1
|
Miwa A, Wakamori M, Ariyoshi T, Okada Y, Shirouzu M, Umehara T, Kamiya K. Efficiency of transcription and translation of cell-free protein synthesis systems in cell-sized lipid vesicles with changing lipid composition determined by fluorescence measurements. Sci Rep 2024; 14:2852. [PMID: 38310141 PMCID: PMC10838264 DOI: 10.1038/s41598-024-53135-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 01/29/2024] [Indexed: 02/05/2024] Open
Abstract
To develop artificial cell models that mimic living cells, cell-sized lipid vesicles encapsulating cell-free protein synthesis (CFPS) systems are useful for protein expressions or artificial gene circuits for vesicle-vesicle communications. Therefore, investigating the transcriptional and translational properties of CFPS systems in lipid vesicles is important for maximizing the synthesis and functions of proteins. Although transcription and translation using CFPS systems inside lipid vesicles are more important than that outside lipid vesicles, the former processes are not investigated by changing the lipid composition of lipid vesicles. Herein, we investigated changes in transcription and translation using CFPS systems inside giant lipid vesicles (approximately 5-20 μm in diameter) caused by changing the lipid composition of lipid vesicles containing neutral, positively, and negatively charged lipids. After incubating for 30 min, 1 h, 2 h, and 4 h, the transcriptional and translational activities in these lipid vesicles were determined by detecting the fluorescence intensities of the fluorogenic RNA aptamer on the 3'-untranslated region of mRNA (transcription) and the fluorescent protein sfCherry (translation), respectively. The results revealed that transcriptional and translational activities in a lipid vesicle containing positively charged lipids were high when the protein was synthesized using the CFPS system inside the lipid vesicle. Thus, the present study provides an experimental basis for constructing complex artificial cell models using bottom-up approaches.
Collapse
Affiliation(s)
- Akari Miwa
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan
| | - Masatoshi Wakamori
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan
| | - Tetsuro Ariyoshi
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furue-Dai, Suita, Osaka, 565-0874, Japan
- Department of Cell Biology, Graduate School of Medicine, and International Research Center for Neurointelligence (WPI-IRCN), the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Yasushi Okada
- Laboratory for Cell Polarity Regulation, RIKEN Center for Biosystems Dynamics Research, 6-2-3 Furue-Dai, Suita, Osaka, 565-0874, Japan
- Department of Cell Biology, Graduate School of Medicine, and International Research Center for Neurointelligence (WPI-IRCN), the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
- Department of Physics and Universal Biology Institute (UBI), Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-Ku, Tokyo, 113-0033, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, 1-7-22 Suehiro-Cho, Tsurumi-Ku, Yokohama, 230-0045, Japan
| | - Koki Kamiya
- Division of Molecular Science, Graduate School of Science and Technology, Gunma University, 1-5-1 Tenjin-Cho, Kiryu, Gunma, 376-8515, Japan.
| |
Collapse
|
2
|
Herianto S, Chien PJ, Ho JAA, Tu HL. Liposome-based artificial cells: From gene expression to reconstitution of cellular functions and phenotypes. BIOMATERIALS ADVANCES 2022; 142:213156. [PMID: 36302330 DOI: 10.1016/j.bioadv.2022.213156] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Bottom-up approaches in creating artificial cells that can mimic natural cells have significant implications for both basic research and translational application. Among various artificial cell models, liposome is one of the most sophisticated systems. By encapsulating proteins and associated biomolecules, they can functionally reconstitute foundational features of biological cells, such as the ability to divide, communicate, and undergo shape deformation. Yet constructing liposome artificial cells from the genetic level, which is central to generate self-sustained systems remains highly challenging. Indeed, many studies have successfully established the expression of gene-coded proteins inside liposomes. Further, recent endeavors to build a direct integration of gene-expressed proteins for reconstituting molecular functions and phenotypes in liposomes have also significantly increased. Thus, this review presents the development of liposome-based artificial cells to demonstrate the process of gene-expressed proteins and their reconstitution to perform desired molecular and cell-like functions. The molecular and cellular phenotypes discussed here include the self-production of membrane phospholipids, division, shape deformation, self-DNA/RNA replication, fusion, and intercellular communication. Together, this review gives a comprehensive overview of gene-expressing liposomes that can stimulate further research of this technology and achieve artificial cells with superior properties in the future.
Collapse
Affiliation(s)
- Samuel Herianto
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan; Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Po-Jen Chien
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan
| | - Ja-An Annie Ho
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan; BioAnalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Hsiung-Lin Tu
- Institute of Chemistry, Academia Sinica, Taipei 11529, Taiwan; Chemical Biology and Molecular Biophysics, Taiwan International Graduate Program, Academia Sinica, Taipei 11529, Taiwan.
| |
Collapse
|
3
|
Photoactivation of Cell-Free Expressed Archaerhodopsin-3 in a Model Cell Membrane. Int J Mol Sci 2021; 22:ijms222111981. [PMID: 34769410 PMCID: PMC8584582 DOI: 10.3390/ijms222111981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/27/2022] Open
Abstract
Transmembrane receptor proteins are located in the plasma membranes of biological cells where they exert important functions. Archaerhodopsin (Arch) proteins belong to a class of transmembrane receptor proteins called photoreceptors that react to light. Although the light sensitivity of proteins has been intensely investigated in recent decades, the electrophysiological properties of pore-forming Archaerhodopsin (Arch), as studied in vitro, have remained largely unknown. Here, we formed unsupported bilayers between two channels of a microfluidic chip which enabled the simultaneous optical and electrical assessment of the bilayer in real time. Using a cell-free expression system, we recombinantly produced a GFP (green fluorescent protein) labelled as a variant of Arch-3. The label enabled us to follow the synthesis of Arch-3 and its incorporation into the bilayer by fluorescence microscopy when excited by blue light. Applying a green laser for excitation, we studied the electrophysiological properties of Arch-3 in the bilayer. The current signal obtained during excitation revealed distinct steps upwards and downwards, which we interpreted as the opening or closing of Arch-3 pores. From these steps, we estimated the pore radius to be 0.3 nm. In the cell-free extract, proteins can be modified simply by changing the DNA. In the future, this will enable us to study the photoelectrical properties of modified transmembrane protein constructs with ease. Our work, thus, represents a first step in studying signaling cascades in conjunction with coupled receptor proteins.
Collapse
|
4
|
Müller J, Siemann-Herzberg M, Takors R. Modeling Cell-Free Protein Synthesis Systems-Approaches and Applications. Front Bioeng Biotechnol 2020; 8:584178. [PMID: 33195146 PMCID: PMC7655533 DOI: 10.3389/fbioe.2020.584178] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/29/2020] [Indexed: 01/03/2023] Open
Abstract
In vitro systems are ideal setups to investigate the basic principles of biochemical reactions and subsequently the bricks of life. Cell-free protein synthesis (CFPS) systems mimic the transcription and translation processes of whole cells in a controlled environment and allow the detailed study of single components and reaction networks. In silico studies of CFPS systems help us to understand interactions and to identify limitations and bottlenecks in those systems. Black-box models laid the foundation for understanding the production and degradation dynamics of macromolecule components such as mRNA, ribosomes, and proteins. Subsequently, more sophisticated models revealed shortages in steps such as translation initiation and tRNA supply and helped to partially overcome these limitations. Currently, the scope of CFPS modeling has broadened to various applications, ranging from the screening of kinetic parameters to the stochastic analysis of liposome-encapsulated CFPS systems and the assessment of energy supply properties in combination with flux balance analysis (FBA).
Collapse
Affiliation(s)
| | | | - Ralf Takors
- Institute of Biochemical Engineering, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
5
|
Soga N, Ota A, Nakajima K, Watanabe R, Ueno H, Noji H. Monodisperse Liposomes with Femtoliter Volume Enable Quantitative Digital Bioassays of Membrane Transporters and Cell-Free Gene Expression. ACS NANO 2020; 14:11700-11711. [PMID: 32864949 DOI: 10.1021/acsnano.0c04354] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Digital bioassays have emerged as a new category of bioanalysis. However, digital bioassays for membrane transporter proteins have not been well established yet despite high demands in molecular physiology and molecular pharmacology due to the lack of biologically functional monodisperse liposomes with femtoliter volumes. Here, we established a simple and robust method to produce femtoliter-sized liposomes (femto-liposomes). We prepared 106 monodispersed water-in-oil droplets stabilized by a lipid monolayer using a polyethylene glycol-coated femtoliter reactor array device. Droplets were subjected to the optimized emulsion transfer process for femto-liposome production. Liposomes were monodispersed (coefficient of variation = 5-15%) and had suitable diameter (0.6-5.3 μm) and uniform volumes of subfemtoliter or a few femtoliters; thus, they were termed uniform femto-liposomes. The unilamellarity of uniform femto-liposomes allowed quantitative single-molecule analysis of passive and active transporter proteins: α-hemolysin and FoF1-ATPase. Digital gene expression in uniform femto-liposomes (cell-free transcription and translation from single DNA molecules) was also demonstrated, showing the versatility of digital assays for membrane transporter proteins and cell-free synthetic biology.
Collapse
Affiliation(s)
- Naoki Soga
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Akira Ota
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Kota Nakajima
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Rikiya Watanabe
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
- PRIME, Japan Agency for Medical Research and Development, 1-7-1 Otemachi, Chiyoda-ku, Tokyo 100-0004, Japan
| | - Hiroshi Ueno
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Hiroyuki Noji
- Department of Applied Chemistry, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
6
|
pH induced reorganization of protein-protein interface in liposome encapsulated Ferritin at air/fluid and fluid/solid interfaces. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Laohakunakorn N, Grasemann L, Lavickova B, Michielin G, Shahein A, Swank Z, Maerkl SJ. Bottom-Up Construction of Complex Biomolecular Systems With Cell-Free Synthetic Biology. Front Bioeng Biotechnol 2020; 8:213. [PMID: 32266240 PMCID: PMC7105575 DOI: 10.3389/fbioe.2020.00213] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Accepted: 03/03/2020] [Indexed: 12/16/2022] Open
Abstract
Cell-free systems offer a promising approach to engineer biology since their open nature allows for well-controlled and characterized reaction conditions. In this review, we discuss the history and recent developments in engineering recombinant and crude extract systems, as well as breakthroughs in enabling technologies, that have facilitated increased throughput, compartmentalization, and spatial control of cell-free protein synthesis reactions. Combined with a deeper understanding of the cell-free systems themselves, these advances improve our ability to address a range of scientific questions. By mastering control of the cell-free platform, we will be in a position to construct increasingly complex biomolecular systems, and approach natural biological complexity in a bottom-up manner.
Collapse
Affiliation(s)
- Nadanai Laohakunakorn
- School of Biological Sciences, Institute of Quantitative Biology, Biochemistry, and Biotechnology, University of Edinburgh, Edinburgh, United Kingdom
| | - Laura Grasemann
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Barbora Lavickova
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Grégoire Michielin
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Amir Shahein
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Zoe Swank
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J. Maerkl
- School of Engineering, Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| |
Collapse
|
8
|
Shoji K, Kawano R. Osmotic-engine-driven liposomes in microfluidic channels. LAB ON A CHIP 2019; 19:3472-3480. [PMID: 31512693 DOI: 10.1039/c9lc00788a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Self-propelled underwater microrobots that locomote without external sources of energy have potential application as drug carriers and probes in narrow spaces. In this study, we focused on an osmotic engine model, which is a migration mechanism, and applied it as a negative chemotaxis mechanism to induce liposome displacement. First, we confirmed the osmotic flow across the lipid bilayer and calculated the osmotic flow velocity to be 8.5 fL min-1 μm-2 when a salt concentration difference was applied to the lipid bilayer. Next, we designed and fabricated a microchannel that can trap a giant liposome and apply a salt concentration difference to the front and rear of the liposome. Then, we demonstrated the movement of the liposome by flowing it to the microchannel. The liposome successfully moved in the direction of the lower ion concentration at a speed of 0.6 μm min-1 owing to the osmotic pressure difference. Finally, we visualized the inner flow in the liposome by encapsulating microbeads in the liposome and observed the movement of the microbeads to verify that an osmotic flow was generated on the liposome. As a result, we observed the circulation of the microbeads in the liposome when the concentration difference was applied to the front and rear of the liposome, suggesting that the movement of the liposome was driven by the osmotic flow generated by the osmotic pressure difference. These results indicate that the osmotic-pressure-based migration mechanism has the potential to be utilized as the actuator of molecular robots.
Collapse
Affiliation(s)
- Kan Shoji
- Department of Biotechnology and Life Science, Tokyo University of Agriculture and Technology, 2-24-16 Naka-cho, Koganei-shi, Tokyo 184-8588, Japan.
| | | |
Collapse
|
9
|
Izri Z, Garenne D, Noireaux V, Maeda YT. Gene Expression in on-Chip Membrane-Bound Artificial Cells. ACS Synth Biol 2019; 8:1705-1712. [PMID: 31268305 DOI: 10.1021/acssynbio.9b00247] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Artificial cells made of molecular components and lipid membrane are emerging platforms to characterize living systems properties. Cell-free transcription-translation (TXTL) offers advantages for the bottom-up synthesis of cellular reactors. Yet, scaling up their design within well-defined geometries remains challenging. We present a microfluidic device hosting TXTL reactions of a reporter gene in thousands of microwells separated from an external buffer by a phospholipid membrane. In the presence of nutrients in the buffer, microreactors are stable beyond 24 h and yield a few mg/mL of proteins. Nutrients in the external solution feed the TXTL reaction at the picoliter scale via passive transport across the phospholipid membrane of each microfluidic well, despite the absence of pores. Replacing nutrients with an inert polymer and fatty acids at an isotonic concentration reduces microreactors efficiency, and a significant fraction yields no protein. This emphasizes the crucial role of the membrane for designing cell-free TXTL microreactors as efficient artificial cells.
Collapse
Affiliation(s)
- Ziane Izri
- Department of Physics , Kyushu University , Fukuoka , 819-0395 , Japan
| | - David Garenne
- School of Physics and Astronomy , University of Minnesota , Minneapolis , Minnesota 55455 United States
| | - Vincent Noireaux
- School of Physics and Astronomy , University of Minnesota , Minneapolis , Minnesota 55455 United States
| | - Yusuke T Maeda
- Department of Physics , Kyushu University , Fukuoka , 819-0395 , Japan
| |
Collapse
|
10
|
Stano P. Gene Expression Inside Liposomes: From Early Studies to Current Protocols. Chemistry 2019; 25:7798-7814. [DOI: 10.1002/chem.201806445] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Indexed: 12/26/2022]
Affiliation(s)
- Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA)University of Salento, Ecotekne 73100 Lecce Italy
| |
Collapse
|
11
|
Rampioni G, Leoni L, Stano P. Molecular Communications in the Context of “Synthetic Cells” Research. IEEE Trans Nanobioscience 2019; 18:43-50. [DOI: 10.1109/tnb.2018.2882543] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Altamura E, Carrara P, D'Angelo F, Mavelli F, Stano P. Extrinsic stochastic factors (solute partition) in gene expression inside lipid vesicles and lipid-stabilized water-in-oil droplets: a review. Synth Biol (Oxf) 2018; 3:ysy011. [PMID: 32995519 PMCID: PMC7445889 DOI: 10.1093/synbio/ysy011] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 06/18/2018] [Accepted: 06/21/2018] [Indexed: 11/13/2022] Open
Abstract
The encapsulation of transcription-translation (TX-TL) machinery inside lipid vesicles and water-in-oil droplets leads to the construction of cytomimetic systems (often called 'synthetic cells') for synthetic biology and origins-of-life research. A number of recent reports have shown that protein synthesis inside these microcompartments is highly diverse in terms of rate and amount of synthesized protein. Here, we discuss the role of extrinsic stochastic effects (i.e. solute partition phenomena) as relevant factors contributing to this pattern. We evidence and discuss cases where between-compartment diversity seems to exceed the expected theoretical values. The need of accurate determination of solute content inside individual vesicles or droplets is emphasized, aiming at validating or rejecting the predictions calculated from the standard fluctuations theory. At the same time, we promote the integration of experiments and stochastic modeling to reveal the details of solute encapsulation and intra-compartment reactions.
Collapse
Affiliation(s)
- Emiliano Altamura
- Chemistry Department, University of Bari, Via E. Orabona 4, I-70126, Bari, Italy
| | - Paolo Carrara
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, I-00146, Rome, Italy
| | - Francesca D'Angelo
- Department of Sciences, Roma Tre University, Viale G. Marconi 446, I-00146, Rome, Italy
| | - Fabio Mavelli
- Chemistry Department, University of Bari, Via E. Orabona 4, I-70126, Bari, Italy
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento, Ecotekne, I-73100, Lecce, Italy
| |
Collapse
|
13
|
Beneyton T, Krafft D, Bednarz C, Kleineberg C, Woelfer C, Ivanov I, Vidaković-Koch T, Sundmacher K, Baret JC. Out-of-equilibrium microcompartments for the bottom-up integration of metabolic functions. Nat Commun 2018; 9:2391. [PMID: 29921909 PMCID: PMC6008305 DOI: 10.1038/s41467-018-04825-1] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Accepted: 05/21/2018] [Indexed: 12/19/2022] Open
Abstract
Self-sustained metabolic pathways in microcompartments are the corner-stone for living systems. From a technological viewpoint, such pathways are a mandatory prerequisite for the reliable design of artificial cells functioning out-of-equilibrium. Here we develop a microfluidic platform for the miniaturization and analysis of metabolic pathways in man-made microcompartments formed of water-in-oil droplets. In a modular approach, we integrate in the microcompartments a nicotinamide adenine dinucleotide (NAD)-dependent enzymatic reaction and a NAD-regeneration module as a minimal metabolism. We show that the microcompartments sustain a metabolically active state until the substrate is fully consumed. Reversibly, the external addition of the substrate reboots the metabolic activity of the microcompartments back to an active state. We therefore control the metabolic state of thousands of independent monodisperse microcompartments, a step of relevance for the construction of large populations of metabolically active artificial cells.
Collapse
Affiliation(s)
- Thomas Beneyton
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, 115 Avenue Schweitzer, 33600, Pessac, France
| | - Dorothee Krafft
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Claudia Bednarz
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Christin Kleineberg
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Christian Woelfer
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Ivan Ivanov
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Tanja Vidaković-Koch
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
| | - Kai Sundmacher
- Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg, Germany
- Otto-von-Guericke University, Process Systems Engineering, Universitätsplatz 2, 39106, Magdeburg, Germany
| | | |
Collapse
|
14
|
Tsugane M, Suzuki H. Reverse Transcription Polymerase Chain Reaction in Giant Unilamellar Vesicles. Sci Rep 2018; 8:9214. [PMID: 29907779 PMCID: PMC6003926 DOI: 10.1038/s41598-018-27547-2] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/04/2018] [Indexed: 02/07/2023] Open
Abstract
We assessed the applicability of giant unilamellar vesicles (GUVs) for RNA detection using in vesicle reverse transcription polymerase chain reaction (RT-PCR). We prepared GUVs that encapsulated one-pot RT-PCR reaction mixture including template RNA, primers, and Taqman probe, using water-in-oil emulsion transfer method. After thermal cycling, we analysed the GUVs that exhibited intense fluorescence signals, which represented the cDNA amplification. The detailed analysis of flow cytometry data demonstrated that rRNA and mRNA in the total RNA can be amplified from 10–100 copies in the GUVs with 5–10 μm diameter, although the fraction of reactable GUV was approximately 60% at most. Moreover, we report that the target RNA, which was directly transferred into the GUV reactors via membrane fusion, can be amplified and detected using in vesicle RT-PCR. These results suggest that the GUVs can be used as biomimetic reactors capable of performing PCR and RT-PCR, which are important in analytical and diagnostic applications with additional functions.
Collapse
Affiliation(s)
- Mamiko Tsugane
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, Japan.,Japan Society for the Promotion of Science (JSPS), 5-3-1 Kojimachi, Chiyoda-ku, Tokyo, Japan
| | - Hiroaki Suzuki
- Department of Precision Mechanics, Faculty of Science and Engineering, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, Japan.
| |
Collapse
|
15
|
Sunami T, Shimada K, Tsuji G, Fujii S. Flow Cytometric Analysis To Evaluate Morphological Changes in Giant Liposomes As Observed in Electrofusion Experiments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:88-96. [PMID: 29215888 DOI: 10.1021/acs.langmuir.7b03317] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Liposome fusion is a way of supplying additional components for in-liposome biochemical reactions. Electrofusion is a method that does not require the addition of fusogens, which often alter the liposome dispersion, and is therefore useful for repetitive liposome fusion. However, the details of electrofusion have not been elucidated because of the limitations surrounding observing liposomes using a microscope. Therefore, we introduced fluorescent markers and high-throughput flow cytometry to analyze the morphological changes that occur in liposome electrofusion. (i) The content mixing was evaluated by a calcein-Co2+-EDTA system, in which green fluorescence from dequenched free calcein is detected when the quenched calcein-Co2+ complex and EDTA are mixed together. (ii) Liposome destruction was evaluated from the decrease in the total membrane volume of giant liposomes. (iii) Liposome fission was evaluated from the increase in the number of giant liposomes. By applying the flow cytometric analysis, we investigated the effect of three parameters (DC pulse, AC field, and lipid composition) on liposome electrofusion. The larger numbers or higher voltages of DC pulses induced liposome fusion and destruction with higher probability. The longer application time of the AC field induced liposome fusion, fission, and destruction with higher probability. Higher content of negatively charged POPG (≥19%) strongly inhibited liposome electrofusion.
Collapse
Affiliation(s)
| | | | | | - Satoshi Fujii
- Kanagawa Institute of Industrial Science and Technology, KSP EAST303, 3-2-1 Sakado, Takatsu-Ku, Kawasaki, Kanagawa 213-0012, Japan
| |
Collapse
|
16
|
Ohta N, Kato Y, Watanabe H, Mori H, Matsuura T. In vitro membrane protein synthesis inside Sec translocon-reconstituted cell-sized liposomes. Sci Rep 2016; 6:36466. [PMID: 27808179 PMCID: PMC5093552 DOI: 10.1038/srep36466] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 10/17/2016] [Indexed: 12/24/2022] Open
Abstract
Protein synthesis using an in vitro transcription-translation system (IVTT) inside cell-sized liposomes has become a valuable tool to study the properties of biological systems under cell-mimicking conditions. However, previous liposome systems lacked the machinery for membrane protein translocation. Here, we reconstituted the translocon consisting of SecYEG from Escherichia coli inside cell-sized liposomes. The cell-sized liposomes also carry the reconstituted IVTT, thereby providing a cell-mimicking environment for membrane protein synthesis. By using EmrE, a multidrug transporter from E. coli, as a model membrane protein, we found that both the amount and activity of EmrE synthesized inside the liposome is increased approximately three-fold by incorporating the Sec translocon. The topological change of EmrE induced by the translocon was also identified. The membrane integration of 6 out of 9 E. coli inner membrane proteins that was tested was increased by incorporation of the translocon. By introducing the Sec translocon, the membrane integration efficiency of the membrane protein of interest was increased, and enabled the integration of membrane proteins that otherwise cannot be inserted. In addition, this work represents an essential step toward the construction of an artificial cell through a bottom-up approach.
Collapse
Affiliation(s)
- Naoki Ohta
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| | - Hirotada Mori
- Graduate School of Biological Sciences, Nara Institute of Science and Technology, 8916-5 Takayama-tyou, Ikoma, Nara, Japan
| | - Tomoaki Matsuura
- Department of Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, Japan
| |
Collapse
|
17
|
Gallo V, Stano P, Luisi PL. Protein Synthesis in Sub-Micrometer Water-in-Oil Droplets. Chembiochem 2016; 16:2073-9. [PMID: 26376303 DOI: 10.1002/cbic.201500274] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Indexed: 11/07/2022]
Abstract
Water-in-oil (w/o) emulsions are used as a cellular model because of their unique cell-like architecture. Previous works showed the capability of eukaryotic-cell-sized w/o droplets (5-50 μm) to support protein synthesis efficiently; however data about smaller w/o compartments (<1 μm) are lacking. This work focuses on the biosynthesis of the enhanced green fluorescent protein (EGFP) inside sub-micrometric lecithin-based w/o droplets (0.8-1 μm) and on its dependence on the compartments' dynamic properties in terms of solute exchange mechanisms. We demonstrated that protein synthesis is strongly affected by the nature of the lipid interface. These findings could be of value and interest for both basic and applied research.
Collapse
Affiliation(s)
- Valentina Gallo
- Science Department, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Pasquale Stano
- Science Department, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy
| | - Pier Luigi Luisi
- Science Department, Roma Tre University, Viale Guglielmo Marconi 446, 00146, Rome, Italy.
| |
Collapse
|
18
|
Sunami T, Ichihashi N, Nishikawa T, Kazuta Y, Yomo T. Effect of Liposome Size on Internal RNA Replication Coupled with Replicase Translation. Chembiochem 2016; 17:1282-9. [DOI: 10.1002/cbic.201500662] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Takeshi Sunami
- Institute for Academic Initiatives; Osaka University; 1-5 Yamadaoka Suita Osaka 565-0871 Japan
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| | - Norikazu Ichihashi
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 1-5 Yamadaoka Suita Osaka 565-0871 Japan
- Department of Bioinformatics Engineering; Graduate School of Information Science and Technology; Osaka University; 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| | - Takehiro Nishikawa
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| | - Yasuaki Kazuta
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| | - Tetsuya Yomo
- Exploratory Research for Advanced Technology (ERATO); Japan Science and Technology Agency (JST); 1-5 Yamadaoka Suita Osaka 565-0871 Japan
- Department of Bioinformatics Engineering; Graduate School of Information Science and Technology; Osaka University; 1-5 Yamadaoka Suita Osaka 565-0871 Japan
- Graduate School of Frontier Biosciences; Osaka University; 1-5 Yamadaoka Suita Osaka 565-0871 Japan
| |
Collapse
|
19
|
Mavelli F, Stano P. Experiments on and Numerical Modeling of the Capture and Concentration of Transcription-Translation Machinery inside Vesicles. ARTIFICIAL LIFE 2015; 21:445-463. [PMID: 26545162 DOI: 10.1162/artl_a_00187] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Synthetic or semi-synthetic minimal cells are those cell-like artificial compartments that are based on the encapsulation of molecules inside lipid vesicles (liposomes). Synthetic cells are currently used as primitive cell models and are very promising tools for future biotechnology. Despite the recent experimental advancements and sophistication reached in this field, the complete elucidation of many fundamental physical aspects still poses experimental and theoretical challenges. The interplay between solute capture and vesicle formation is one of the most intriguing ones. In a series of studies, we have reported that when vesicles spontaneously form in a dilute solution of proteins, ribosomes, or ribo-peptidic complexes, then, contrary to statistical predictions, it is possible to find a small fraction of liposomes (<1%) that contain a very large number of solutes, so that their local (intravesicular) concentrations largely exceed the expected value. More recently, we have demonstrated that this effect (spontaneous crowding) operates also on multimolecular mixtures, and can drive the synthesis of proteins inside vesicles, whereas the same reaction does not proceed at a measurable rate in the external bulk phase. Here we firstly introduce and discuss these already published observations. Then, we present a computational investigation of the encapsulation of transcription-translation (TX-TL) machinery inside vesicles, based on a minimal protein synthesis model and on different solute partition functions. Results show that experimental data are compatible with an entrapment model that follows a power law rather than a Gaussian distribution. The results are discussed from the viewpoint of origin of life, highlighting open questions and possible future research directions.
Collapse
|
20
|
Courbet A, Molina F, Amar P. Computing with synthetic protocells. Acta Biotheor 2015; 63:309-23. [PMID: 25969126 DOI: 10.1007/s10441-015-9258-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/05/2015] [Indexed: 11/30/2022]
Abstract
In this article we present a new kind of computing device that uses biochemical reactions networks as building blocks to implement logic gates. The architecture of a computing machine relies on these generic and composable building blocks, computation units, that can be used in multiple instances to perform complex boolean functions. Standard logical operations are implemented by biochemical networks, encapsulated and insulated within synthetic vesicles called protocells. These protocells are capable of exchanging energy and information with each other through transmembrane electron transfer. In the paradigm of computation we propose, protoputing, a machine can solve only one problem and therefore has to be built specifically. Thus, the programming phase in the standard computing paradigm is represented in our approach by the set of assembly instructions (specific attachments) that directs the wiring of the protocells that constitute the machine itself. To demonstrate the computing power of protocellular machines, we apply it to solve a NP-complete problem, known to be very demanding in computing power, the 3-SAT problem. We show how to program the assembly of a machine that can verify the satisfiability of a given boolean formula. Then we show how to use the massive parallelism of these machines to verify in less than 20 min all the valuations of the input variables and output a fluorescent signal when the formula is satisfiable or no signal at all otherwise.
Collapse
Affiliation(s)
- Alexis Courbet
- Sys2diag, FRE CNRS 3690, 1682 rue de la Valsière, 34184, Montpellier, France
| | | | | |
Collapse
|
21
|
Woronoff G, Ryckelynck M, Wessel J, Schicke O, Griffiths AD, Soumillion P. Activity-Fed Translation (AFT) Assay: A New High-Throughput Screening Strategy for Enzymes in Droplets. Chembiochem 2015; 16:1343-9. [DOI: 10.1002/cbic.201500087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2015] [Indexed: 01/17/2023]
|
22
|
Mavelli F, Marangoni R, Stano P. A Simple Protein Synthesis Model for the PURE System Operation. Bull Math Biol 2015; 77:1185-212. [PMID: 25911591 DOI: 10.1007/s11538-015-0082-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2014] [Accepted: 04/07/2015] [Indexed: 11/24/2022]
Abstract
The encapsulation of transcription-translation (TX-TL) cell-free machinery inside lipid vesicles (liposomes) is a key element in synthetic cell technology. The PURE system is a TX-TL kit composed of well-characterized parts, whose concentrations are fine tunable, which works according to a modular architecture. For these reasons, the PURE system perfectly fulfils the requirements of synthetic biology and is widely used for constructing synthetic cells. In this work, we present a simplified mathematical model to simulate the PURE system operations. Based on Michaelis-Menten kinetics and differential equations, the model describes protein synthesis dynamics by using 9 chemical species, 6 reactions and 16 kinetic parameters. The model correctly predicts the time course for messenger RNA and protein production and allows quantitative predictions. By means of this model, it is possible to foresee how the PURE system species affect the mechanism of proteins synthesis and therefore help in understanding scenarios where the concentration of the PURE system components has been modified purposely or as a result of stochastic fluctuations (for example after random encapsulation inside vesicles). The model also makes the determination of response coefficients for all species involved in the TX-TL mechanism possible and allows for scrutiny on how chemical energy is consumed by the three PURE system modules (transcription, translation and aminoacylation).
Collapse
Affiliation(s)
- Fabio Mavelli
- Chemistry Department, University of Bari, Via Orabona 4, Bari, Italy,
| | | | | |
Collapse
|
23
|
Nishimura K, Matsuura T, Sunami T, Fujii S, Nishimura K, Suzuki H, Yomo T. Identification of giant unilamellar vesicles with permeability to small charged molecules. RSC Adv 2014. [DOI: 10.1039/c4ra05332j] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
24
|
Wu F, Tan C. The engineering of artificial cellular nanosystems using synthetic biology approaches. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2014; 6:369-83. [PMID: 24668724 DOI: 10.1002/wnan.1265] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2013] [Revised: 02/05/2014] [Accepted: 02/08/2014] [Indexed: 12/26/2022]
Abstract
Artificial cellular systems are minimal systems that mimic certain properties of natural cells, including signaling pathways, membranes, and metabolic pathways. These artificial cells (or protocells) can be constructed following a synthetic biology approach by assembling biomembranes, synthetic gene circuits, and cell-free expression systems. As artificial cells are built from bottom-up using minimal and a defined number of components, they are more amenable to predictive mathematical modeling and engineered controls when compared with natural cells. Indeed, artificial cells have been implemented as drug delivery machineries and in situ protein expression systems. Furthermore, artificial cells have been used as biomimetic systems to unveil new insights into functions of natural cells, which are otherwise difficult to investigate owing to their inherent complexity. It is our vision that the development of artificial cells would bring forth parallel advancements in synthetic biology, cell-free systems, and in vitro systems biology. For further resources related to this article, please visit the WIREs website. Conflict of interests: The authors declare that they have no competing financial interests.
Collapse
Affiliation(s)
- Fan Wu
- Department of Biomedical Engineering, University of California Davis, Davis, CA, USA
| | | |
Collapse
|
25
|
Abstract
The complexity of even the simplest known life forms makes efforts to synthesize living cells from inanimate components seem like a daunting task. However, recent progress toward the creation of synthetic cells, ranging from simple protocells to artificial cells approaching the complexity of bacteria, suggests that the synthesis of life is now a realistic goal. Protocell research, fueled by advances in the biophysics of primitive membranes and the chemistry of nucleic acid replication, is providing new insights into the origin of cellular life. Parallel efforts to construct more complex artificial cells, incorporating translational machinery and protein enzymes, are providing information about the requirements for protein-based life. We discuss recent advances and remaining challenges in the synthesis of artificial cells, the possibility of creating new forms of life distinct from existing biology, and the promise of this research for gaining a deeper understanding of the nature of living systems.
Collapse
Affiliation(s)
- J Craig Blain
- Howard Hughes Medical Institute, Department of Molecular Biology, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, Massachusetts 02114; ,
| | | |
Collapse
|
26
|
Grotzky A, Altamura E, Adamcik J, Carrara P, Stano P, Mavelli F, Nauser T, Mezzenga R, Schlüter AD, Walde P. Structure and enzymatic properties of molecular dendronized polymer-enzyme conjugates and their entrapment inside giant vesicles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2013; 29:10831-10840. [PMID: 23895383 DOI: 10.1021/la401867c] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Macromolecular hybrid structures were prepared in which two types of enzymes, horseradish peroxidase (HRP) and bovine erythrocytes Cu,Zn-superoxide dismutase (SOD), were linked to a fluorescently labeled, polycationic, dendronized polymer (denpol). Two homologous denpols of first and second generation were used and compared, and the activities of HRP and SOD of the conjugates were measured in aqueous solution separately and in combination. In the latter case the efficiency of the two enzymes in catalyzing a two-step cascade reaction was evaluated. Both enzymes in the two types of conjugates were highly active and comparable to free enzymes, although the efficiency of the enzymes bound to the second-generation denpol was significantly lower (up to a factor of 2) than the efficiency of HRP and SOD linked to the first-generation denpol. Both conjugates were analyzed by atomic force microscopy (AFM), confirming the expected increase in object size compared to free denpols and demonstrating the presence of enzyme molecules localized along the denpol chains. Finally, giant phospholipid vesicles with diameters of up to about 20 μm containing in their aqueous interior pool a first-generation denpol-HRP conjugate were prepared. The HRP of the entrapped conjugate was shown to remain active toward externally added, membrane-permeable substrates, an important prerequisite for the development of vesicular multienzyme reaction systems.
Collapse
Affiliation(s)
- Andrea Grotzky
- Laboratory of Polymer Chemistry, Department of Materials, ETH Zürich, Wolfgang-Pauli-Strasse 10, 8093 Zürich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Schwartz AW. Evaluating the plausibility of prebiotic multistage syntheses. ASTROBIOLOGY 2013; 13:784-789. [PMID: 23919750 DOI: 10.1089/ast.2013.1057] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
|
28
|
Calviello L, Stano P, Mavelli F, Luisi PL, Marangoni R. Quasi-cellular systems: stochastic simulation analysis at nanoscale range. BMC Bioinformatics 2013; 14 Suppl 7:S7. [PMID: 23815522 PMCID: PMC3633058 DOI: 10.1186/1471-2105-14-s7-s7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND The wet-lab synthesis of the simplest forms of life (minimal cells) is a challenging aspect in modern synthetic biology. Quasi-cellular systems able to produce proteins directly from DNA can be obtained by encapsulating the cell-free transcription/translation system PURESYSTEM(PS) in liposomes. It is possible to detect the intra-vesicle protein production using DNA encoding for GFP and monitoring the fluorescence emission over time. The entrapment of solutes in small-volume liposomes is a fundamental open problem. Stochastic simulation is a valuable tool in the study of biochemical reaction at nanoscale range. QDC (Quick Direct-Method Controlled), a stochastic simulation software based on the well-known Gillespie's SSA algorithm, was used. A suitable model formally describing the PS reactions network was developed, to predict, from inner species concentrations (very difficult to measure in small-volumes), the resulting fluorescence signal (experimentally observable). RESULTS Thanks to suitable features specific of QDC, we successfully formalized the dynamical coupling between the transcription and translation processes that occurs in the real PS, thus bypassing the concurrent-only environment of Gillespie's algorithm. Simulations were firstly performed for large liposomes (2.67µm of diameter) entrapping the PS to synthetize GFP. By varying the initial concentrations of the three main classes of molecules involved in the PS (DNA, enzymes, consumables), we were able to stochastically simulate the time-course of GFP-production. The sigmoid fit of the GFP-production curves allowed us to extract three quantitative parameters which are significantly dependent on the various initial states. Then we extended this study for small-volume liposomes (575 nm of diameter), where it is more complex to infer the intra-vesicle composition, due to the expected anomalous entrapment phenomena. We identified almost two extreme states that are forecasted to give rise to significantly different experimental observables. CONCLUSIONS The present work is the first one describing in the detail the stochastic behavior of the PS. Thanks to our results, an experimental approach is now possible, aimed at recording the GFP production kinetics in very small micro-emulsion droplets or liposomes, and inferring, by using the simulation as a reverse-engineering procedure, the internal solutes distribution, and shed light on the still unknown forces driving the entrapment phenomenon.
Collapse
Affiliation(s)
- Lorenzo Calviello
- Dipartimento di Informatica, Università di Pisa, L.go B. Pontecorvo 3, 56127 Pisa, Italy
| | - Pasquale Stano
- Dipartimento di Biologia, Università di Roma III, Via G. Marconi 446, 00146 Roma, Italy
| | - Fabio Mavelli
- Dipartimento di Chimica, Università di Bari, Via E. Orabona 4, 70121 Bari, Italy
| | - Pier Luigi Luisi
- Dipartimento di Biologia, Università di Roma III, Via G. Marconi 446, 00146 Roma, Italy
| | - Roberto Marangoni
- Dipartimento di Informatica, Università di Pisa, L.go B. Pontecorvo 3, 56127 Pisa, Italy
- Istituto di Biofisica del CNR, Via G. Moruzzi 1, 56124 Pisa, Italy
| |
Collapse
|
29
|
Nishiyama K, Ichihashi N, Matsuura T, Kazuta Y, Yomo T. α-Complementation in an artificial genome replication system in liposomes. Chembiochem 2012. [PMID: 23193098 DOI: 10.1002/cbic.201200586] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Genome size is considered one of the limiting factors for the replication of primitive life forms. However, the relationship between genome size and replication efficiency has not been tested experimentally. In this study, we examined the effect of genome size on genome replication by using an artificial cell model: a self-replicating RNA genome encapsulated in a liposome. For the reduced genome size we used α-complementation of the lacZ gene. We first characterized α-complementation in the purified translation system and then applied α-complementation to the genome replication system. The reduction in the genome size together with the addition of ω-fragment increased the replication efficiency approximately eightfold. This result provides experimental evidence that genome size can be a limiting factor for primitive self-replication systems; it also implies that this artificial cell model could be a useful experimental model to identify possible mechanisms of genome enlargement.
Collapse
Affiliation(s)
- Kotaro Nishiyama
- Department of Bioinformatics Engineering, Graduate School of Information Science and Technology, Osaka University, Suita, Japan
| | | | | | | | | |
Collapse
|
30
|
Kuroiwa T, Fujita R, Kobayashi I, Uemura K, Nakajima M, Sato S, Walde P, Ichikawa S. Efficient Preparation of Giant Vesicles as Biomimetic Compartment Systems with High Entrapment Yields for Biomacromolecules. Chem Biodivers 2012; 9:2453-72. [DOI: 10.1002/cbdv.201200274] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2012] [Indexed: 11/09/2022]
|
31
|
Directed Evolution of Proteins through In Vitro Protein Synthesis in Liposomes. J Nucleic Acids 2012; 2012:923214. [PMID: 22957209 PMCID: PMC3431101 DOI: 10.1155/2012/923214] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 07/10/2012] [Indexed: 11/17/2022] Open
Abstract
Directed evolution of proteins is a technique used to modify protein functions through "Darwinian selection." In vitro compartmentalization (IVC) is an in vitro gene screening system for directed evolution of proteins. IVC establishes the link between genetic information (genotype) and the protein translated from the information (phenotype), which is essential for all directed evolution methods, by encapsulating both in a nonliving microcompartment. Herein, we introduce a new liposome-based IVC system consisting of a liposome, the protein synthesis using recombinant elements (PURE) system and a fluorescence-activated cell sorter (FACS) used as a microcompartment, in vitro protein synthesis system, and high-throughput screen, respectively. Liposome-based IVC is characterized by in vitro protein synthesis from a single copy of a gene in a cell-sized unilamellar liposome and quantitative functional evaluation of the synthesized proteins. Examples of liposome-based IVC for screening proteins such as GFP and β-glucuronidase are described. We discuss the future directions for this method and its applications.
Collapse
|
32
|
Nishimura K, Matsuura T, Nishimura K, Sunami T, Suzuki H, Yomo T. Cell-free protein synthesis inside giant unilamellar vesicles analyzed by flow cytometry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2012; 28:8426-8432. [PMID: 22578080 DOI: 10.1021/la3001703] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Lipid vesicles have been used as model cell systems, in which an in-vitro transcription-translation system (IVTT) is encapsulated to carry out intravesicular protein synthesis. Despite a large number of previous studies, a quantitative understanding of how protein synthesis inside the vesicles is affected by the lipid membrane remains elusive. This is mainly because of the heterogeneity in structural properties of the lipid vesicles used in the experiments. We investigated the effects of the phospholipid membrane on green fluorescent protein (GFP) synthesis occurring inside cell-sized giant unilamellar vesicles (GUV), which have a defined quantity of lipids relative to the reaction volume. We first developed a method to distinguish GUV from multilamellar vesicles using flow cytometry (FCM). Using this method, we investigated the time course of GFP synthesis using one of the IVTT, the PURE system, and found that phospholipid in the form of GUV has little effect on GFP synthesis based on three lines of investigation. (1) GFP synthesis inside the GUV was not dependent on the size of GUV (2) or on the fraction of cholesterol or anionic phospholipid constituting the GUV, and (3) GFP synthesis proceeded similarly in GUV and in the test tube. The present results suggest that GUV provides an ideal reaction environment that does not affect the internal biochemical reaction. On the other hand, we also found that internal GFP synthesis is strongly dependent on the chemical composition of the outer solution.
Collapse
Affiliation(s)
- Koji Nishimura
- Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | |
Collapse
|
33
|
Approaches to chemical synthetic biology. FEBS Lett 2012; 586:2138-45. [DOI: 10.1016/j.febslet.2012.01.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 01/10/2012] [Indexed: 11/24/2022]
|
34
|
Nourian Z, Roelofsen W, Danelon C. Triggered Gene Expression in Fed-Vesicle Microreactors with a Multifunctional Membrane. Angew Chem Int Ed Engl 2012; 51:3114-8. [DOI: 10.1002/anie.201107123] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 12/06/2011] [Indexed: 11/07/2022]
|
35
|
Nourian Z, Roelofsen W, Danelon C. Triggered Gene Expression in Fed-Vesicle Microreactors with a Multifunctional Membrane. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201107123] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
36
|
Constructive Approaches for the Origin of Life. CELLULAR ORIGIN, LIFE IN EXTREME HABITATS AND ASTROBIOLOGY 2012. [DOI: 10.1007/978-94-007-2941-4_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
37
|
Caschera F, Sunami T, Matsuura T, Suzuki H, Hanczyc MM, Yomo T. Programmed vesicle fusion triggers gene expression. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:13082-13090. [PMID: 21923099 DOI: 10.1021/la202648h] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The membrane properties of phospholipid vesicles can be manipulated to both regulate and initiate encapsulated biochemical reactions and networks. We present evidence for the inhibition and activation of reactions encapsulated in vesicles by the exogenous addition of charged amphiphiles. While the incorporation of cationic amphiphile exerts an inhibitory effect, complementation of additional anionic amphiphiles revitalize the reaction. We demonstrated both the simple hydrolysis reaction of β-glucuronidase and the in vitro gene expression of this enzyme from a DNA template. Furthermore, we show that two vesicle populations decorated separately with positive and negative amphiphiles can fuse selectively to supply feeding components to initiate encapsulated reactions. This mechanism could be one of the rudimentary but effective means to regulate and maintain metabolism in dynamic artificial cell models.
Collapse
Affiliation(s)
- Filippo Caschera
- Center for Fundamental Living Technology (FLinT), Institute of Physics and Chemistry, University of Southern Denmark, Campusvej 55, DK-5230 Odense M, Denmark
| | | | | | | | | | | |
Collapse
|
38
|
Self-reproduction of supramolecular giant vesicles combined with the amplification of encapsulated DNA. Nat Chem 2011; 3:775-81. [DOI: 10.1038/nchem.1127] [Citation(s) in RCA: 407] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Accepted: 07/26/2011] [Indexed: 11/09/2022]
|
39
|
Stano P. Minimal cells: Relevance and interplay of physical and biochemical factors. Biotechnol J 2011; 6:850-9. [DOI: 10.1002/biot.201100079] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 04/08/2011] [Accepted: 05/09/2011] [Indexed: 11/06/2022]
|
40
|
Okumura Y, Nakaya T, Namai H, Urita K. Giant vesicles with membranous microcompartments. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2011; 27:3279-3282. [PMID: 21395271 DOI: 10.1021/la2004485] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Incubation of a cell-sized lipid membrane vesicle (giant vesicle, GV) in a diluted aqueous solution of neutral phosphate buffer salts or glucose transformed the GV to an oligovesicular vesicle (OVV) that encapsulates one or more smaller GVs. During the incubation, the membrane of flaccid vesicle invaginated and closed to form the inner vesicle of an OVV engulfing a part of the bulk aqueous phase. Using the GV-to-OVV transformation, an OVV that has different aqueous contents in each membranous microcompartment was constructed.
Collapse
Affiliation(s)
- Yukihisa Okumura
- Department of Chemistry and Material Engineering, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano 380-8553, Japan.
| | | | | | | |
Collapse
|
41
|
Girod M, Moyano E, Campbell DI, Cooks RG. Accelerated bimolecular reactions in microdroplets studied by desorption electrospray ionization mass spectrometry. Chem Sci 2011. [DOI: 10.1039/c0sc00416b] [Citation(s) in RCA: 222] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
42
|
Stano P, Carrara P, Kuruma Y, Pereira de Souza T, Luisi PL. Compartmentalized reactions as a case of soft-matter biotechnology: synthesis of proteins and nucleic acids inside lipid vesicles. ACTA ACUST UNITED AC 2011. [DOI: 10.1039/c1jm12298c] [Citation(s) in RCA: 119] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
43
|
Sunami T, Caschera F, Morita Y, Toyota T, Nishimura K, Matsuura T, Suzuki H, Hanczyc MM, Yomo T. Detection of association and fusion of giant vesicles using a fluorescence-activated cell sorter. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2010; 26:15098-15103. [PMID: 20822108 DOI: 10.1021/la102689v] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
We have developed a method to evaluate the fusion process of giant vesicles using a fluorescence-activated cell sorter (FACS). Three fluorescent markers and FACS technology were used to evaluate the extent of association and fusion of giant vesicles. Two fluorescent markers encapsulated in different vesicle populations were used as association markers; when these vesicles associate, the two independent markers should be observed simultaneously in a single detection event. The quenched fluorescent marker and the dequencher, which were encapsulated in separate vesicle populations, were used as the fusion marker. When the internal aqueous solutions mix, the quenched marker is liberated by the dequencher and emits the third fluorescent signal. Although populations of pure POPC vesicles showed no detectable association or fusion, the same populations, oppositely charged by the exogenous addition of charged amphiphiles, showed up to 50% association and 30% fusion upon population analysis of 100,000 giant vesicles. Although a substantial fraction of the vesicles associated in response to a small amount of the charged amphiphiles (5% mole fraction compared to POPC alone), a larger amount of the charged amphiphiles (25%) was needed to induce vesicle fusion. The present methodology also revealed that the association and fusion of giant vesicles was dependent on size, with larger giant vesicles associating and fusing more frequently.
Collapse
Affiliation(s)
- Takeshi Sunami
- Exploratory Research for Advanced Technology, Japan Science and Technology Agency, Yamadaoka 1-5, Suita, Osaka 565-0871, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|