids on the phase behavior of mesophases based on unsaturated monoglycerides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:8222-8232. [PMID: 23705681 DOI: 10.1021/la305052q] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The phase behavior of the ternary unsaturated monoglycerides (UMG)-DL-α-tocopheryl acetate-water system has been studied. The effects of lipid composition in both bulk and dispersed lyotropic liquid crystalline phases and microemulsions were investigated. In excess water, progressive addition of DL-α-tocopheryl acetate to a binary UMG mixture results in the following phase sequence: reversed bicontinuous cubic phase, reversed hexagonal (H(II)) phase, and a reversed microemulsion. The action of DL-α-tocopheryl acetate is then compared to that of other lipids such as triolein, limonene, tetradecane, and DL-α-tocopherol. The impact of solubilizing these hydrophobic molecules on the UMG-water phase behavior shows some common features. However, the solubilization of certain molecules, like DL-α-tocopherol, leads to the presence of the reversed micellar cubic phase (space group number 227 and symmetry Fd3m) while the solubilization of others does not. These differences in phase behavior are discussed in terms of physical-chemical characteristics of the added lipid molecule and its interaction with UMG and water. From an applications point of view, phase behavior as a function of the solubilized content of guest molecules (lipid additive in our case) is crucial since macroscopic properties such as molecular release depend strongly on the phase present. The effect of two hydrophilic emulsifiers, used to stabilize the aqueous dispersions of UMG, was studied and compared. Those were Pluronic F127, which is the most commonly used stabilizer for these kinds of inverted type structures, and the partially hydrolyzed emulsifier lecithin (Emultop EP), which is a well accepted food-grade emulsifier. The phase behavior of particles stabilized by the partially hydrolyzed lecithin is similar to that of bulk sample at full hydration, but this emulsifier interacts significantly with the internal structure and affects it much more than F127.
Collapse
Affiliation(s)
- L Sagalowicz
- Nestlé Research Center, Vers-Chez-Les-Blanc, CH-1000 Lausanne 26, Switzerland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bitan-Cherbakovsky L, Libster D, Ottaviani MF, Aserin A, Garti N. Structural Behavior and Interactions of Dendrimer within Lyotropic Liquid Crystals, Monitored by EPR Spectroscopy and Rheology. J Phys Chem B 2012; 116:2420-9. [DOI: 10.1021/jp212008a] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Liron Bitan-Cherbakovsky
- The Ratner Chair of Chemistry,
Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Dima Libster
- The Ratner Chair of Chemistry,
Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Maria Francesca Ottaviani
- Department of Earth, Life and
Environment Sciences, University of Urbino, Località Crocicchia, Urbino 61029, Italy
| | - Abraham Aserin
- The Ratner Chair of Chemistry,
Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| | - Nissim Garti
- The Ratner Chair of Chemistry,
Casali Institute of Applied Chemistry, The Institute of Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra
Campus, Givat Ram, Jerusalem 91904, Israel
| |
Collapse
|
16
|
Gurfinkel J, Aserin A, Garti N. Interactions of surfactants in nonionic/anionic reverse hexagonal mesophases and solubilization of α-chymotrypsinogen A. Colloids Surf A Physicochem Eng Asp 2011. [DOI: 10.1016/j.colsurfa.2011.10.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Bitan-Cherbakovsky L, Libster D, Aserin A, Garti N. Complex dendrimer-lyotropic liquid crystalline systems: structural behavior and interactions. J Phys Chem B 2011; 115:11984-92. [PMID: 21902258 DOI: 10.1021/jp2030939] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The incorporation of dendrimer into three lyotropic liquid crystalline (LLCs) mesophases is demonstrated for the first time. A second generation (G2) of poly(propylene imine) dendrimer (PPI) was solubilized into lamellar, diamond reverse cubic, and reverse hexagonal LLCs composed of glycerol monooleate (GMO), and water (and D-α-tocopherol in the H(II) system). The combination of PPI with LLCs may provide an advantageous drug delivery system. Cross-polarized light microscope, small-angle X-ray scattering (SAXS), and attenuated total reflectance Fourier transform infrared (ATR-FTIR) were utilized to study the structural behavior of the mesophases, the localization of PPI within the system, and the interactions between the guest molecule and the system's components. It was revealed that PPI-G2 functioned as a "water pump", competing with the lipid headgroups for water binding. As a result, L(α)→H(II) and Q(224)→H(II) structural shifts were detected (at 10 wt % PPI-G2 content), probably caused by the dehydration of monoolein headgroups and subsequent increase of the lipid's critical packing parameter (CPP). In the case of H(II), as a result of the balance between the dehydration of the monoolein headgroups and the significant presence of PPI within the interfacial region, increasing the quantity of hydrogen bonds, no structural transitions occurred. ATR-FTIR analysis demonstrated a downward shift of the H-O-H (water), as a result of PPI-G2 embedment, suggesting an increase in the mean water-water H-bond angle resulting from binding PPI-G2 to the water network. Additionally, the GMO hydroxyl groups at β- and γ-C-OH positions revealed a partial interaction of hydrogen bonds with N-H functional groups of the protonated PPI-G2. Other GMO interfacial functional groups were shown to interact with the PPI-G2, in parallel with the GMO dehydration phenomenon. In the future, these outcomes can be used to design advanced drug delivery systems, allowing administration of dendrimers as a therapeutic agent from LLCs.
Collapse
Affiliation(s)
- Liron Bitan-Cherbakovsky
- Casali Institute of Applied Chemistry, The Hebrew University of Jerusalem, Edmond J. Safra Campus, Givat Ram, Jerusalem 91904, Israel
| | | | | | | |
Collapse
|
18
|
Amar-Zrihen N, Aserin A, Garti N. Food volatile compounds facilitating HII mesophase formation: solubilization and stability. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:5554-5564. [PMID: 21495722 DOI: 10.1021/jf200466e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Four lipophilic food volatile molecules of different chemical characteristics, phenylacetaldehyde, 2,6-dimethyl-5-heptenal, linalool, and trans-4-decenal, were solubilized into binary mixtures of monoolein/water, facilitating the formation of reverse hexagonal (H(II)) mesophases at room temperature without the need of solvents or triglycerides. Some of the flavor compounds are important building blocks of the hexagonal mesostructure, preventing phase transition with aging. The solubilization loads were relatively high: 12.6, 10.0, 12.6, and 10.0 wt % for phenylacetaldehyde, 2,6-dimethyl-5-heptenal, linalool, and trans-4-decenal, respectively. Phenylacetaldehyde formed mixtures of lamellar and cubic phases. Linalool, 2,6-dimethyl-5-heptenal, and trans-4-decenal induced structural shift from lamellar directly to H(II) mesophase, remaining stable at room temperature. Lattice parameters were found to increase with water content and to decrease with temperature and/or food volatile content. trans-4-Decenal produces more stable H(II) mesophase compared to linalool-loaded mesophase. At 40-60 °C, depending on the chemical structure and on the solubilization location of the food volatile compounds, the H(II) mesophase transforms to isotropic micellar phase, facilitating the release of the food volatile compounds. Molecular interactions suggest the existence of two consecutive stages in the solubilization process.
Collapse
Affiliation(s)
- Natali Amar-Zrihen
- The Ratner Chair of Chemistry, Casali Institute of Applied Chemistry, The Hebrew University of Jerusalem, Jerusalem, Israel
| | | | | |
Collapse
|
19
|
Libster D, Aserin A, Garti N. Interactions of biomacromolecules with reverse hexagonal liquid crystals: Drug delivery and crystallization applications. J Colloid Interface Sci 2011; 356:375-86. [DOI: 10.1016/j.jcis.2011.01.047] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2010] [Revised: 01/13/2011] [Accepted: 01/14/2011] [Indexed: 11/26/2022]
|