1
|
Miao X, Han R, Tian J, Ma Y, Müller AJ, Li Z. Building Ultrastrong, Tough and Biodegradable Thermoplastic Elastomers from Multiblock Copolyesters Via a "Reserve-Release" Crystallization Strategy. Angew Chem Int Ed Engl 2024:e202417627. [PMID: 39385345 DOI: 10.1002/anie.202417627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/09/2024] [Accepted: 10/09/2024] [Indexed: 10/12/2024]
Abstract
Simultaneously attaining high strength and toughness has been a significant challenge in designing thermoplastic elastomers, especially biodegradable ones. In this context, we present a class of biodegradable elastomers based on multiblock copolyesters that afford extraordinary strength, toughness, and low-strain resilience despite expedient chemical synthesis and sample processing. With the incorporation of the semi-crystalline soft block and the judicious selection of block periodicity, the thermoplastic materials feature low quiescent crystallinity ("reserve") albeit with vast potential for strain-induced crystallization ("release"), resulting in their significantly enhanced ultimate strength and energy-dissipating capabilities. Moreover, a breadth of mechanical responses of the materials - from reinforced elastomers to shape-memory materials to toughened thermoplastics - can be achieved by orthogonal variation of segment lengths and ratios. This work and the "reserve-release" crystallization strategy herein highlight the double crystalline multiblock chain architecture as a potential avenue towards reconciling the strength-toughness trade-off in thermoplastic elastomers and can possibly be extended to other biodegradable building blocks to deliver functional materials with diverse mechanical performances.
Collapse
Affiliation(s)
- Xiangyu Miao
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Rui Han
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Juan Tian
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Yuanchi Ma
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| | - Alejandro J Müller
- POLYMAT and Department of Polymers and Advanced Materials: Physics, Chemistry and Technology, Faculty of Chemistry, University of the Basque Country UPV/ EHU, Paseo Manuel de Lardizábal, 3, 20018, Donostia-San Sebastián, Spain
- IKERBASQUE, Basque Foundation for Science, Plaza Euskadi 5, 48009, Bilbao, Spain
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, China
| |
Collapse
|
2
|
Shi Q, Zou J, Pan C, Fu Y, Supty MN, Sun J, Yi C, Hu J, Tan H. Study of the phase-transition behavior of (AB) 3 type star polystyrene- block-poly( n-butylacrylate) copolymers by the combination of rheology and SAXS. E-POLYMERS 2022. [DOI: 10.1515/epoly-2022-0088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Abstract
A series of three-armed star polystyrene-block-poly(n-butylacrylate) copolymers (PS-b-PBA)3 were synthesized to study the phase-transition behavior of the copolymers. The order-to-disorder transition temperature has been determined by oscillatory at different temperatures and dynamic temperature sweep at a fixed frequency. Moreover, the micro-phase separation in the block copolymers has been evaluated by time–temperature superposition, while the free volume and the active energy of the copolymers have been calculated. Interestingly, active energy decreased with the increase in the molecular weight of the PBA components. To further determine the order-to-disorder transition temperature precisely, small angle X-ray scattering was performed at different temperatures. These results confirm that the chain mobility of the star-shaped copolymers is strongly dependent on the arm molecular weight of the star polymers, which will be beneficial for the processing and material preparation of the block copolymers.
Collapse
Affiliation(s)
- Qingwen Shi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| | - Jiaqi Zou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| | - Chen Pan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| | - Yin Fu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| | - Mahfzun Nahar Supty
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| | - Jiuxiao Sun
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| | - Chunlong Yi
- China CAMA Engineering Wuhan University Design & Research Company Limited (Camce Whu Design & Research Co., Ltd) , Wuhan , 430000 , China
| | - Jingchuan Hu
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| | - Haiying Tan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, and Key Laboratory of Textile Fiber and Products of Ministry of Education, College of Materials Science and Engineering, Wuhan Textile University , Wuhan , 430200 , China
| |
Collapse
|
3
|
Park J, Winey KI. Double Gyroid Morphologies in Precise Ion-Containing Multiblock Copolymers Synthesized via Step-Growth Polymerization. JACS AU 2022; 2:1769-1780. [PMID: 36032527 PMCID: PMC9400044 DOI: 10.1021/jacsau.2c00254] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/14/2022] [Accepted: 07/14/2022] [Indexed: 05/31/2023]
Abstract
The double gyroid structure was first reported in diblock copolymers about 30 years ago, and the complexity of this morphology relative to the other ordered morphologies in block copolymers continues to fascinate the soft matter community. The double gyroid microphase-separated morphology has co-continuous domains of both species, and the minority phase is subdivided into two interpenetrating network structures. In addition to diblock copolymers, this structure has been reported in similar systems including diblock copolymers blended with one or two homopolymers and ABA-type triblock copolymers. Given the narrow composition region over which the double gyroid structure is typically observed (∼3 vol %), anionic polymerization has dominated the synthesis of block copolymers to control their composition and molecular weight. This perspective will highlight recent studies that (1) employ an alternative polymerization method to make block copolymers and (2) report double gyroid structures with lattice parameters below 10 nm. Specifically, step-growth polymerization linked precise polyethylene blocks and short sulfonate-containing blocks to form strictly alternating multiblock copolymers, and these copolymers produce the double gyroid structure over a dramatically wider composition range (>14 vol %). These new (AB) n multiblock copolymers self-assemble into the double gyroid structure by having exceptional control over the polymer architecture and large interaction parameters between the blocks. This perspective proposes criteria for a broader and synthetically more accessible range of polymers that self-assemble into double gyroids and other ordered structures, so that these remarkable structures can be employed to solve a variety of technological challenges.
Collapse
Affiliation(s)
- Jinseok Park
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Karen I. Winey
- Department
of Materials Science and Engineering, University
of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department
of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
4
|
Park J, Staiger A, Mecking S, Winey KI. Enhanced Li-Ion Transport through Selectively Solvated Ionic Layers of Single-Ion Conducting Multiblock Copolymers. ACS Macro Lett 2022; 11:1008-1013. [PMID: 35876880 DOI: 10.1021/acsmacrolett.2c00288] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We demonstrate enhanced Li+ transport through the selectively solvated ionic layers of a single-ion conducting polymer. The polymer is a precisely segmented ion-containing multiblock copolymers with well-defined Li+SO3- ionic layers between crystallized linear aliphatic 18-carbon blocks. X-ray scattering reveals that the dimethyl sulfoxide (DMSO) molecules selectively solvate the ionic layers without disrupting the crystallization of the polymer backbone. The amount of DMSO (∼21 wt %) calculated from the increased layer spacing is consistent with thermogravimetric analysis. The ionic conductivity through DMSO-solvated ionic layers is >104 times higher than in the dried state, indicating a significant enhancement of ion transport in the presence of this solvent. Dielectric relaxation spectroscopy (DRS) further elucidates the role of the structural relaxation time (τ) and the number of free Li+ (n) on the ionic conductivity (σ). Specifically, DRS reveals that the solvation of ionic domains with DMSO contributes to both accelerating the structural relaxation and the dissociation of ion pairs. This study is the initial demonstration that selective solvation is a viable design strategy to improve ionic conductivity in nanophase separated, single-ion conducting multiblock copolymers.
Collapse
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anne Staiger
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.,Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
5
|
Xie O, Olsen BD. A Self-Consistent Field Theory Formalism for Sequence-Defined Polymers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Oliver Xie
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Bradley D. Olsen
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
6
|
Zhang H, Clothier GK, Guimarães TR, Kita R, Zetterlund PB, Okamura Y. Tuning phase separation morphology in blend thin films using well-defined linear (multi)block copolymers. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124466] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
7
|
Fournier L, Rivera Mirabal DM, Hillmyer MA. Toward Sustainable Elastomers from the Grafting-Through Polymerization of Lactone-Containing Polyester Macromonomers. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02349] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Lucie Fournier
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | | | - Marc A. Hillmyer
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
8
|
Steube M, Johann T, Barent RD, Müller AH, Frey H. Rational design of tapered multiblock copolymers for thermoplastic elastomers. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2021.101488] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Park J, Easterling CP, Armstrong CC, Huber DL, Bowman JI, Sumerlin BS, Winey KI, Taylor MK. Nanoscale layers of precise ion-containing polyamides with lithiated phenyl sulfonate in the polymer backbone. Polym Chem 2022. [DOI: 10.1039/d2py00802e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Precise polyamide ionomer produces well-defined nanoscale layers.
Collapse
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Charles P. Easterling
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Christopher C. Armstrong
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Dale L. Huber
- Center for Integrated Nanotechnologies, Sandia National Laboratories, Albuquerque, New Mexico 87185, USA
| | - Jared I. Bowman
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Brent S. Sumerlin
- George & Josephine Butler Polymer Research Laboratory, Center for Macromolecular Science & Engineering, Department of Chemistry, University of Florida, Gainesville, Florida 32611, USA
| | - Karen I. Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Mercedes K. Taylor
- Department of Chemistry and Biochemistry, University of Maryland, College Park, Maryland 20742, USA
| |
Collapse
|
10
|
Park J, Staiger A, Mecking S, Winey KI. Sub-3-Nanometer Domain Spacings of Ultrahigh-χ Multiblock Copolymers with Pendant Ionic Groups. ACS NANO 2021; 15:16738-16747. [PMID: 34617441 DOI: 10.1021/acsnano.1c06734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
We investigated the temperature-dependent phase behavior and interaction parameter of polyethylene-based multiblock copolymers with pendant ionic groups. These step-growth polymers contain short polyester blocks with a single Li+SO3- group strictly alternating with polyethylene blocks of x-carbons (PESxLi, x = 12, 18, 23). At room temperature, these polymers exhibit layered morphologies with semicrystalline polyethylene blocks. Upon heating above the melting point (∼130 °C), PES18Li shows two order-to-order transitions involving Ia3̅d gyroid and hexagonal morphologies. For PES12Li, an order-to-disorder transition accompanies the melting of the polyethylene blocks. Notably, a Flory-Huggins interaction parameter was determined from the disordered morphologies of PES12Li using mean-field theory: χ(T) = 77.4/T + 2.95 (T in Kelvin) and χ(25 °C) ≈ 3.21. This ultrahigh χ indicates that the polar ionic and nonpolar polyethylene segments are highly incompatible and affords well-ordered morphologies even when the combined length of the alternating blocks is just 18-29 backbone atoms. This combination of ultrahigh χ and short multiblocks produces sub-3-nm domain spacings that facilitate the control of block copolymer self-assembly for various fields of study, including nanopatterning.
Collapse
Affiliation(s)
- Jinseok Park
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Anne Staiger
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Stefan Mecking
- Department of Chemistry, University of Konstanz, Universitätsstraße 10, 78457 Konstanz, Germany
| | - Karen I Winey
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Khan M, Guimarães TR, Kuchel RP, Moad G, Perrier S, Zetterlund PB. Synthesis of Multicompositional Onion‐like Nanoparticles via RAFT Emulsion Polymerization. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108159] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Murtaza Khan
- Cluster for Advanced Macromolecular Design (CAMD) School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Thiago R. Guimarães
- Cluster for Advanced Macromolecular Design (CAMD) School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| | - Rhiannon P. Kuchel
- Electron Microscope Unit Mark Wainwright Analytical Centre The University of New South Wales Sydney NSW 2052 Australia
| | - Graeme Moad
- CSIRO Manufacturing Bag 10 Clayton South VIC 3169 Australia
| | - Sébastien Perrier
- Department of Chemistry University of Warwick Coventry CV4 7AL UK
- Warwick Medical School University of Warwick Coventry CV4 7AL UK
- Faculty of Pharmacy and Pharmaceutical Sciences Monash University 381 Royal Parade Parkville Victoria 3052 Australia
| | - Per B. Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD) School of Chemical Engineering The University of New South Wales Sydney NSW 2052 Australia
| |
Collapse
|
12
|
Khan M, Guimarães TR, Kuchel RP, Moad G, Perrier S, Zetterlund PB. Synthesis of Multicompositional Onion-like Nanoparticles via RAFT Emulsion Polymerization. Angew Chem Int Ed Engl 2021; 60:23281-23288. [PMID: 34411397 DOI: 10.1002/anie.202108159] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 08/05/2021] [Indexed: 11/09/2022]
Abstract
Synthesis of multicompositional polymeric nanoparticles of diameters 100-150 nm comprising well-defined multiblock copolymers reaching from the particle surface to the particle core was conducted using surfactant-free aqueous macroRAFT emulsion polymerization. The imposed constraints on chain mobility as well as chemical incompatibility between the blocks result in microphase separation, leading to formation of an onion-like multilayered particle morphology with individual layer thicknesses of approximately 20 nm. The approach provides considerable versatility in particle morphology design as the composition of individual layers as well as the number of layers can be tailored as desired, offering more complex particle design compared to approaches relying on self-assembly of preformed diblock copolymers within particles. Microphase separation can occur in these systems under conditions where the corresponding bulk system would not theoretically result in microphase separation.
Collapse
Affiliation(s)
- Murtaza Khan
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Thiago R Guimarães
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Rhiannon P Kuchel
- Electron Microscope Unit, Mark Wainwright Analytical Centre, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Graeme Moad
- CSIRO Manufacturing, Bag 10, Clayton South, VIC, 3169, Australia
| | - Sébastien Perrier
- Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK.,Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK.,Faculty of Pharmacy and Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, Victoria, 3052, Australia
| | - Per B Zetterlund
- Cluster for Advanced Macromolecular Design (CAMD), School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
13
|
Heck M, Botha C, Wilhelm M, Hirschberg V. One-Pot Synthesis of Alternating (Ultra-High Molecular Weight) Multiblock Copolymers via a Combination of Anionic Polymerization and Polycondensation. Macromol Rapid Commun 2021; 42:e2100448. [PMID: 34528318 DOI: 10.1002/marc.202100448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Indexed: 12/29/2022]
Abstract
This article presents a fast, straightforward synthesis approach to polymerize alternating multiblock copolymers, ultra-high molecular weight (UHMW) (homo)polymers as well as precursors for complex macromolecular topologies such as comb or barbwire architectures. The one-pot synthesis strategy proposed in this work is based on anionic polymerization via a bifunctional initiator and the subsequent linking of macro dianions with a bifunctional linker, additionally overcoming the limitations associated with the monomer reactivity. Thus, the synthetic route guarantees the repeating size of polymer blocks and an equal distribution of functional groups in precursors for complex topologies. Dianions of polystyrene (PS), polyisoprene-b-polystyrene-b-polyisoprene, and poly-2-vinylpyridine-b-polystyrene-b-poly-2-vinylpyridine are linked with α , α ' -dibromo-para-xylene to UHMW and multiblock copolymers. Multiblock copolymers with on average up to 50 well-defined alternating A and B blocks are accessible within 15 min.
Collapse
Affiliation(s)
- Matthias Heck
- Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Carlo Botha
- Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Manfred Wilhelm
- Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 18, 76131 Karlsruhe, Germany
| | - Valerian Hirschberg
- Institute for Technical Chemistry and Polymer Chemistry, Karlsruhe Institute of Technology, Engesserstraße 18, 76131 Karlsruhe, Germany
| |
Collapse
|
14
|
Statt A, Kleeblatt DC, Reinhart WF. Unsupervised learning of sequence-specific aggregation behavior for a model copolymer. SOFT MATTER 2021; 17:7697-7707. [PMID: 34350929 DOI: 10.1039/d1sm01012c] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We apply a recently developed unsupervised machine learning scheme for local environments [Reinhart, Comput. Mater. Sci., 2021, 196, 110511] to characterize large-scale, disordered aggregates formed by sequence-defined macromolecules. This method provides new insight into the structure of these disordered, dilute aggregates, which has proven difficult to understand using collective variables manually derived from expert knowledge [Statt et al., J. Chem. Phys., 2020, 152, 075101]. In contrast to such conventional order parameters, we are able to classify the global aggregate structure directly using descriptions of the local environments. The resulting characterization provides a deeper understanding of the range of possible self-assembled structures and their relationships to each other. We also provide detailed analysis of the effects of finite system size, stochasticity, and kinetics of these aggregates based on the learned collective variables. Interestingly, we find that the spatiotemporal evolution of systems in the learned latent space is smooth and continuous, despite being derived from only a single snapshot from each of about 1000 monomer sequences. These results demonstrate the insight which can be gained by applying unsupervised machine learning to soft matter systems, especially when suitable order parameters are not known.
Collapse
Affiliation(s)
- Antonia Statt
- Materials Science and Engineering, Grainger College of Engineering, University of Illinois, Urbana-Champaign, IL 61801, USA
| | | | | |
Collapse
|
15
|
Barbon SM, Song JA, Chen D, Zhang C, Lequieu J, Delaney KT, Anastasaki A, Rolland M, Fredrickson GH, Bates MW, Hawker CJ, Bates CM. Architecture Effects in Complex Spherical Assemblies of (AB) n-Type Block Copolymers. ACS Macro Lett 2020; 9:1745-1752. [PMID: 35653677 DOI: 10.1021/acsmacrolett.0c00704] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Molecular architecture plays a key role in the self-assembly of block copolymers, but few studies have systematically examined the influence of chain connectivity on tetrahedrally close-packed (TCP) sphere phases. Here, we report a versatile material platform comprising two blocks with substantial conformational asymmetry, A = poly(trifluoroethyl acrylate) and B = poly(dodecyl acrylate), and use it to compare the phase behavior of AB diblocks, ABA triblocks, and (AB)n radial star copolymers with n = 3 or 4. Each architecture forms TCP sphere phases at minority A block compositions (fA < 0.5), namely, σ and A15, but with differences in the location of order-order phase boundaries that are not anticipated by mean-field self-consistent field theory simulations. These results expand the palette of polymer architectures that readily self-assemble into complex TCP structures and suggest important design considerations when targeting specific phases of interest.
Collapse
Affiliation(s)
| | | | | | - Cheng Zhang
- Australian Institute for Bioengineering and Nanotechnology and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of Queensland, Brisbane, Queensland 4072, Australia
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Statt A, Casademunt H, Brangwynne CP, Panagiotopoulos AZ. Model for disordered proteins with strongly sequence-dependent liquid phase behavior. J Chem Phys 2020; 152:075101. [PMID: 32087632 DOI: 10.1063/1.5141095] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Phase separation of intrinsically disordered proteins is important for the formation of membraneless organelles or biomolecular condensates, which play key roles in the regulation of biochemical processes within cells. In this work, we investigated the phase separation of different sequences of a coarse-grained model for intrinsically disordered proteins and discovered a surprisingly rich phase behavior. We studied both the fraction of total hydrophobic parts and the distribution of hydrophobic parts. Not surprisingly, sequences with larger hydrophobic fractions showed conventional liquid-liquid phase separation. The location of the critical point was systematically influenced by the terminal beads of the sequence due to changes in interfacial composition and tension. For sequences with lower hydrophobicity, we observed not only conventional liquid-liquid phase separation but also re-entrant phase behavior in which the liquid phase density decreases at lower temperatures. For some sequences, we observed the formation of open phases consisting of aggregates, rather than a normal liquid. These aggregates had overall lower densities than the conventional liquid phases and exhibited complex geometries with large interconnected string-like or membrane-like clusters. Our findings suggest that minor alterations in the ordering of residues may lead to large changes in the phase behavior of the protein, a fact of significant potential relevance for biology.
Collapse
Affiliation(s)
- Antonia Statt
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | - Helena Casademunt
- Department of Physics, Princeton University, Princeton, New Jersey 08544, USA
| | - Clifford P Brangwynne
- Department of Chemical and Biological Engineering, Princeton University, Princeton, New Jersey 08544, USA
| | | |
Collapse
|
17
|
Fang J, Gao X, Luo Y. Synthesis of (hard-soft-hard)x multiblock copolymers via RAFT emulsion polymerization and mechanical enhancement via block architectures. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122602] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Nébouy M, Morthomas J, Fusco C, Baeza GP, Chazeau L. Coarse-Grained Molecular Dynamics Modeling of Segmented Block Copolymers: Impact of the Chain Architecture on Crystallization and Morphology. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02549] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Matthias Nébouy
- Univ Lyon, INSA Lyon, CNRS, MATEIS, UMR5510, F-69621 Villeurbanne, France
| | - Julien Morthomas
- Univ Lyon, INSA Lyon, CNRS, MATEIS, UMR5510, F-69621 Villeurbanne, France
| | - Claudio Fusco
- Univ Lyon, INSA Lyon, CNRS, MATEIS, UMR5510, F-69621 Villeurbanne, France
| | - Guilhem P. Baeza
- Univ Lyon, INSA Lyon, CNRS, MATEIS, UMR5510, F-69621 Villeurbanne, France
| | - Laurent Chazeau
- Univ Lyon, INSA Lyon, CNRS, MATEIS, UMR5510, F-69621 Villeurbanne, France
| |
Collapse
|
19
|
|
20
|
Li S, Xu Q, Li K, Yu C, Zhou Y. High-χ alternating copolymers for accessing sub-5 nm domains via simulations. Phys Chem Chem Phys 2020; 22:5577-5583. [DOI: 10.1039/d0cp00383b] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Based on molecular dynamics simulations, we designed novel high-χ alternating copolymers (ACPs) for fabricating sub-5 nm domains.
Collapse
Affiliation(s)
- Shanlong Li
- School of Chemistry & Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Qingsong Xu
- School of Chemistry & Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Ke Li
- School of Chemistry & Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Chunyang Yu
- School of Chemistry & Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
| | - Yongfeng Zhou
- School of Chemistry & Chemical Engineering
- Frontiers Science Center for Transformative Molecules
- Shanghai Key Laboratory of Electrical Insulation and Thermal Aging
- Shanghai Jiao Tong University
- Shanghai 200240
| |
Collapse
|
21
|
Karavolias MG, Elder JB, Ness EM, Mahanthappa MK. Order-to-Disorder Transitions in Lamellar Melt Self-Assembled Core-Shell Bottlebrush Polymers. ACS Macro Lett 2019; 8:1617-1622. [PMID: 35619390 DOI: 10.1021/acsmacrolett.9b00782] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We report the synthesis and melt self-assembly behaviors of densely grafted, core-shell bottlebrush (csBB) polymers derived from covalently linking narrow dispersity, symmetric composition ABA-type triblock polymers through their chain midpoints. Derived from sequential ring-opening polymerizations of ε-decalactone and rac-lactide initiated from 5-norbornene-2-exo,3-exo-dimethanol, poly(lactide-block-ε-decalactone-block-lactide) macromonomers (Mn = 9.2-17.8 kg/mol; Đ = 1.19-1.25) were enchained by living ring-opening metathesis polymerization (ROMP) into csBBs with backbone degrees of polymerization Nbb = 8-43. Temperature-dependent small-angle X-ray scattering (SAXS) studies indicate that the critical triblock arm degree of polymerization (Narm) required for melt segregation decreases with increasing Nbb, leading to reductions in the accessible ordered lamellar microdomain (d) spacings. We derive a phenomenological relationship between the critical triblock arm segregation strength at the order-disorder transition (χNarm)ODT and Nbb to enable the future design of microphase separated core-shell bottlebrushes, which self-assemble at sub-10 nm length scales for nanolithography and nanotemplating applications.
Collapse
Affiliation(s)
- Michael G. Karavolias
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
| | - Jack B. Elder
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| | - Emily M. Ness
- Department of Chemistry, Pacific Lutheran University, Rieke Science
Center, 12180 Park Avenue S, Tacoma, Washington 98447, United States
| | - Mahesh K. Mahanthappa
- Department of Chemical Engineering and Materials Science, University of Minnesota, 421 Washington Avenue SE, Minneapolis, Minnesota 55455, United States
- Department of Chemistry, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Ahn S, Seo Y, Kim JK, Duan C, Zhang L, Li W. Cylindrical to Lamellar Microdomain Transition upon Heating for a Linear Tetrablock Copolymer with Upper Critical Ordering Transition. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b01690] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Seonghyeon Ahn
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Yeseong Seo
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Jin Kon Kim
- National Creative Research Initiative Center for Smart Block Copolymers, Department of Chemical Engineering, Pohang University of Science and Technology, 77, Cheongam-Ro, Nam-Gu, Pohang, Gyeongbuk 37673, Republic of Korea
| | - Chao Duan
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Lixun Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Weihua Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
23
|
Lang C, Shen YX, LaNasa JA, Ye D, Song W, Zimudzi TJ, Hickner MA, Gomez ED, Gomez EW, Kumar M, Hickey RJ. Creating cross-linked lamellar block copolymer supporting layers for biomimetic membranes. Faraday Discuss 2019; 209:179-191. [PMID: 29972389 DOI: 10.1039/c8fd00044a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The long-standing goal in membrane development is creating materials with superior transport properties, including both high flux and high selectivity. These properties are common in biological membranes, and thus mimicking nature is a promising strategy towards improved membrane design. In previous studies, we have shown that artificial water channels can have excellent water transport abilities that are comparable to biological water channel proteins, aquaporins. In this study, we propose a strategy for incorporation of artificial channels that mimic biological channels into stable polymeric membranes. Specifically, we synthesized an amphiphilic triblock copolymer, poly(isoprene)-block-poly(ethylene oxide)-block-poly(isoprene), which is a high molecular weight synthetic analog of naturally occurring lipids in terms of its self-assembled structure. This polymer was used to build stacked membranes composed of self-assembled lamellae. The resulting membranes resemble layers of natural lipid bilayers in living systems, but with superior mechanical properties suitable for real-world applications. The procedures used to synthesize the triblock copolymer resulted in membranes with increased stability due to the crosslinkability of the hydrophobic domains. Furthermore, the introduction of bridging hydrophilic domains leads to the preservation of the stacked membrane structure when the membrane is in contact with water, something that is challenging for diblock lamellae that tend to swell, and delaminate in aqueous solutions. This new method of membrane fabrication offers a practical model for making channel-based biomimetic membranes, which may lead to technological applications in reverse osmosis, nanofiltration, and ultrafiltration membranes.
Collapse
Affiliation(s)
- Chao Lang
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, 16802 USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Recent advances in thermoplastic elastomers from living polymerizations: Macromolecular architectures and supramolecular chemistry. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.04.002] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
25
|
Chalykh AE, Nikulova UV, Shcherbina AA, Chernikova EV. Diffusion and Thermodynamics of Mixing of Polystyrene with Statistical Copolymers of Butyl Acrylate and Styrene. POLYMER SCIENCE SERIES A 2019. [DOI: 10.1134/s0965545x19020020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Galanos E, Grune E, Wahlen C, Müller AHE, Appold M, Gallei M, Frey H, Floudas G. Tapered Multiblock Copolymers Based on Isoprene and 4-Methylstyrene: Influence of the Tapered Interface on the Self-Assembly and Thermomechanical Properties. Macromolecules 2019. [DOI: 10.1021/acs.macromol.8b02669] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Eftyxis Galanos
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - Eduard Grune
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
- Graduate School
Materials Science in Mainz, Staudinger Weg 9, 55128 Mainz, Germany
| | - Christian Wahlen
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Axel H. E. Müller
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Michael Appold
- Macromolecular Chemistry Department, Technische Universität Darmstadt, Alarich-Weiss Str. 4, 64287 Darmstadt, Germany
| | - Markus Gallei
- Macromolecular Chemistry Department, Technische Universität Darmstadt, Alarich-Weiss Str. 4, 64287 Darmstadt, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
- Max Planck Institute
for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
27
|
Steube M, Johann T, Galanos E, Appold M, Rüttiger C, Mezger M, Gallei M, Müller AHE, Floudas G, Frey H. Isoprene/Styrene Tapered Multiblock Copolymers with up to Ten Blocks: Synthesis, Phase Behavior, Order, and Mechanical Properties. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01961] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Marvin Steube
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Tobias Johann
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
- Max Planck Graduate
Center, 55128 Mainz, Germany
| | - Eftyxis Galanos
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
| | - Michael Appold
- Macromolecular Chemistry Department, Technische Universität Darmstadt, Alarich-Weiss Str. 4, 64287 Darmstadt, Germany
| | - Christian Rüttiger
- Macromolecular Chemistry Department, Technische Universität Darmstadt, Alarich-Weiss Str. 4, 64287 Darmstadt, Germany
| | - Markus Mezger
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Institute of Physics, Johannes Gutenberg University, Staudingerweg 7, 55128 Mainz, Germany
| | - Markus Gallei
- Macromolecular Chemistry Department, Technische Universität Darmstadt, Alarich-Weiss Str. 4, 64287 Darmstadt, Germany
| | - Axel H. E. Müller
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| | - George Floudas
- Department of Physics, University of Ioannina, P.O. Box 1186, 45110 Ioannina, Greece
- Max Planck Institute
for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Holger Frey
- Institute of Organic Chemistry, Johannes Gutenberg University, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
28
|
Kayser F, Fleury G, Thongkham S, Navarro C, Martin-Vaca B, Bourissou D. Microphase Separation of Polybutyrolactone-Based Block Copolymers with Sub-20 nm Domains. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00739] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Franck Kayser
- Université de Toulouse,
UPS, 118 route de Narbonne, F-31062 Toulouse, France
- UMR5069, CNRS, LHFA, F-31062 Toulouse, France
| | - Guillaume Fleury
- Laboratoire de Chimie des Polymères Organiques (LCPO), CNRS UMR 5629, IPB-ENSCBP, Université de Bordeaux, 16 Avenue Pey-Berland, Cedex F-33607 Pessac, France
| | - Somprasong Thongkham
- Université de Toulouse,
UPS, 118 route de Narbonne, F-31062 Toulouse, France
- UMR5069, CNRS, LHFA, F-31062 Toulouse, France
| | - Christophe Navarro
- ARKEMA, Groupement de Recherches
de Lacq, RN 117, BP 34, Cedex F-64170 Lacq, France
| | - Blanca Martin-Vaca
- Université de Toulouse,
UPS, 118 route de Narbonne, F-31062 Toulouse, France
- UMR5069, CNRS, LHFA, F-31062 Toulouse, France
| | - Didier Bourissou
- Université de Toulouse,
UPS, 118 route de Narbonne, F-31062 Toulouse, France
- UMR5069, CNRS, LHFA, F-31062 Toulouse, France
| |
Collapse
|
29
|
Tuhin MO, Ryan JJ, Sadler JD, Han Z, Lee B, Smith SD, Pasquinelli MA, Spontak RJ. Microphase-Separated Morphologies and Molecular Network Topologies in Multiblock Copolymer Gels. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b00853] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
| | | | - J. David Sadler
- Corporate Research & Development, The Procter & Gamble Company, Cincinnati, Ohio 45224, United States
| | - Zexiang Han
- Department of Materials, Imperial College London, London SW7 2AZ, U.K
| | - Byeongdu Lee
- Advanced Photon Source, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Steven D. Smith
- Corporate Research & Development, The Procter & Gamble Company, Cincinnati, Ohio 45224, United States
| | | | | |
Collapse
|
30
|
Appold M, Grune E, Frey H, Gallei M. One-Step Anionic Copolymerization Enables Formation of Linear Ultrahigh-Molecular-Weight Block Copolymer Films Featuring Vivid Structural Colors in the Bulk State. ACS APPLIED MATERIALS & INTERFACES 2018; 10:18202-18212. [PMID: 29737829 DOI: 10.1021/acsami.8b02848] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Ultrahigh-molecular-weight (UHMW) tapered block copolymers (BCPs) consisting of polyisoprene- block-poly(4-methylstyrene) featuring overall molar masses in the range of 1101-2033 kg mol-1 ( Mw) are synthesized via a convenient one-step anionic copolymerization protocol. The obtained UHMW BCPs are investigated by differential scanning calorimetry, size exclusion chromatography, and 1H NMR spectroscopy. Microphase separation for the UHMW BCPs in the bulk state is investigated by transmission electron microscopy (TEM) measurements and scanning electron microscopy (SEM), revealing well-ordered lamellar and spherical domains with large domain sizes in the range of 100-200 nm. Excellent order and periodicity are observed for lamellar morphologies over large film areas of 90 × 120 μm. Because of this high order of the underlying domains and the different refractive indices of the block segments, vivid structural colors can be observed in the bulk state. Structural colors of BCP films are investigated by angle-dependent UV/vis measurements, revealing intensive reflection colors according to Bragg's law of diffraction. The optical characteristics are directly correlated to TEM and SEM results. Moreover, colored BCP films featuring spherical domains for one block segment with domain sizes of 97-122 nm revealed blue structural colors stemming from disordered particle scattering.
Collapse
Affiliation(s)
- Michael Appold
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 4 , 64287 Darmstadt , Germany
| | - Eduard Grune
- Institute of Organic Chemistry , Johannes Gutenberg-University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
- Graduate School of Excellence Materials Science in Mainz (MAINZ) , Staudingerweg 9 , 55128 Mainz , Germany
| | - Holger Frey
- Institute of Organic Chemistry , Johannes Gutenberg-University Mainz , Duesbergweg 10-14 , 55128 Mainz , Germany
| | - Markus Gallei
- Ernst-Berl-Institute for Chemical Engineering and Macromolecular Chemistry , Technische Universität Darmstadt , Alarich-Weiss-Straße 4 , 64287 Darmstadt , Germany
| |
Collapse
|
31
|
Wang W, Wang X, Jiang F, Wang Z. Synthesis, order-to-disorder transition, microphase morphology and mechanical properties of BAB triblock copolymer elastomers with hard middle block and soft outer blocks. Polym Chem 2018. [DOI: 10.1039/c8py00375k] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
A series of triblock copolymer elastomers with a soft–hard–soft block sequence was synthesized for studies on their ODT, microphase morphologies and mechanical properties.
Collapse
Affiliation(s)
- Wentao Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei
| | - Xuehui Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei
| | - Feng Jiang
- School of Chemical Engineering and Light Industry
- Guangdong University of Technology
- Guangzhou
- P. R. China
| | - Zhigang Wang
- CAS Key Laboratory of Soft Matter Chemistry
- Department of Polymer Science and Engineering
- Hefei National Laboratory for Physical Sciences at the Microscale
- University of Science and Technology of China
- Hefei
| |
Collapse
|
32
|
Maher MJ, Jones SD, Zografos A, Xu J, Schibur HJ, Bates FS. The Order–Disorder Transition in Graft Block Copolymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b02262] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Michael J. Maher
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Seamus D. Jones
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Aristotelis Zografos
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Jun Xu
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Haley J. Schibur
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
33
|
Zhang M, Gu J, Zhu X, Gao L, Li X, Yang X, Tu Y, Li CY. Synthesis of poly(butylene terephthalate)- block -poly(ethylene oxide)- block -poly(propylene oxide)- block -poly(ethylene oxide) multiblock terpolymers via a facile PROP method. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.10.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
34
|
|
35
|
Zhang J, Deubler R, Hartlieb M, Martin L, Tanaka J, Patyukova E, Topham PD, Schacher FH, Perrier S. Evolution of Microphase Separation with Variations of Segments of Sequence-Controlled Multiblock Copolymers. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01831] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
| | | | | | | | | | - Elena Patyukova
- Aston Institute of Materials Research, Aston University, Aston Triangle, Birmingham B4 7ET, U.K
| | - Paul D. Topham
- Aston Institute of Materials Research, Aston University, Aston Triangle, Birmingham B4 7ET, U.K
| | | | - Sébastien Perrier
- Faculty of Pharmacy and
Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
36
|
Dennis JM, Fahs GB, Moon NG, Mondschein RJ, Moore RB, Wilkes GL, Long TE. Synthesis of Polysulfone-Containing Poly(butylene terephthalate) Segmented Block Copolymers: Influence of Segment Length on Thermomechanical Performance. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00557] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Joseph M. Dennis
- Department of Chemistry,
Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Gregory B. Fahs
- Department of Chemistry,
Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Nicholas G. Moon
- Department of Chemistry,
Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Ryan J. Mondschein
- Department of Chemistry,
Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Robert B. Moore
- Department of Chemistry,
Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Garth L. Wilkes
- Department of Chemistry,
Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Timothy E. Long
- Department of Chemistry,
Macromolecules Innovation Institute (MII), Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
37
|
Chernikova EV, Sivtsov EV. Reversible addition-fragmentation chain-transfer polymerization: Fundamentals and use in practice. POLYMER SCIENCE SERIES B 2017. [DOI: 10.1134/s1560090417020038] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
38
|
Watts A, Kurokawa N, Hillmyer MA. Strong, Resilient, and Sustainable Aliphatic Polyester Thermoplastic Elastomers. Biomacromolecules 2017; 18:1845-1854. [PMID: 28467049 DOI: 10.1021/acs.biomac.7b00283] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Thermoplastic elastomers (TPEs) composed of ABA block polymers exhibit a wide variety of properties and are easily processable as they contain physical, rather than chemical, cross-links. Poly(γ-methyl-ε-caprolactone) (PγMCL) is an amorphous polymer with a low entanglement molar mass (Me = 2.9 kg mol-1), making it a suitable choice for tough elastomers. Incorporating PγMCL as the midblock with polylactide (PLA) end blocks (fLA = 0.17) results in TPEs with high stresses and elongations at break (σB = 24 ± 2 MPa and εB = 1029 ± 20%, respectively) and low levels of hysteresis. The use of isotactic PLA as the end blocks (fLLA = 0.17) increases the strength and toughness of the material (σB = 30 ± 4 MPa, εB = 988 ± 30%) due to its semicrystalline nature. This study aims to demonstrate how the outstanding properties in these sustainable materials are a result of the entanglements, glass transition temperature, segment-segment interaction parameter, and crystallinity, resulting in comparable properties to the commercially relevant styrene-based TPEs.
Collapse
Affiliation(s)
- Annabelle Watts
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States of America
| | - Naruki Kurokawa
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States of America
| | - Marc A Hillmyer
- Department of Chemistry, University of Minnesota , Minneapolis, Minnesota 55455-0431, United States of America
| |
Collapse
|
39
|
Hu N, Mai CK, Fredrickson GH, Bazan GC. One-pot synthesis of semicrystalline/amorphous multiblock copolymers via divinyl-terminated telechelic polyolefins. Chem Commun (Camb) 2016; 52:2237-40. [PMID: 26658299 DOI: 10.1039/c5cc09200k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A simple, one-pot approach to synthesize random semicrystalline/amorphous multiblock copolymers (12-17 blocks per chain on average) is demonstrated that takes advantage of acyclic diene metathesis (ADMET) polymerization of α,ω-divinyl-terminated telechelic polyolefins. This synthetic approach offers a generic, viable and economical route to polyolefin-based multiblock copolymers and may be extendable to broader families of multiblock materials.
Collapse
Affiliation(s)
- Nan Hu
- Department of Chemistry and Biochemistry, Center for Polymers and Organic Solids, University of California, Santa Barbara, CA 93106, USA and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA.
| | - Cheng-Kang Mai
- Department of Chemistry and Biochemistry, Center for Polymers and Organic Solids, University of California, Santa Barbara, CA 93106, USA and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA.
| | - Glenn H Fredrickson
- Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA.
| | - Guillermo C Bazan
- Department of Chemistry and Biochemistry, Center for Polymers and Organic Solids, University of California, Santa Barbara, CA 93106, USA and Materials Research Laboratory, University of California, Santa Barbara, CA 93106, USA.
| |
Collapse
|
40
|
Mannion AM, Bates FS, Macosko CW. Synthesis and Rheology of Branched Multiblock Polymers Based on Polylactide. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00792] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Alexander M. Mannion
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Frank S. Bates
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Christopher W. Macosko
- Department of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
41
|
Zhang J, Li T, Mannion AM, Schneiderman DK, Hillmyer MA, Bates FS. Tough and Sustainable Graft Block Copolymer Thermoplastics. ACS Macro Lett 2016; 5:407-412. [PMID: 35614713 DOI: 10.1021/acsmacrolett.6b00091] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Fully sustainable poly[HPMC-g-(PMVL-b-PLLA)] graft block copolymer thermoplastics were prepared from hydroxypropyl methylcellulose (HPMC), β-methyl-δ-valerolactone (MVL), and l-lactide (LLA) using a facile two-step sequential addition approach. In these materials, rubbery PMVL functions as a bridge between the semirigid HPMC backbone and the hard PLLA end blocks. This specific arrangement facilitates PLLA crystallization, which induces microphase separation and physical cross-linking. By changing the backbone molar mass or side chain composition, these thermoplastic materials can be easily tailored to access either plastic or elastomeric behavior. Moreover, the graft block architecture can be utilized to overcome the processing limitations inherent to linear block polymers. Good control over molar mass and composition enables the deliberate design of HPMC-g-(PMVL-b-PLLA) samples that are incapable of microphase separation in the melt state. These materials are characterized by relatively low zero shear viscosities in the melt state, an indication of easy processability. The simple and scalable synthetic procedure, use of inexpensive and renewable precursors, and exceptional rheological and mechanical properties make HPMC-g-(PMVL-b-PLLA) polymers attractive for a broad range of applications.
Collapse
Affiliation(s)
- Jiuyang Zhang
- Department of Chemical
Engineering and Materials Science and ‡Department of
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Tuoqi Li
- Department of Chemical
Engineering and Materials Science and ‡Department of
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Alexander M. Mannion
- Department of Chemical
Engineering and Materials Science and ‡Department of
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Deborah K. Schneiderman
- Department of Chemical
Engineering and Materials Science and ‡Department of
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Marc A. Hillmyer
- Department of Chemical
Engineering and Materials Science and ‡Department of
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| | - Frank S. Bates
- Department of Chemical
Engineering and Materials Science and ‡Department of
Chemistry, University of Minnesota, Minneapolis, Minnesota 55455-0431, United States
| |
Collapse
|
42
|
Sarapas JM, Saijo K, Zhao Y, Takenaka M, Tew GN. Phase behavior and Li
+
Ion conductivity of styrene‐ethylene oxide multiblock copolymer electrolytes. POLYM ADVAN TECHNOL 2016. [DOI: 10.1002/pat.3753] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Joel M. Sarapas
- Department of Polymer Science and Engineering University of Massachusetts Amherst MA 01003 USA
| | - Kenji Saijo
- Department of Polymer Chemistry; Graduate School of Engineering Kyoto University Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Yue Zhao
- Department of Polymer Science and Engineering University of Massachusetts Amherst MA 01003 USA
- Quantum Beam Science Center Japan Atomic Energy Agency Tokai Ibaraki 319‐1195 Japan
| | - Mikihito Takenaka
- Department of Polymer Chemistry; Graduate School of Engineering Kyoto University Nishikyo‐ku Kyoto 615‐8510 Japan
| | - Gregory N. Tew
- Department of Polymer Science and Engineering University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
43
|
Cheng G, Perahia D. Dewetting and microphase separation in symmetric polystyrene‐
block
‐polyisoprene diblock copolymer ultrathin films. POLYM INT 2015. [DOI: 10.1002/pi.5022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Gang Cheng
- College of Life Science and Technology Beijing University of Chemical Technology Beijing 100029 China
- Materials Science and Engineering Program and Chemistry Department Clemson University SC 29634 USA
| | - Dvora Perahia
- Materials Science and Engineering Program and Chemistry Department Clemson University SC 29634 USA
| |
Collapse
|
44
|
Panthani TR, Bates FS. Crystallization and Mechanical Properties of Poly(l-lactide)-Based Rubbery/Semicrystalline Multiblock Copolymers. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Tessie R. Panthani
- Department
of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Frank S. Bates
- Department
of Chemical Engineering
and Materials Science, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
45
|
Epoxy networks and hydrogels prepared from α,ω-diamino terminated poly(oxypropylene)-b-poly(oxyethylene)-b-poly(oxypropylene) and polyoxypropylene bis(glycidyl ether). Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2014.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
46
|
Walker CN, Bryson KC, Hayward RC, Tew GN. Wide bicontinuous compositional windows from co-networks made with telechelic macromonomers. ACS NANO 2014; 8:12376-85. [PMID: 25415537 DOI: 10.1021/nn505026a] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phase-separated and self-assembled co-network materials offer a simple route to bicontinuous morphologies, which are expected to be highly beneficial for applications such as ion, charge, and oxygen transport. Despite these potential advantages, the programmed creation of co-network structures has not been achieved, largely due to the lack of well-controlled chemistries for their preparation. Here, a thiol-ene end-linking platform enables the systematic investigation of phase-separated poly(ethylene glycol) (PEG) and polystyrene (PS) networks in terms of the molecular weight and relative volume fractions of precursor polymers. The ion conductivity and storage modulus of these materials serve as probes to demonstrate that both phases percolate over a wide range of compositions, spanning PEG volume fractions from ∼0.3-0.65. Small angle X-ray scattering (SAXS) shows that microphase separation of these co-networks yields disordered structures with d-spacings that follow d∼Mn0.5, for 4.8 kg/mol<Mn<37 kg/mol, where Mn is the molecular weight of the precursor polymers at the same ratio of PEG to PS. Over this range of molecular weights and corresponding d-spacings (22-55 nm), the ion conductivity (10(-4.7) S/cm at 60 °C), thermal properties (two glass transitions, low PEG crystallinity), and mechanical properties (storage modulus ≈90 MPa at 30 °C) remained similar. These findings demonstrate that this approach to thiol-ene co-networks is a versatile platform to create bicontinuous morphologies.
Collapse
Affiliation(s)
- Catherine N Walker
- Department of Polymer Science & Engineering and ‡Department of Veterinary and Animal Science, University of Massachusetts , Amherst, Massachusetts 01003, United States
| | | | | | | |
Collapse
|
47
|
Dennis JM, Fahs GB, Moore RB, Turner SR, Long TE. Synthesis and Characterization of Polysulfone-Containing Poly(butylene terephthalate) Segmented Block Copolymers. Macromolecules 2014. [DOI: 10.1021/ma501903h] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Joseph M. Dennis
- Macromolecules and Interfaces
Institute, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Gregory B. Fahs
- Macromolecules and Interfaces
Institute, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Robert B. Moore
- Macromolecules and Interfaces
Institute, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - S. Richard Turner
- Macromolecules and Interfaces
Institute, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Timothy E. Long
- Macromolecules and Interfaces
Institute, Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
48
|
Walker CN, Sarapas JM, Kung V, Hall AL, Tew GN. Multiblock Copolymers by Thiol Addition Across Norbornene. ACS Macro Lett 2014; 3:453-457. [PMID: 35590781 DOI: 10.1021/mz5001288] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Multiblock copolymers, composed of different combinations and number of blocks, offer appreciable opportunities for new advanced materials. However, exploring this parameter space using traditional block copolymer synthetic techniques, such as living polymerization of sequential blocks, is time-consuming and requires stringent conditions. Using thiol addition across norbornene chemistry, we demonstrate a simple synthetic approach to multiblock copolymers that produces either random or alternating architectures, depending on the choice of reactants. Past reports have highlighted the challenges associated with using thiol-ene chemistry for polymer-polymer conjugation; however, using norbornene as the "ene" yielded multiblock copolymers at least four or five blocks. Preparation of new multiblock copolymers containing two or three block chemistries highlights the versatility of this new approach. These materials were thermally stable and showed microphase separation according to characterization by DSC, SAXS, and AFM. This chemical platform offers a facile and efficient route to exploring the many possibilities of multiblock copolymers.
Collapse
Affiliation(s)
- Catherine N. Walker
- Department of Polymer Science
and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Joel M. Sarapas
- Department of Polymer Science
and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Vanessa Kung
- Department of Polymer Science
and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Ashley L. Hall
- Department of Polymer Science
and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| | - Gregory N. Tew
- Department of Polymer Science
and Engineering, University of Massachusetts, Amherst, Massachusetts 01003, United States
| |
Collapse
|
49
|
He P, Shen W, Yu W, Zhou C. Mesophase Separation and Rheology of Olefin Multiblock Copolymers. Macromolecules 2014. [DOI: 10.1021/ma402330a] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Peng He
- Advanced Rheology Institute, Department
of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Shen
- Advanced Rheology Institute, Department
of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Wei Yu
- Advanced Rheology Institute, Department
of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Chixing Zhou
- Advanced Rheology Institute, Department
of Polymer Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
50
|
Kuo WT, Chen HL, Goseki R, Hirao A, Chen WC. Interplay between the Phase Transitions at Different Length Scales in the Supramolecular Comb–Coil Block Copolymers Bearing (AB)n Multiblock Architecture. Macromolecules 2013. [DOI: 10.1021/ma401587m] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei-Tzu Kuo
- Department
of Chemical Engineering and Frontier Research Center on Fundamental
and Applied Sciences of Matters, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| | - Hsin-Lung Chen
- Department
of Chemical Engineering and Frontier Research Center on Fundamental
and Applied Sciences of Matters, National Tsing Hua University, Hsin-Chu 30013, Taiwan
| | - Raita Goseki
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo, 152-8552, Japan
| | - Akira Hirao
- Department
of Organic and Polymeric Materials, Tokyo Institute of Technology, Ohokayama, Meguro-ku, Tokyo, 152-8552, Japan
- Department
of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Wen-Chang Chen
- Department
of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|