1
|
Estrada-Osorio D, Escalona-Villalpando RA, Gutiérrez A, Arriaga L, Ledesma-García J. Poly-L-lysine-modified with ferrocene to obtain a redox polymer for mediated glucose biosensor application. Bioelectrochemistry 2022; 146:108147. [DOI: 10.1016/j.bioelechem.2022.108147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 12/26/2022]
|
2
|
Deb M, Hassan N, Chowdhury D, Sanfui MH, Roy S, Bhattacharjee C, Majumdar S, Chattopadhyay PK, Singha NR. Nontraditional Redox Active Aliphatic Luminescent Polymer for Ratiometric pH Sensing and Sensing-Removal-Reduction of Cu(II): Strategic Optimization of Composition. Macromol Rapid Commun 2022; 43:e2200317. [PMID: 35798327 DOI: 10.1002/marc.202200317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/11/2022] [Indexed: 11/11/2022]
Abstract
Here, redox active aliphatic luminescent polymers (ALPs) are synthesized via polymerization of N,N-dimethyl-2-propenamide (DMPA) and 2-methyl-2-propenoic acid (MPA). The structures and properties of the optimum ALP3, ALP3-aggregate and Cu(I)-ALP3, ratiometric pH sensing, redox activity, aggregation enhanced emission (AEE), Stokes shift, and oxygen-donor selective coordination-reduction of Cu(II) to Cu(I) are explored via spectroscopic, microscopic, density functional theory-reduced density gradient (DFT-RDG), fluorescence quenching, adsorption isotherm-thermodynamics, and electrochemical methods. The intense blue and green fluorescence of ALP3 emerges at pH = 7.0 and 9.0, respectively, due to alteration of fluorophores from -C(═O)N(CH3 )2 / -C(═O)OH to -C(O- )═N+ (CH3 )2 / -C(═O)O- , inferred from binding energies at 401.32 eV (-C(O- )═N+ (CH3 )2 ) and 533.08 eV (-C(═O)O- ), significant red shifting in absorption and emission spectra, and peak at 2154 cm-1 . The n-π* communications in ALP3-aggregate, hydrogen bondings within 2.34-2.93 Å (intramolecular) in ALP3 and within 1.66-2.89 Å (intermolecular) in ALP3-aggregate, respectively, contribute significantly in fluorescence, confirmed from NMR titration, ratiometric pH sensing, AEE, excitation dependent emission, and Stokes shift and DFT-RDG analyses. For ALP3, Stokes shift, excellent limit of detection, adsorption capacity, and redox potentials are 13561 cm-1 /1.68 eV, 0.137 ppb, 122.93 mg g-1 , and 0.33/-1.04 V at pH 7.0, respectively.
Collapse
Affiliation(s)
- Mousumi Deb
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Nadira Hassan
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Deepak Chowdhury
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Md Hussain Sanfui
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Shrestha Roy
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | | | - Swapan Majumdar
- Department of Chemistry, Tripura University, Suryamaninagar, 799022, India
| | - Pijush Kanti Chattopadhyay
- Department of Leather Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| | - Nayan Ranjan Singha
- Advanced Polymer Laboratory, Department of Polymer Science and Technology, Government College of Engineering and Leather Technology (Post Graduate), Maulana Abul Kalam Azad University of Technology, Salt Lake City, Kolkata, West Bengal, 700106, India
| |
Collapse
|
3
|
von Stockert AR, Luongo A, Langhans M, Brandstetter T, Rühe J, Meckel T, Biesalski M. Reducing Unspecific Protein Adsorption in Microfluidic Papers Using Fiber-Attached Polymer Hydrogels. SENSORS 2021; 21:s21196348. [PMID: 34640668 PMCID: PMC8512548 DOI: 10.3390/s21196348] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/24/2022]
Abstract
Microfluidic paper combines pump-free water transport at low cost with a high degree of sustainability, as well as good availability of the paper-forming cellulosic material, thus making it an attractive candidate for point-of-care (POC) analytics and diagnostics. Although a number of interesting demonstrators for such paper devices have been reported to date, a number of challenges still exist, which limit a successful transfer into marketable applications. A strong limitation in this respect is the (unspecific) adsorption of protein analytes to the paper fibers during the lateral flow assay. This interaction may significantly reduce the amount of analyte that reaches the detection zone of the microfluidic paper-based analytical device (µPAD), thereby reducing its overall sensitivity. Here, we introduce a novel approach on reducing the nonspecific adsorption of proteins to lab-made paper sheets for the use in µPADs. To this, cotton linter fibers in lab-formed additive-free paper sheets are modified with a surrounding thin hydrogel layer generated from photo-crosslinked, benzophenone functionalized copolymers based on poly-(oligo-ethylene glycol methacrylate) (POEGMA) and poly-dimethyl acrylamide (PDMAA). This, as we show in tests similar to lateral flow assays, significantly reduces unspecific binding of model proteins. Furthermore, by evaporating the transport fluid during the microfluidic run at the end of the paper strip through local heating, model proteins can almost quantitatively be accumulated in that zone. The possibility of complete, almost quantitative protein transport in a µPAD opens up new opportunities to significantly improve the signal-to-noise (S/N) ratio of paper-based lateral flow assays.
Collapse
Affiliation(s)
- Alexander Ritter von Stockert
- Laboratory of Macromolecular Chemistry and Paper Chemistry (MAP), Department of Chemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany; (A.R.v.S.); (M.L.); (T.M.)
| | - Anna Luongo
- Laboratory of Chemistry and Physics of Interfaces, Institute for Microsystems Technology, Technical Faculty, University of Freiburg, 79110 Freiburg, Germany; (A.L.); (T.B.)
| | - Markus Langhans
- Laboratory of Macromolecular Chemistry and Paper Chemistry (MAP), Department of Chemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany; (A.R.v.S.); (M.L.); (T.M.)
| | - Thomas Brandstetter
- Laboratory of Chemistry and Physics of Interfaces, Institute for Microsystems Technology, Technical Faculty, University of Freiburg, 79110 Freiburg, Germany; (A.L.); (T.B.)
| | - Jürgen Rühe
- Laboratory of Chemistry and Physics of Interfaces, Institute for Microsystems Technology, Technical Faculty, University of Freiburg, 79110 Freiburg, Germany; (A.L.); (T.B.)
- Correspondence: (J.R.); (M.B.)
| | - Tobias Meckel
- Laboratory of Macromolecular Chemistry and Paper Chemistry (MAP), Department of Chemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany; (A.R.v.S.); (M.L.); (T.M.)
| | - Markus Biesalski
- Laboratory of Macromolecular Chemistry and Paper Chemistry (MAP), Department of Chemistry, Technische Universität Darmstadt, 64287 Darmstadt, Germany; (A.R.v.S.); (M.L.); (T.M.)
- Correspondence: (J.R.); (M.B.)
| |
Collapse
|
4
|
Díaz-González JCM, Escalona-Villalpando RA, Arriaga LG, Minteer SD, Casanova-Moreno JR. Effects of the cross-linker on the performance and stability of enzymatic electrocatalytic films of glucose oxidase and dimethylferrocene-modified linear poly(ethyleneimine). Electrochim Acta 2020. [DOI: 10.1016/j.electacta.2020.135782] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
5
|
Saravanan N, Mayuri P, Senthil Kumar A. Improved Electrical Wiring of Glucose Oxidase Enzyme with an in-Situ Immobilized Mn(1,10-Phenanthroline) 2Cl 2-Complex/Multiwalled Carbon Nanotube-Modified Electrode Displaying Superior Performance to Os-Complex for High-Current Sensitivity Bioelectrocatalytic and Biofuel Cell Applications. ACS APPLIED BIO MATERIALS 2018; 1:1758-1767. [PMID: 34996224 DOI: 10.1021/acsabm.8b00584] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The search for a new and efficient transducer that can electrically connect enzyme active sites, like flavin adenine dinucleotide in glucose oxidase (GOx), with the electrode surface is a cutting-edge research area. Currently, Os(bpy)-complex pendent polyvinylpyridine/polyvinyl imidazole/pyridinium hydrogel based chemically modified electrodes have been widely used for this purpose (bpy = 2,2'-bipyridine). Herein, we report, a [Mn2III(phen)4(O)(Cl)2]2+ complex/Nafion-immobilized carboxylic acid-functionalized multiwalled carbon nanotube modified glassy carbon electrode (GCE/f-MWCNT@Mn2(Phen)4O(Cl)2-Nf, phen = 1,10-phenanthroline), prepared by an in-situ electrochemical method using the precursor, Mn(phen)2Cl2, as an efficient and low cost alternate to the Os-complex transducer, for the glucose oxidase enzyme (GOx) based bio-electro-catalytic system. The existence of the key active site, [Mn2III(phen)4(O)(Cl)2]2+, on the modified electrode was confirmed by physicochemical characterizations using transmission electron microscope, Raman, infrared, and UV-vis spectroscopes and electrospray ionization mass spectrometry techniques. The Mn-complex modified electrode showed a redox peak at E°' = 0.55 V vs Ag/AgCl in neutral solution with a surface excess (ΓMn) value of 5.6 × 10-9 mol cm-2. The GOx enzyme bioanode prepared by adsorbing GOx on the Mn-complex modified electrode has shown an efficient bioelectrocatalytic oxidation of glucose with a Tafel slope value of 111 mV dec-1. Amperometric i-t analysis of glucose showed a calibration plot in a linear range of 50-550 μM and with current sensitivity of 316.7 μA mM-1 cm-2. The current sensitivity value obtained here is about 2-80 000 times higher than that of the Os(bpy)-complex based transducers used for GOx based bio-electro-catalytic applications. Utilizing this new bioanode system along with a Pt-based oxygen reduction electrode, a new biofuel cell was constructed and achieved a power density value 7.5 μW cm-2.
Collapse
Affiliation(s)
- Natarajan Saravanan
- Nano and Bioelectrochemistry Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore-632 014, India
| | - Pinapeddavari Mayuri
- Nano and Bioelectrochemistry Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore-632 014, India
| | - Annamalai Senthil Kumar
- Nano and Bioelectrochemistry Research Laboratory, Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology University, Vellore-632 014, India.,Carbon Dioxide Research and Green Technology Centre, Vellore Institute of Technology University, Vellore-632 014, India
| |
Collapse
|
6
|
Removal Processes of Carbamazepine in Constructed Wetlands Treating Secondary Effluent: A Review. WATER 2018. [DOI: 10.3390/w10101351] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
It is widely believed that constructed wetlands (CWs) own great potentiality as polishing wastewater treatment methods for removing carbamazepine (CBZ). Although the typical CBZ removal efficiencies in CWs are quite low, the CBZ removal performance could be improved to some extend by optimizing the CW design parameters. A comparison of current relevant studies indicates that horizontal sub-surface flow CWs (HSSF-CWs) and hybrid wetlands are attracting more interest for the treatment of CBZ wastewater. According to CBZ’s physicochemical properties, substrate adsorption (25.70–57.30%) and macrophyte uptake (22.30–51.00%) are the two main CBZ removal pathways in CWs. The CBZ removal efficiency of CWs employing light expanded clay aggregate (LECA) as a substrate could reach values higher than 90%, and the most favorable macrophyte species is Iris sibirica, which has shown the highest total CBZ assimilation capacity. Several methods for enhancement have been proposed to optimize CBZ removal in CWs, including development of hydraulic models for optimization of CW operation, introduction of extra new CBZ removal ways into CW through substrate modification, design of combined/integrated CW, etc.
Collapse
|
7
|
Liu Q, Singha P, Handa H, Locklin J. Covalent Grafting of Antifouling Phosphorylcholine-Based Copolymers with Antimicrobial Nitric Oxide Releasing Polymers to Enhance Infection-Resistant Properties of Medical Device Coatings. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:13105-13113. [PMID: 29083929 PMCID: PMC7962624 DOI: 10.1021/acs.langmuir.7b02970] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Medical device coatings that resist protein adhesion and bacterial contamination are highly desirable in the healthcare industry. In this work, an antifouling zwitterionic terpolymer, 2-methacryloyloxyethyl phosphorylcholine-co-butyl methacrylate-co-benzophenone (BPMPC), is covalently grafted to a nitric oxide (NO) releasing antimicrobial biomedical grade copolymer of silicone-polycarbonate-urethane, CarboSil, to significantly enhance the biocompatibility, nonspecific protein repulsion and infection-resistant properties. The NO donor embedded into CarboSil is S-nitroso-N-acetylpenicillamine (SNAP) and covalent grafting of the BPMPC is achieved through rapid UV-cross-linking, providing a stable, hydrophilic coating that has excellent durability over a period of several weeks under physiological conditions. The protein adsorption test results indicate a significant reduction (∼84-93%) of protein adhesion on the test samples compared to the control samples. Bacteria tests were also performed using the common nosocomial pathogen, Staphylococcus aureus. Test samples containing both NO donor and BPMPC show a 99.91 ± 0.06% reduction of viable bacteria when compared to control samples. This work demonstrates a synergistic combination of both antimicrobial and antifouling properties in medical devices using NO donors and zwitterionic copolymers that can be covalently grafted to any polymer surface.
Collapse
Affiliation(s)
- Qiaohong Liu
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
| | - Priyadarshini Singha
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Hitesh Handa
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Jason Locklin
- Department of Chemistry, University of Georgia, Athens, Georgia 30602, United States
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, Georgia 30602, United States
| |
Collapse
|
8
|
Naghdi M, Taheran M, Brar SK, Kermanshahi-Pour A, Verma M, Surampalli RY. Immobilized laccase on oxygen functionalized nanobiochars through mineral acids treatment for removal of carbamazepine. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 584-585:393-401. [PMID: 28117156 DOI: 10.1016/j.scitotenv.2017.01.021] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Revised: 01/03/2017] [Accepted: 01/04/2017] [Indexed: 05/28/2023]
Abstract
Biocatalytic treatment with oxidoreductase enzymes, especially laccases are an environmentally benign method for biodegradation of pharmaceutical compounds, such as carbamazepine to less harmful compounds. However, enzymes are required to be immobilized on supports to be reusable and maintain their activity. Functionalization of support prior to immobilization of enzyme is highly important because of biomolecule-support interface on enzyme activity and stability. In this work, the effect of oxidation of nanobiochar, a carbonaceous material produced by biomass pyrolysis, using HCl, H2SO4, HNO3 and their mixtures on immobilization of laccase has been studied. Scanning electron microscopy indicated that the structure of nanobiochars remained intact after oxidation and Fourier transform infrared spectroscopy confirmed the formation of carboxylic groups because of acid treatment. Titration measurements showed that the sample treated with H2SO4/HNO3 (50:50, v/v) had the highest number of carboxylic groups (4.7mmol/g) and consequently the highest efficiency for laccase immobilization. Additionally, it was observed that the storage, pH and thermal stability of immobilized laccase on functionalized nanobiochar was improved compared to free laccase showing its potential for continuous applications. The reusability tests towards oxidation of 2, 2'-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) showed that the immobilized laccase preserved 70% of the initial activity after 3cycles. Finally, using immobilized laccase for degradation of carbamazepine exhibited 83% and 86% removal in spiked water and secondary effluent, respectively.
Collapse
Affiliation(s)
- Mitra Naghdi
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Mehrdad Taheran
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada
| | - Satinder K Brar
- INRS-ETE, Université du Québec, 490, Rue de la Couronne, Québec G1K 9A9, Canada.
| | - Azadeh Kermanshahi-Pour
- Biorefining and Remediation Laboratory, Department of Process Engineering and Applied Science, Dalhousie University, 1360 Barrington Street, Halifax, Nova Scotia B3J 1Z1, Canada
| | - M Verma
- CO(2) Solutions Inc., 2300, Rue Jean-Perrin, Québec, Québec G2C 1T9, Canada
| | - R Y Surampalli
- Department of Civil Engineering, University of Nebraska-Lincoln, N104 SEC PO Box 886105, Lincoln, NE 68588-6105, US
| |
Collapse
|
9
|
Responsive Polymer Nanostructures. POLYMER-ENGINEERED NANOSTRUCTURES FOR ADVANCED ENERGY APPLICATIONS 2017. [DOI: 10.1007/978-3-319-57003-7_6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
10
|
Yang Y, Zeng H, Huo WS, Zhang YH. Direct Electrochemistry and Catalytic Function on Oxygen Reduction Reaction of Electrodes Based on Two Kinds of Magnetic Nano-particles with Immobilized Laccase Molecules. J Inorg Organomet Polym Mater 2016. [DOI: 10.1007/s10904-016-0464-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
11
|
Kaniewska K, Karbarz M, Ziach K, Siennicka A, Stojek Z, Hyk W. Electrochemical Examination of the Structure of Thin Hydrogel Layers Anchored to Regular and Microelectrode Surfaces. J Phys Chem B 2016; 120:9540-7. [DOI: 10.1021/acs.jpcb.6b06515] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Klaudia Kaniewska
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland
| | - Marcin Karbarz
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland
| | - Krzysztof Ziach
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland
| | - Alicja Siennicka
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland
| | - Zbigniew Stojek
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland
| | - Wojciech Hyk
- Faculty
of Chemistry, University of Warsaw, Pasteura 1, PL-02-093 Warsaw, Poland
| |
Collapse
|
12
|
Li W, Trosien S, Schenderlein H, Graf M, Biesalski M. Preparation of photochromic paper, using fibre-attached spiropyran polymer networks. RSC Adv 2016. [DOI: 10.1039/c6ra23673a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Spiropyran-based photochromic paper was prepared by covalent immobilisation of functional polymer networks. The sensitivity of the UV-induced colour change was dynamically adjusted by a damping method. Thereby, a colourimetric UV sensor was designed.
Collapse
Affiliation(s)
- W. Li
- Laboratory of Macromolecular Chemistry and Paper Chemistry
- Department of Chemistry
- Technische Universitaet Darmstadt
- 64287 Darmstadt
- Germany
| | - S. Trosien
- Laboratory of Macromolecular Chemistry and Paper Chemistry
- Department of Chemistry
- Technische Universitaet Darmstadt
- 64287 Darmstadt
- Germany
| | - H. Schenderlein
- Laboratory of Macromolecular Chemistry and Paper Chemistry
- Department of Chemistry
- Technische Universitaet Darmstadt
- 64287 Darmstadt
- Germany
| | - M. Graf
- Laboratory of Macromolecular Chemistry and Paper Chemistry
- Department of Chemistry
- Technische Universitaet Darmstadt
- 64287 Darmstadt
- Germany
| | - M. Biesalski
- Laboratory of Macromolecular Chemistry and Paper Chemistry
- Department of Chemistry
- Technische Universitaet Darmstadt
- 64287 Darmstadt
- Germany
| |
Collapse
|
13
|
|
14
|
Senthamizhan A, Balusamy B, Uyar T. Glucose sensors based on electrospun nanofibers: a review. Anal Bioanal Chem 2015; 408:1285-306. [DOI: 10.1007/s00216-015-9152-x] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 10/20/2015] [Accepted: 10/27/2015] [Indexed: 12/26/2022]
|
15
|
Feng X, Zhang K, Hempenius MA, Vancso GJ. Organometallic polymers for electrode decoration in sensing applications. RSC Adv 2015. [DOI: 10.1039/c5ra21256a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Macromolecules containing metals combine the processing advantages of polymers with the functionality offered by the metal centers. The developments in the area of electrochemical chemo/biosensors based on organometallic polymers are reviewed.
Collapse
Affiliation(s)
- Xueling Feng
- Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Kaihuan Zhang
- Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - Mark A. Hempenius
- Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| | - G. Julius Vancso
- Materials Science and Technology of Polymers
- MESA+ Institute for Nanotechnology
- University of Twente
- 7500 AE Enschede
- The Netherlands
| |
Collapse
|
16
|
Sung D, Yang S. Facile method for constructing an effective electron transfer mediating layer using ferrocene-containing multifunctional redox copolymer. Electrochim Acta 2014. [DOI: 10.1016/j.electacta.2014.03.110] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
17
|
Physico-chemical characterization of ferrocenyl-modified hyperbranched poly(ethylenimine) self-assembled multilayers. J Electroanal Chem (Lausanne) 2014. [DOI: 10.1016/j.jelechem.2013.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Jana PS, Katuri K, Kavanagh P, Kumar A, Leech D. Charge transport in films of Geobacter sulfurreducens on graphite electrodes as a function of film thickness. Phys Chem Chem Phys 2014; 16:9039-46. [DOI: 10.1039/c4cp01023j] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Charge transport throughGeobacter sulfurreducensbiofilms increases with film thickness, as more porous films improves ion transport upon electrolysis.
Collapse
Affiliation(s)
- Partha Sarathi Jana
- School of Chemistry & Ryan Institute
- National University of Ireland Galway
- Galway, Ireland
| | - Krishna Katuri
- School of Chemistry & Ryan Institute
- National University of Ireland Galway
- Galway, Ireland
- Water Desalination and Reuse Research Center
- King Abdullah University of Science and Technology
| | - Paul Kavanagh
- School of Chemistry & Ryan Institute
- National University of Ireland Galway
- Galway, Ireland
| | - Amit Kumar
- School of Chemistry & Ryan Institute
- National University of Ireland Galway
- Galway, Ireland
| | - Dónal Leech
- School of Chemistry & Ryan Institute
- National University of Ireland Galway
- Galway, Ireland
| |
Collapse
|
19
|
Janes DW, Thode CJ, Willson CG, Nealey PF, Ellison CJ. Light-Activated Replication of Block Copolymer Fingerprint Patterns. Macromolecules 2013. [DOI: 10.1021/ma400065t] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Dustin W. Janes
- McKetta Department of Chemical
Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - Christopher J. Thode
- Department of Chemical Engineering, The University of Wisconsin—Madison, Madison,
Wisconsin 53706, United States
| | - C. Grant Willson
- McKetta Department of Chemical
Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
- Department of Chemistry and Biochemistry, The University of Texas at Austin, Austin, Texas 78712,
United States
| | - Paul F. Nealey
- Institute
for Molecular Engineering, University of Chicago, Chicago, Illinois 60637, United
States
| | - Christopher J. Ellison
- McKetta Department of Chemical
Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
20
|
Carberry J, Irvin JA, Glatzhofer DT, Nicholas KM, Neef CJ. High molecular weight copolymers of vinylferrocene and 3-phenyl[5]ferrocenophane-1,5-dimethylene with various N-substituted maleimides. REACT FUNCT POLYM 2013. [DOI: 10.1016/j.reactfunctpolym.2013.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
21
|
Schenderlein H, Voss A, Stark RW, Biesalski M. Preparation and characterization of light-switchable polymer networks attached to solid substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:4525-4534. [PMID: 23461870 DOI: 10.1021/la305073p] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Surface-attached polymer networks that carry light-responsive nitrospiropyran groups in a hydrophilic PDMAA matrix were prepared on planar silicon and glass surfaces and were characterized with respect to their switching behavior under the influence of an external light trigger. Functional polymers bearing light-responsive units as well as photo-cross-linkable benzophenone groups were first synthesized using free radical copolymerization. The number of spiropyran groups in the copolymer was controlled by adjusting the concentration of the respective monomer in the copolymerization feed. The polymer films were prepared by spin-coating the functional polymers from solution and by ultraviolet light (UV)-induced cross-linking utilizing benzophenone photochemistry. On substrates with immobilized benzophenone groups, the complete polymer network is linked to the surface. The dry thickness of the films can be controlled over a wide range from a few nanometers up to more than 1 μm. The integration of such light-switchable organic moieties into a surface-attached polymer network allows one to increase the overall number of light-responsive groups per surface area by adjusting the amount of surface-attached polymer networks. The spiropyran's function in dry (solvent-free) and swollen polymer films can be reversibly switched by UV and visible irradiation. In addition, the switching in water is faster than in the dry state. Therefore, implementing light-responsive spiropyran functions in polymer films linked to solid surfaces could allow for switching of the chemical and optical surface properties in a fast and spatially controlled fashion.
Collapse
Affiliation(s)
- Helge Schenderlein
- Ernst-Berl-Institute of Technical and Macromolecular Chemistry, Chair for Macromolecular & Paper Chemistry, School of Chemistry, Technische Universität Darmstadt, Petersenstrasse 22, 64287 Darmstadt, Germany
| | | | | | | |
Collapse
|
22
|
Redox phospholipid polymer microparticles as doubly functional polymer support for immobilization of enzyme oxidase. Colloids Surf B Biointerfaces 2013; 102:857-63. [DOI: 10.1016/j.colsurfb.2012.09.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 09/13/2012] [Accepted: 09/17/2012] [Indexed: 11/19/2022]
|
23
|
Chen C, Xie Q, Yang D, Xiao H, Fu Y, Tan Y, Yao S. Recent advances in electrochemical glucose biosensors: a review. RSC Adv 2013. [DOI: 10.1039/c2ra22351a] [Citation(s) in RCA: 578] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
24
|
Akhoury A, Bromberg L, Hatton TA. Interplay of Electron Hopping and Bounded Diffusion during Charge Transport in Redox Polymer Electrodes. J Phys Chem B 2012; 117:333-42. [DOI: 10.1021/jp302157g] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Abhinav Akhoury
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| | - Lev Bromberg
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| | - T. Alan Hatton
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139,
United States
| |
Collapse
|
25
|
|
26
|
A pyrroloquinolinequinone-dependent glucose dehydrogenase (PQQ-GDH)-electrode with direct electron transfer based on polyaniline modified carbon nanotubes for biofuel cell application. Electrochim Acta 2012. [DOI: 10.1016/j.electacta.2012.03.128] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
|
28
|
Meredith MT, Minteer SD. Biofuel cells: enhanced enzymatic bioelectrocatalysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2012; 5:157-179. [PMID: 22524222 DOI: 10.1146/annurev-anchem-062011-143049] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Enzymatic biofuel cells represent an emerging technology that can create electrical energy from biologically renewable catalysts and fuels. A wide variety of redox enzymes have been employed to create unique biofuel cells that can be used in applications such as implantable power sources, energy sources for small electronic devices, self-powered sensors, and bioelectrocatalytic logic gates. This review addresses the fundamental concepts necessary to understand the operating principles of biofuel cells, as well as recent advances in mediated electron transfer- and direct electron transfer-based biofuel cells, which have been developed to create bioelectrical devices that can produce significant power and remain stable for long periods.
Collapse
Affiliation(s)
- Matthew T Meredith
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, USA.
| | | |
Collapse
|
29
|
Qin C, Chen C, Xie Q, Wang L, He X, Huang Y, Zhou Y, Xie F, Yang D, Yao S. Amperometric enzyme electrodes of glucose and lactate based on poly(diallyldimethylammonium)-alginate-metal ion-enzyme biocomposites. Anal Chim Acta 2012; 720:49-56. [DOI: 10.1016/j.aca.2012.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 01/14/2012] [Accepted: 01/20/2012] [Indexed: 11/27/2022]
|
30
|
Gopishetty V, Tokarev I, Minko S. Biocompatible stimuli-responsive hydrogel porous membranes via phase separation of a polyvinyl alcohol and Na-alginate intermolecular complex. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm31778h] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
31
|
Orain C, Le Poul N, Gomila A, Kerbaol JM, Cosquer N, Reinaud O, Conan F, Le Mest Y. A Generic Platform for the Addressable Functionalisation of Electrode Surfaces through Self-Induced “Electroclick”. Chemistry 2011; 18:594-602. [DOI: 10.1002/chem.201102620] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2011] [Indexed: 11/05/2022]
|
32
|
Meredith MT, Minson M, Hickey D, Artyushkova K, Glatzhofer DT, Minteer SD. Anthracene-Modified Multi-Walled Carbon Nanotubes as Direct Electron Transfer Scaffolds for Enzymatic Oxygen Reduction. ACS Catal 2011. [DOI: 10.1021/cs200475q] [Citation(s) in RCA: 156] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Matthew T. Meredith
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - Michael Minson
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| | - David Hickey
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Kateryna Artyushkova
- Department of Chemical & Nuclear Engineering, Center for Emerging Energy Technologies, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Daniel T. Glatzhofer
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Shelley D. Minteer
- Department of Chemistry, University of Utah, Salt Lake City, Utah 84112, United States
| |
Collapse
|
33
|
Dhende VP, Samanta S, Jones DM, Hardin IR, Locklin J. One-step photochemical synthesis of permanent, nonleaching, ultrathin antimicrobial coatings for textiles and plastics. ACS APPLIED MATERIALS & INTERFACES 2011; 3:2830-7. [PMID: 21692449 DOI: 10.1021/am200324f] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Antimicrobial copolymers of hydrophobic N-alkyl and benzophenone containing polyethylenimines were synthesized from commercially available linear poly(2-ethyl-2-oxazoline), and covalently attached to surfaces of synthetic polymers, cotton, and modified silicon oxide using mild photo-cross-linking. Specifically, these polymers were applied to polypropylene, poly(vinyl chloride), polyethylene, cotton, and alkyl-coated oxide surfaces using solution casting or spray coating and then covalently cross-linked rendering permanent, nonleaching antimicrobial surfaces. The photochemical grafting of pendant benzophenones allows immobilization to any surface that contains a C-H bond. Incubating the modified materials with either Staphylococcus aureus or Escherichia coli demonstrated that the modified surfaces had substantial antimicrobial capacity against both Gram-positive and Gram-negative bacteria (>98% microbial death).
Collapse
Affiliation(s)
- Vikram P Dhende
- Department of Chemistry and Faculty of Engineering, University of Georgia , Athens, Georgia 30602, United States
| | | | | | | | | |
Collapse
|
34
|
Shim J, Kim GY, Moon SH. Covalent co-immobilization of glucose oxidase and ferrocenedicarboxylic acid for an enzymatic biofuel cell. J Electroanal Chem (Lausanne) 2011. [DOI: 10.1016/j.jelechem.2011.01.015] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
High-performance amperometric biosensors and biofuel cell based on chitosan-strengthened cast thin films of chemically synthesized catecholamine polymers with glucose oxidase effectively entrapped. Biosens Bioelectron 2011; 26:2311-6. [DOI: 10.1016/j.bios.2010.09.058] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2010] [Accepted: 09/30/2010] [Indexed: 11/18/2022]
|
36
|
Milutinovic M, Suraniti E, Studer V, Mano N, Manojlovic D, Sojic N. Photopatterning of ultrathin electrochemiluminescent redox hydrogel films. Chem Commun (Camb) 2011; 47:9125-7. [DOI: 10.1039/c1cc12724a] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|