1
|
Chabaud B, Bonnet H, Lartia R, Van Der Heyden A, Auzély-Velty R, Boturyn D, Coche-Guérente L, Dubacheva GV. Influence of Surface Chemistry on Host/Guest Interactions: A Model Study on Redox-Sensitive β-Cyclodextrin/Ferrocene Complexes. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4646-4660. [PMID: 38387876 DOI: 10.1021/acs.langmuir.3c03279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
While host/guest interactions are widely used to control molecular assembly on surfaces, quantitative information on the effect of surface chemistry on their efficiency is lacking. To address this question, we combined electrochemical characterization with quartz crystal microbalance with dissipation monitoring to study host/guest interactions between surface-attached ferrocene (Fc) guests and soluble β-cyclodextrin (β-CD) hosts. We identified several parameters that influence the redox response, β-CD complexation ability, and repellent properties of Fc monolayers, including the method of Fc grafting, the linker connecting Fc with the surface, and the diluting molecule used to tune Fc surface density. The study on monovalent β-CD/Fc complexation was completed by the characterization of multivalent interactions between Fc monolayers and β-CD-functionalized polymers, with new insights being obtained on the interplay between the surface chemistry, binding efficiency, and reversibility under electrochemical stimulus. These results should facilitate the design of well-defined functional interfaces and their implementation in stimuli-responsive materials and sensing devices.
Collapse
Affiliation(s)
- Baptiste Chabaud
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | - Hugues Bonnet
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | - Rémy Lartia
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | - Angéline Van Der Heyden
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | | | - Didier Boturyn
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | - Liliane Coche-Guérente
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| | - Galina V Dubacheva
- Département de Chimie Moléculaire, Université Grenoble Alpes, CNRS UMR 5250, 570 rue de la chimie, CS 40700, 38000 Grenoble, France
| |
Collapse
|
2
|
Bhartia B, Das S, Jayaraman S, Sharma M, Ting YP, Troadec C, Madapusi SP, Puniredd SR. Universal Single-Step Approach to the Immobilization of Cyclodextrins in a Supercritical Medium for Capturing Drug, Dye, and Metal Nanoclusters. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37379523 DOI: 10.1021/acs.langmuir.3c01143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
By utilizing nanoreactor-like structures, the immobilization of macromolecules such as calixarenes and cyclodextrins (CD) with bucket-like structures provides new possibilities for engineered surface-molecule systems. The practical use of any molecular system depends on the availability of a universal procedure for immobilizing molecules with torus-like structures on various surfaces while maintaining identical operating parameters. There are currently several steps, including toxic solvent-based approaches using modified β-CD to covalently attach to surfaces with multistep reactions. However, the existing multistep process results in molecular orientation, restricts the accessibility of the hydrophobic barrel of β-CD's for practical use, and is effectively unable to use the surfaces immobilized with β-CD for a variety of applications. In this study, it was demonstrated that β-CD attached to the oxide-based semiconductor and metal surfaces through a condensation reaction between the hydroxyl-terminated oxide-based semiconductor/metal oxide and β-CD in supercritical carbon dioxide (SCCO2) as a medium. The primary benefit of SCCO2-assisted grafting of unmodified β-CD on various oxide-based metal and semiconductor surfaces is that it is a simple, efficient, one-step process and that it is ligand-free, scalable, substrate-independent, and uses minimal energy. Various physical microscopy and chemical spectroscopic methods were used to analyze the grafted β-CD oligomers. The application of the grafted β-CD films was demonstrated by the immobilization of rhodamine B (RhB), a dye, and dopamine, a drug. The in situ nucleation and growth of silver nanoclusters (AgNCs) in the molecular systems were studied for antibacterial and tribological properties by utilizing the guest-host interaction ability of β-CD.
Collapse
Affiliation(s)
- Bhavesh Bhartia
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-32, Singapore 138634, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore,4 Engineering Drive 4, Singapore 117585, Singapore
| | - Subhabrata Das
- Department of Chemical and Biomolecular Engineering, National University of Singapore,4 Engineering Drive 4, Singapore 117585, Singapore
| | | | - Mohit Sharma
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-32, Singapore 138634, Singapore
| | - Yen Peng Ting
- Department of Chemical and Biomolecular Engineering, National University of Singapore,4 Engineering Drive 4, Singapore 117585, Singapore
| | - Cedric Troadec
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-32, Singapore 138634, Singapore
| | - Srinivasan Palavedu Madapusi
- Department of Chemical Engineering, BITS Pilani, Dubai Campus, Dubai International Academic City, P.O. Box No. 345055, Dubai, UAE
| | - Sreenivasa Reddy Puniredd
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-32, Singapore 138634, Singapore
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Nanos Level 6, Singapore 138669, Singapore
| |
Collapse
|
3
|
Li C, Wang Y, Wang Z, Li X. β-Cyclodextrin/Azobenzene Microspheres Loaded with Paraquat Are Safe and Effective. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:638-646. [PMID: 36542801 DOI: 10.1021/acs.langmuir.2c03004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Although paraquat is a widely used herbicide, it is toxic to humans if ingested or absorbed through an open wound. To improve the safety of paraquat, a new formulation of paraquat based on photoresponsive polymers was exploited. Photoresponsive β-cyclodextrin polymer microspheres (AZO-CD) were synthesized via a host-guest interaction between β-cyclodextrin and azobenzene. AZO-CD were characterized by Fourier transform infrared spectrometry, circular dichroism, ultraviolet (UV) spectrophotometry, and thermogravimetric analysis, and their photoresponsiveness was also evaluated. AZO-CD were used to load paraquat, which yielded photoresponsive paraquat-loaded microspheres. For the paraquat-loaded microspheres, irradiation with UV light or sunlight induced the isomerization of azobenzene into the cis form. Then, the cis-azobenzene was liberated from the cavities of the β-cyclodextrin. The paraquat-loaded microspheres released paraquat continuously over time. Furthermore, under UV light, the herbicidal capacity of the paraquat-loaded microspheres against barnyard grass was comparable to that of free paraquat at the same dose. Our findings show that loading paraquat into AZO-CD provides a safe and environmentally friendly herbicide formulation.
Collapse
Affiliation(s)
- Chaonan Li
- Engineering & Technology Research Center for Bio Pesticide and Formulating Processing, College of Plant Protection, Hunan Agricultural University, Changsha410128, China
| | - Ya Wang
- Engineering & Technology Research Center for Bio Pesticide and Formulating Processing, College of Plant Protection, Hunan Agricultural University, Changsha410128, China
| | - Zihao Wang
- Engineering & Technology Research Center for Bio Pesticide and Formulating Processing, College of Plant Protection, Hunan Agricultural University, Changsha410128, China
| | - Xiaogang Li
- Engineering & Technology Research Center for Bio Pesticide and Formulating Processing, College of Plant Protection, Hunan Agricultural University, Changsha410128, China
| |
Collapse
|
4
|
Ren Z, Liao T, Li C, Kuang Y. Drug Delivery Systems with a "Tumor-Triggered" Targeting or Intracellular Drug Release Property Based on DePEGylation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:5290. [PMID: 35955225 PMCID: PMC9369796 DOI: 10.3390/ma15155290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/10/2022]
Abstract
Coating nanosized anticancer drug delivery systems (DDSs) with poly(ethylene glycol) (PEG), the so-called PEGylation, has been proven an effective method to enhance hydrophilicity, aqueous dispersivity, and stability of DDSs. What is more, as PEG has the lowest level of protein absorption of any known polymer, PEGylation can reduce the clearance of DDSs by the mononuclear phagocyte system (MPS) and prolong their blood circulation time in vivo. However, the "stealthy" characteristic of PEG also diminishes the uptake of DDSs by cancer cells, which may reduce drug utilization. Therefore, dynamic protection strategies have been widely researched in the past years. Coating DDSs with PEG through dynamic covalent or noncovalent bonds that are stable in blood and normal tissues, but can be broken in the tumor microenvironment (TME), can achieve a DePEGylation-based "tumor-triggered" targeting or intracellular drug release, which can effectively improve the utilization of drugs and reduce their side effects. In this review, the stimuli and methods of "tumor-triggered" targeting or intracellular drug release, based on DePEGylation, are summarized. Additionally, the targeting and intracellular controlled release behaviors of the DDSs are briefly introduced.
Collapse
Affiliation(s)
- Zhe Ren
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; (Z.R.); (T.L.)
| | - Tao Liao
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; (Z.R.); (T.L.)
| | - Cao Li
- Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, Hubei University, Wuhan 430062, China; (Z.R.); (T.L.)
| | - Ying Kuang
- National “111” Center for Cellular Regulation and Molecular Pharmaceutics, Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, China
| |
Collapse
|
5
|
Park HJ, Hong H, Thangam R, Song MG, Kim JE, Jo EH, Jang YJ, Choi WH, Lee MY, Kang H, Lee KB. Static and Dynamic Biomaterial Engineering for Cell Modulation. NANOMATERIALS 2022; 12:nano12081377. [PMID: 35458085 PMCID: PMC9028203 DOI: 10.3390/nano12081377] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/31/2022] [Accepted: 04/04/2022] [Indexed: 02/01/2023]
Abstract
In the biological microenvironment, cells are surrounded by an extracellular matrix (ECM), with which they dynamically interact during various biological processes. Specifically, the physical and chemical properties of the ECM work cooperatively to influence the behavior and fate of cells directly and indirectly, which invokes various physiological responses in the body. Hence, efficient strategies to modulate cellular responses for a specific purpose have become important for various scientific fields such as biology, pharmacy, and medicine. Among many approaches, the utilization of biomaterials has been studied the most because they can be meticulously engineered to mimic cellular modulatory behavior. For such careful engineering, studies on physical modulation (e.g., ECM topography, stiffness, and wettability) and chemical manipulation (e.g., composition and soluble and surface biosignals) have been actively conducted. At present, the scope of research is being shifted from static (considering only the initial environment and the effects of each element) to biomimetic dynamic (including the concepts of time and gradient) modulation in both physical and chemical manipulations. This review provides an overall perspective on how the static and dynamic biomaterials are actively engineered to modulate targeted cellular responses while highlighting the importance and advance from static modulation to biomimetic dynamic modulation for biomedical applications.
Collapse
Affiliation(s)
- Hyung-Joon Park
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
| | - Hyunsik Hong
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
| | - Ramar Thangam
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Institute for High Technology Materials and Devices, Korea University, Seoul 02841, Korea
| | - Min-Gyo Song
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Ju-Eun Kim
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Eun-Hae Jo
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
| | - Yun-Jeong Jang
- Department of Biomedical Engineering, Armour College of Engineering, Illinois Institute of Technology, Chicago, IL 60616, USA;
| | - Won-Hyoung Choi
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Min-Young Lee
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
| | - Heemin Kang
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Materials Science and Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (H.H.); (R.T.)
- Correspondence: (H.K.); (K.-B.L.)
| | - Kyu-Back Lee
- Department of Interdisciplinary Biomicrosystem Technology, College of Engineering, Korea University, Seoul 02841, Korea;
- Department of Biomedical Engineering, College of Health Science, Korea University, Seoul 02841, Korea; (M.-G.S.); (W.-H.C.); (M.-Y.L.)
- Department of Biomedical Engineering, College of Engineering, Korea University, Seoul 02841, Korea; (J.-E.K.); (E.-H.J.)
- Correspondence: (H.K.); (K.-B.L.)
| |
Collapse
|
6
|
Narkar AR, Tong Z, Soman P, Henderson JH. Smart biomaterial platforms: Controlling and being controlled by cells. Biomaterials 2022; 283:121450. [PMID: 35247636 PMCID: PMC8977253 DOI: 10.1016/j.biomaterials.2022.121450] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 02/07/2023]
Abstract
Across diverse research and application areas, dynamic functionality-such as programmable changes in biochemical property, in mechanical property, or in microscopic or macroscopic architecture-is an increasingly common biomaterials design criterion, joining long-studied criteria such as cytocompatibility and biocompatibility, drug release kinetics, and controlled degradability or long-term stability in vivo. Despite tremendous effort, achieving dynamic functionality while simultaneously maintaining other desired design criteria remains a significant challenge. Reversible dynamic functionality, rather than one-time or one-way dynamic functionality, is of particular interest but has proven especially challenging. Such reversible functionality could enable studies that address the current gap between the dynamic nature of in vivo biological and biomechanical processes, such as cell traction, cell-extracellular matrix (ECM) interactions, and cell-mediated ECM remodeling, and the static nature of the substrates and ECM constructs used to study the processes. This review assesses dynamic materials that have traditionally been used to control cell activity and static biomaterial constructs, experimental and computational techniques, with features that may inform continued advances in reversible dynamic materials. Taken together, this review presents a perspective on combining the reversibility of smart materials and the in-depth dynamic cell behavior probed by static polymers to design smart bi-directional ECM platforms that can reversibly and repeatedly communicate with cells.
Collapse
Affiliation(s)
- Ameya R Narkar
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - Zhuoqi Tong
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - Pranav Soman
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| | - James H Henderson
- BioInspired Syracuse: Institute for Material and Living Systems, Syracuse University, Syracuse, NY, 13244, United States; Department of Biomedical and Chemical Engineering, Syracuse University, Syracuse, NY, 13244, United States.
| |
Collapse
|
7
|
Luo Y, Zheng X, Yuan P, Ye X, Ma L. Light-induced dynamic RGD pattern for sequential modulation of macrophage phenotypes. Bioact Mater 2021; 6:4065-4072. [PMID: 33997493 PMCID: PMC8089772 DOI: 10.1016/j.bioactmat.2021.04.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/29/2021] [Accepted: 04/12/2021] [Indexed: 12/04/2022] Open
Abstract
Due to the critical roles of macrophage in immune response and tissue repair, harnessing macrophage phenotypes dynamically to match the tissue healing process on demand attracted many attentions. Although there have developed many advanced platforms with dynamic features for cell manipulation, few studies have designed a dynamic chemical pattern to sequentially polarize macrophage phenotypes and meet the immune requirements at various tissue repair stages. Here, we propose a novel strategy for spatiotemporal manipulation of macrophage phenotypes by a UV-induced dynamic Arg-Gly-Asp (RGD) pattern. By employing a photo-patterning technique and the specific interaction between cyclodextrin (CD) and azobenzene-RGD (Azo-RGD), we prepared a polyethylene glycol-dithiol/polyethylene glycol-norbornene (PEG-SH/PEG-Nor) hydrogel with dynamic RGD-patterned surface. After irradiation with 365-nm UV light, the homogeneous RGD surface was transformed to the RGD-patterned surface which induced morphological transformation of macrophages from round to elongated and subsequent phenotypic transition from pro-inflammation to anti-inflammation. The mechanism of phenotypic polarization induced by RGD pattern was proved to be related to Rho-associated protein kinase 2 (ROCK2). Sequential modulation of macrophage phenotypes by the dynamic RGD-patterned surface provides a remote and non-invasive strategy to manipulate immune reactions and achieve optimized healing outcomes.
Collapse
Affiliation(s)
- Yilun Luo
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaowen Zheng
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Peiqi Yuan
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xingyao Ye
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lie Ma
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
8
|
Nie C, Liu C, Sun S, Wu S. Visible‐Light‐Controlled Azobenzene‐Cyclodextrin Host‐Guest Interactions for Biomedical Applications and Surface Functionalization. CHEMPHOTOCHEM 2021. [DOI: 10.1002/cptc.202100085] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Chen Nie
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Anhui Key Laboratory of Optoelectronic Science and Technology Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Chengwei Liu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Anhui Key Laboratory of Optoelectronic Science and Technology Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Shaodong Sun
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Anhui Key Laboratory of Optoelectronic Science and Technology Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry Hefei National Laboratory for Physical Sciences at the Microscale Anhui Key Laboratory of Optoelectronic Science and Technology Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
9
|
Wu K, Sun J, Ma Y, Wei D, Lee O, Luo H, Fan H. Spatiotemporal regulation of dynamic cell microenvironment signals based on an azobenzene photoswitch. J Mater Chem B 2020; 8:9212-9226. [PMID: 32929441 DOI: 10.1039/d0tb01737j] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Dynamic biochemical and biophysical signals of cellular matrix define and regulate tissue-specific cell functions and fate. To recapitulate this complex environment in vitro, biomaterials based on structural- or degradation-tunable polymers have emerged as powerful platforms for regulating the "on-demand" cell-material dynamic interplay. As one of the most prevalent photoswitch molecules, the photoisomerization of azobenzene demonstrates a unique advantage in the construction of dynamic substrates. Moreover, the development of azobenzene-containing biomaterials is particularly helpful in elucidating cells that adapt to a dynamic microenvironment or integrate spatiotemporal variations of signals. Herein, this minireview, places emphasis on the research progress of azobenzene photoswitches in the dynamic regulation of matrix signals. Some techniques and material design methods have been discussed to provide some theoretical guidance for the rational and efficient design of azopolymer-based material platforms. In addition, considering that the UV-light response of traditional azobenzene photoswitches is not conducive to biological applications, we have summarized the recent approaches to red-shifting the light wavelength for azobenzene activation.
Collapse
Affiliation(s)
- Kai Wu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Jing Sun
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Yanzhe Ma
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Dan Wei
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Oscar Lee
- Institute of Clinical Medicine National Yang-Ming University, Taipei, Taiwan
| | - Hongrong Luo
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, Sichuan, China.
| |
Collapse
|
10
|
Kim Y, Choi H, Shin JE, Bae G, Thangam R, Kang H. Remote active control of nanoengineered materials for dynamic nanobiomedical engineering. VIEW 2020. [DOI: 10.1002/viw.20200029] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Affiliation(s)
- Yuri Kim
- Department of Materials Science and Engineering Korea University Seoul Republic of Korea
| | - Hyojun Choi
- Department of Materials Science and Engineering Korea University Seoul Republic of Korea
| | - Jeong Eun Shin
- Department of Materials Science and Engineering Korea University Seoul Republic of Korea
| | - Gunhyu Bae
- Department of Materials Science and Engineering Korea University Seoul Republic of Korea
| | - Ramar Thangam
- Department of Materials Science and Engineering Korea University Seoul Republic of Korea
| | - Heemin Kang
- Department of Materials Science and Engineering Korea University Seoul Republic of Korea
- Department of Biomicrosystem Technology Korea University Seoul Republic of Korea
| |
Collapse
|
11
|
Mohamed MA, Fallahi A, El-Sokkary AM, Salehi S, Akl MA, Jafari A, Tamayol A, Fenniri H, Khademhosseini A, Andreadis ST, Cheng C. Stimuli-responsive hydrogels for manipulation of cell microenvironment: From chemistry to biofabrication technology. Prog Polym Sci 2019; 98. [DOI: 10.1016/j.progpolymsci.2019.101147] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Bu X, Zhang S, Zhang X, Suo T. Theoretical Study of the Optimal Design of a UV-Controllable Smart Surface Decorated by a Hybrid Azobenzene-Containing Polymer Layer. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:14141-14149. [PMID: 31587560 DOI: 10.1021/acs.langmuir.9b03009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Although grafting polymers onto surfaces is widely suggested for designing smart systems, optimizing the performance of such systems is not simple. In this article, we investigate an azo-polymer-based smart surface using the single-chain-in-mean-field theory. Through the numerical simulations, we study the adhesion/erasion transition of the system and show that the performance of the smart surface can be characterized by the difference between the effective nanoparticle-surface interactions in the UV-on and UV-off states. Further exploring the optimization of the smart surface, we find that the distribution function of the receptor can have typical bimodal characteristics, which is crucial for optimizing the position of the azo-bond along the azo-polymer, f. Moreover, the presence of the homopolymer is also essential for the optimal performance of the smart surface, and we build a reference map for the good combinations of f and the homopolymer design fhomo.
Collapse
Affiliation(s)
- Xiangyu Bu
- School of Science , Beijing Jiaotong University , Beijing 100044 , P. R. China
| | - Shuangshuang Zhang
- Department of Basic Courses , Tianjin Sino-German University of Applied Sciences , Tianjin 300350 , P. R. China
| | - Xinghua Zhang
- School of Science , Beijing Jiaotong University , Beijing 100044 , P. R. China
| | - Tongchuan Suo
- College of Pharmaceutical Engineering of Traditional Chinese Medicine , Tianjin University of Traditional Chinese Medicine , Tianjin 301617 , P. R. China
| |
Collapse
|
13
|
Mediating the Migration of Mesenchymal Stem Cells by Dynamically Changing the Density of Cell-selective Peptides Immobilized on β-Cyclodextrin-modified Cell-resisting Polymer Brushes. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2324-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
14
|
Zheng Y, Farrukh A, Del Campo A. Optoregulated Biointerfaces to Trigger Cellular Responses. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:14459-14471. [PMID: 30392367 DOI: 10.1021/acs.langmuir.8b02634] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Optoregulated biointerfaces offer the possibility to manipulate the interactions between cell membrane receptors and the extracellular space. This Invited Feature Article summarizes recent efforts by our group and others during the past decade to develop light-responsive biointerfaces to stimulate cells and elicit cellular responses using photocleavable protecting groups (PPG) as our working tool. This article begins by providing a brief introduction to available PPGs, with a special focus on the widely used o-nitrobenzyl family, followed by an overview of molecular design principles for the control of bioactivity in the context of cell-material interactions and the characterization methods to use in following the photoreaction at surfaces. We present various light-guided cellular processes using PPGs, including cell adhesion, release, migration, proliferation, and differentiation, both in vitro and in vivo. Finally, this Invited Feature Article closes with our perspective on the current status and future challenges of this topic.
Collapse
Affiliation(s)
- Yijun Zheng
- INM - Leibniz Institute for New Materials, Campus D2 2 , 66123 Saarbrücken , Germany
| | - Aleeza Farrukh
- INM - Leibniz Institute for New Materials, Campus D2 2 , 66123 Saarbrücken , Germany
| | - Aránzazu Del Campo
- INM - Leibniz Institute for New Materials, Campus D2 2 , 66123 Saarbrücken , Germany
- Chemistry Department , Saarland University , 66123 Saarbrücken , Germany
| |
Collapse
|
15
|
Cimmino C, Rossano L, Netti PA, Ventre M. Spatio-Temporal Control of Cell Adhesion: Toward Programmable Platforms to Manipulate Cell Functions and Fate. Front Bioeng Biotechnol 2018; 6:190. [PMID: 30564573 PMCID: PMC6288377 DOI: 10.3389/fbioe.2018.00190] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 11/21/2018] [Indexed: 01/06/2023] Open
Abstract
Biophysical and biochemical signals of material surfaces potently regulate cell functions and fate. In particular, micro- and nano-scale patterns of adhesion signals can finely elicit and affect a plethora of signaling pathways ultimately affecting gene expression, in a process known as mechanotransduction. Our fundamental understanding of cell-material signals interaction and reaction is based on static culturing platforms, i.e., substrates exhibiting signals whose configuration is time-invariant. However, cells in-vivo are exposed to arrays of biophysical and biochemical signals that change in time and space and the way cells integrate these might eventually dictate their behavior. Advancements in fabrication technologies and materials engineering, have recently enabled the development of culturing platforms able to display patterns of biochemical and biophysical signals whose features change in time and space in response to external stimuli and according to selected programmes. These dynamic devices proved to be particularly helpful in shedding light on how cells adapt to a dynamic microenvironment or integrate spatio-temporal variations of signals. In this work, we present the most relevant findings in the context of dynamic platforms for controlling cell functions and fate in vitro. We place emphasis on the technological aspects concerning the fabrication of platforms displaying micro- and nano-scale dynamic signals and on the physical-chemical stimuli necessary to actuate the spatio-temporal changes of the signal patterns. In particular, we illustrate strategies to encode material surfaces with dynamic ligands and patterns thereof, topographic relieves and mechanical properties. Additionally, we present the most effective, yet cytocompatible methods to actuate the spatio-temporal changes of the signals. We focus on cell reaction and response to dynamic changes of signal presentation. Finally, potential applications of this new generation of culturing systems for in vitro and in vivo applications, including regenerative medicine and cell conditioning are presented.
Collapse
Affiliation(s)
- Chiara Cimmino
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Lucia Rossano
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Paolo Antonio Netti
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| | - Maurizio Ventre
- Department of Chemical, Materials and Industrial Production Engineering, University of Naples Federico II, Naples, Italy
- Center for Advanced Biomaterials for Healthcare@CRIB, Fondazione Istituto Italiano di Tecnologia, Naples, Italy
| |
Collapse
|
16
|
Santos Gomes B, Cantini E, Tommasone S, Gibson JS, Wang X, Zhu Q, Ma J, McGettrick JD, Watson TM, Preece JA, Kirkman-Brown JC, Publicover SJ, Mendes PM. On-Demand Electrical Switching of Antibody-Antigen Binding on Surfaces. ACS APPLIED BIO MATERIALS 2018; 1:738-747. [PMID: 34996164 DOI: 10.1021/acsabm.8b00201] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
The development of stimuli-responsive interfaces between synthetic materials and biological systems is providing the unprecedented ability to modulate biomolecular interactions for a diverse range of biotechnological and biomedical applications. Antibody-antigen binding interactions are at the heart of many biosensing platforms, but no attempts have been made yet to control antibody-antigen binding in an on-demand fashion. Herein, a molecular surface was designed and developed that utilizes an electric potential to drive a conformational change in surface bound peptide moiety, to give on-demand control over antigen-antibody interactions on sensor chips. The molecularly engineered surfaces allow for propagation of conformational changes from the molecular switching unit to a distal progesterone antigen, resulting in promotion (ON state) or inhibition (OFF state) of progesterone antibody binding. The approach presented here can be generally applicable to other antigen-antibody systems and meets the technological needs for in situ long-term assessment of biological processes and disease monitoring on-demand.
Collapse
Affiliation(s)
- Bárbara Santos Gomes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Eleonora Cantini
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Stefano Tommasone
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Joshua S Gibson
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Xingyong Wang
- School of Chemistry, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Qiang Zhu
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | - Jing Ma
- School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
| | | | - Trystan M Watson
- College of Engineering, Swansea University, Swansea SA1 8EN, U.K
| | - Jon A Preece
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Jackson C Kirkman-Brown
- Centre for Human Reproductive Science, Institute of Metabolism and Systems Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Stephen J Publicover
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| | - Paula M Mendes
- School of Chemical Engineering, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K
| |
Collapse
|
17
|
Visible light controls cell adhesion on a photoswitchable biointerface. Colloids Surf B Biointerfaces 2018; 169:41-48. [DOI: 10.1016/j.colsurfb.2018.04.062] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/08/2018] [Accepted: 04/30/2018] [Indexed: 01/02/2023]
|
18
|
|
19
|
Hao Y, Cui H, Meng J, Wang S. Photo-responsive smart surfaces with controllable cell adhesion. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.09.029] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Li W, Yan Z, Ren J, Qu X. Manipulating cell fate: dynamic control of cell behaviors on functional platforms. Chem Soc Rev 2018; 47:8639-8684. [DOI: 10.1039/c8cs00053k] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We review the recent advances and new horizons in the dynamic control of cell behaviors on functional platforms and their applications.
Collapse
Affiliation(s)
- Wen Li
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Zhengqing Yan
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Jinsong Ren
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| | - Xiaogang Qu
- Laboratory of Chemical Biology and State Key Laboratory of Rare Earth Resource Utilization
- Changchun Institute of Applied Chemistry
- Chinese Academy of Science
- Changchun
- P. R. China
| |
Collapse
|
21
|
Wiemann M, Niebuhr R, Juan A, Cavatorta E, Ravoo BJ, Jonkheijm P. Photo-responsive Bioactive Surfaces Based on Cucurbit[8]uril-Mediated Host-Guest Interactions of Arylazopyrazoles. Chemistry 2017; 24:813-817. [PMID: 29283194 PMCID: PMC5814888 DOI: 10.1002/chem.201705426] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Indexed: 11/13/2022]
Abstract
A photoswitchable arylazopyrazole (AAP) derivative binds with cucurbit[8]uril (CB[8]) and methylviologen (MV2+) to form a 1:1:1 heteroternary host–guest complex with a binding constant of Ka=2×103
m−1. The excellent photoswitching properties of AAP are preserved in the inclusion complex. Irradiation with light of a wavelength of 365 and 520 nm leads to quantitative E‐ to Z‐ isomerization and vice versa, respectively. Formation of the Z‐isomer leads to dissociation of the complex as evidenced using 1H NMR spectroscopy. AAP derivatives are then used to immobilize bioactive molecules and photorelease them on demand. When Arg‐Gly‐Asp‐AAP (AAP–RGD) peptides are attached to surface bound CB[8]/MV2+ complexes, cells adhere and can be released upon irradiation. The heteroternary host–guest system offers highly reversible binding properties due to efficient photoswitching and these properties are attractive for designing smart surfaces.
Collapse
Affiliation(s)
- Maike Wiemann
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for, Biomedical Technology and Technical Medicine and of the MESA and Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Rebecca Niebuhr
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-University Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Alberto Juan
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for, Biomedical Technology and Technical Medicine and of the MESA and Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Emanuela Cavatorta
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for, Biomedical Technology and Technical Medicine and of the MESA and Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| | - Bart Jan Ravoo
- Organic Chemistry Institute and Center for Soft Nanoscience, Westfälische Wilhelms-University Münster, Corrensstrasse 40, 48149, Münster, Germany
| | - Pascal Jonkheijm
- Bioinspired Molecular Engineering Laboratory of the MIRA Institute for, Biomedical Technology and Technical Medicine and of the MESA and Institute for Nanotechnology, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands
| |
Collapse
|
22
|
Wei T, Zhan W, Yu Q, Chen H. Smart Biointerface with Photoswitched Functions between Bactericidal Activity and Bacteria-Releasing Ability. ACS APPLIED MATERIALS & INTERFACES 2017; 9:25767-25774. [PMID: 28726386 DOI: 10.1021/acsami.7b06483] [Citation(s) in RCA: 80] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Smart biointerfaces with capability to regulate cell-surface interactions in response to external stimuli are of great interest for both fundamental research and practical applications. Smart surfaces with "ON/OFF" switchability for a single function such as cell attachment/detachment are well-known and useful, but the ability to switch between two different functions may be seen as the next level of "smart". In this work reported, a smart supramolecular surface capable of switching functions reversibly between bactericidal activity and bacteria-releasing ability in response to UV-visible light is developed. This platform is composed of surface-containing azobenzene (Azo) groups and a biocidal β-cyclodextrin derivative conjugated with seven quaternary ammonium salt groups (CD-QAS). The surface-immobilized Azo groups in trans form can specially incorporate CD-QAS to achieve a strongly bactericidal surface that kill more than 90% attached bacteria. On irradiation with UV light, the Azo groups switch to cis form, resulting in the dissociation of the Azo/CD-QAS inclusion complex and release of dead bacteria from the surface. After the kill-and-release cycle, the surface can be easily regenerated for reuse by irradiation with visible light and reincorporation of fresh CD-QAS. The use of supramolecular chemistry represents a promising approach to the realization of smart, multifunctional surfaces, and has the potential to be applied to diverse materials and devices in the biomedical field.
Collapse
Affiliation(s)
- Ting Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| | - Wenjun Zhan
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| | - Qian Yu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| | - Hong Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University , 199 Ren'ai Road, Suzhou 215123, P.R. China
| |
Collapse
|
23
|
Freeman R, Stephanopoulos N, Álvarez Z, Lewis JA, Sur S, Serrano CM, Boekhoven J, Lee SS, Stupp SI. Instructing cells with programmable peptide DNA hybrids. Nat Commun 2017; 8:15982. [PMID: 28691701 PMCID: PMC5508132 DOI: 10.1038/ncomms15982] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/19/2017] [Indexed: 12/12/2022] Open
Abstract
The native extracellular matrix is a space in which signals can be displayed dynamically and reversibly, positioned with nanoscale precision, and combined synergistically to control cell function. Here we describe a molecular system that can be programmed to control these three characteristics. In this approach we immobilize peptide-DNA (P-DNA) molecules on a surface through complementary DNA tethers directing cells to adhere and spread reversibly over multiple cycles. The DNA can also serve as a molecular ruler to control the distance-dependent synergy between two peptides. Finally, we use two orthogonal DNA handles to regulate two different bioactive signals, with the ability to independently up- or downregulate each over time. This enabled us to discover that neural stem cells, derived from the murine spinal cord and organized as neurospheres, can be triggered to migrate out in response to an exogenous signal but then regroup into a neurosphere as the signal is removed.
Collapse
Affiliation(s)
- Ronit Freeman
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, USA
| | - Nicholas Stephanopoulos
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, USA
| | - Zaida Álvarez
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, USA
| | - Jacob A Lewis
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
| | - Shantanu Sur
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, USA
| | - Chris M Serrano
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
| | - Job Boekhoven
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, USA
| | - Sungsoo S. Lee
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, USA
| | - Samuel I. Stupp
- Simpson Querrey Institute for BioNanotechnology, Northwestern University, 303 East Superior Street, Chicago, Illinois 60611, USA
- Department of Biomedical Engineering, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, Northwestern University, 2220 Campus Drive, Evanston, Illinois 60208, USA
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, USA
- Department of Medicine, Northwestern University, 251 East Huron Street, Chicago, Illinois 60611, USA
| |
Collapse
|
24
|
Schmidt BVKJ, Barner-Kowollik C. Dynamisches makromolekulares Materialdesign - die Vielseitigkeit von Cyclodextrin-basierter Wirt-Gast-Chemie. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201612150] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Bernhard V. K. J. Schmidt
- Abteilung für Kolloidchemie; Max-Planck-Institut für Kolloid- und Grenzflächenforschung; 14424 Potsdam Deutschland
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering; Queensland University of Technology (QUT); 2 George Street Brisbane QLD 4000 Australien
- Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie; Karlsruher Institut für Technologie (KIT); Engesserstrasse 18 76131 Karlsruhe Deutschland
- Institut für Biologische Grenzflächen; Karlsruher Institut für Technologie (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Deutschland
| |
Collapse
|
25
|
Schmidt BVKJ, Barner-Kowollik C. Dynamic Macromolecular Material Design-The Versatility of Cyclodextrin-Based Host-Guest Chemistry. Angew Chem Int Ed Engl 2017; 56:8350-8369. [DOI: 10.1002/anie.201612150] [Citation(s) in RCA: 187] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Indexed: 01/23/2023]
Affiliation(s)
- Bernhard V. K. J. Schmidt
- Department of Colloid Chemistry; Max Planck Institute of Colloids and Interfaces; 14424 Potsdam Germany
| | - Christopher Barner-Kowollik
- School of Chemistry, Physics and Mechanical Engineering; Queensland University of Technology (QUT); 2 George Street QLD 4000 Brisbane Australia
- Macromolecular Architectures; Institut für Technische Chemie und Polymerchemie; Karlsruhe Institute of Technology (KIT); Engesserstrasse 18 76131 Karlsruhe Germany
- Institut für Biologische Grenzflächen; Karlsruhe Institute of Technology (KIT); Hermann-von-Helmholtz-Platz 1 76344 Eggenstein-Leopoldshafen Germany
| |
Collapse
|
26
|
Ma D, Zhou N, Zhang T, Hu K, Ma X, Gu N. Photoresponsive smart hydrogel microsphere via host-guest interaction for 3D cell culture. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.02.073] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
27
|
Hu C, Qu Y, Zhan W, Wei T, Cao L, Yu Q, Chen H. A supramolecular bioactive surface for specific binding of protein. Colloids Surf B Biointerfaces 2017; 152:192-198. [DOI: 10.1016/j.colsurfb.2017.01.025] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 01/04/2017] [Accepted: 01/14/2017] [Indexed: 12/17/2022]
|
28
|
Bian Q, Wang W, Wang S, Wang G. Light-Triggered Specific Cancer Cell Release from Cyclodextrin/Azobenzene and Aptamer-Modified Substrate. ACS APPLIED MATERIALS & INTERFACES 2016; 8:27360-27367. [PMID: 27648728 DOI: 10.1021/acsami.6b09734] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Cell adhesion behaviors of stimuli-responsive surfaces have attracted significant attention for their potential biomedical applications. Distinct from temperature and pH stimuli, photoswitching avoids the extra input of thermal energy or chemicals. Herein, we designed a novel reusable cyclodextrin (CD)-modified surface to realize photoswitched specific cell release utilizing host-guest interactions between CD and azobenzene. The azobenzene-grafted specific cell capture agent was assembled onto the CD-modified surface to form a smart surface controlling cell adhesion by light radiation. After UV light irradiation, the azobenzene switched from trans- to cis-isomers, and the cis-azobenzene was not recognized by CD due to the unmatched host-guest pairs; thus, the captured MCF-7 cells could be released. Light-triggered specific cancer cell release with high efficiency may afford a smart surface with significant potential applications for the isolation and analysis of circulating tumor cells.
Collapse
Affiliation(s)
- Qing Bian
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| | - Wenshuo Wang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Shutao Wang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing , Beijing 100083, China
| |
Collapse
|
29
|
Bian Q, Wang W, Han G, Chen Y, Wang S, Wang G. Photoswitched Cell Adhesion on Azobenzene-Containing Self-Assembled Films. Chemphyschem 2016; 17:2503-8. [PMID: 27146320 DOI: 10.1002/cphc.201600362] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Indexed: 11/09/2022]
Abstract
Stimuli-responsive surfaces that can regulate and control cell adhesion have attracted much attention for their great potential in diverse biomedical applications. Unlike for pH- and temperature-responsive surfaces, the process of photoswitching requires no additional input of chemicals or thermal energy. In this work, two different photoresponsive azobenzene films are synthesized by chemisorption and electrostatic layer-by-layer (LbL) assembly techniques. The LbL film exhibits a relatively loose packing of azobenzene chromophores compared with the chemisorbed film. The changes in trans/cis isomer ratio of the azobenzene moiety and the corresponding wettability of the LbL films are larger than those of the chemisorbed films under UV light irradiation. The tendency for cell adhesion on the LbL films decreases markedly after UV light irradiation, whereas adhesion on the chemisorbed films decreases only slightly, because the azobenzene chromophores stay densely packed. Interestingly, the tendency for cell adhesion can be considerably increased on rough substrates, the roughness being introduced by use of photolithography and inductively coupled plasma deep etching techniques. For the chemisorbed films on rough substrates, the amount of cells that adhere also changes slightly after UV light irradiation, whereas, the amount of cells that adhere to LbL films on rough substrates decreases significantly.
Collapse
Affiliation(s)
- Qing Bian
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Wenshuo Wang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Guoxiang Han
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yupeng Chen
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Shutao Wang
- Laboratory of Bio-inspired Smart Interface Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.
| | - Guojie Wang
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, China.
| |
Collapse
|
30
|
Cavatorta E, Verheijden ML, van Roosmalen W, Voskuhl J, Huskens J, Jonkheijm P. Functionalizing the glycocalyx of living cells with supramolecular guest ligands for cucurbit[8]uril-mediated assembly. Chem Commun (Camb) 2016; 52:7146-9. [PMID: 27169698 DOI: 10.1039/c6cc01693f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Multiple naphthol ligands were installed on the glycocalyx of white blood cells via metabolic labeling and subsequent strain promoted azide-alkyne cycloaddition. Only when cucurbit[8]uril was present to drive the formation of ternary complexes, cells specifically assembled on a methylviologen functionalized supported lipid bilayer through multivalent interactions.
Collapse
Affiliation(s)
- Emanuela Cavatorta
- Molecular Nanofabrication Group, MESA+ Institute for Nanotechnology, Department of Science and Technology, University of Twente, P. O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
31
|
Nietzold C, Dietrich P, Lippitz A, Panne U, Unger W. Cyclodextrin - ferrocene host - guest complexes on silicon oxide surfaces. SURF INTERFACE ANAL 2016. [DOI: 10.1002/sia.5958] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- C. Nietzold
- BAM Federal Institute for Materials Research and Testing; Unter den Eichen 87; Berlin 12205 Germany
| | - P. M. Dietrich
- BAM Federal Institute for Materials Research and Testing; Unter den Eichen 87; Berlin 12205 Germany
| | - A. Lippitz
- BAM Federal Institute for Materials Research and Testing; Unter den Eichen 87; Berlin 12205 Germany
| | - U. Panne
- BAM Federal Institute for Materials Research and Testing; Unter den Eichen 87; Berlin 12205 Germany
| | - W. E. S. Unger
- BAM Federal Institute for Materials Research and Testing; Unter den Eichen 87; Berlin 12205 Germany
| |
Collapse
|
32
|
Sankaran S, van Weerd J, Voskuhl J, Karperien M, Jonkheijm P. Photoresponsive Cucurbit[8]uril-Mediated Adhesion of Bacteria on Supported Lipid Bilayers. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6187-96. [PMID: 26469773 DOI: 10.1002/smll.201502471] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Indexed: 05/16/2023]
Abstract
In this work, the development of a photoresponsive platform for the presentation of bioactive ligands to study receptor-ligand interactions has been described. For this purpose, supramolecular host-guest chemistry and supported lipid bilayers (SLBs) have been combined in a microfluidic device. Quartz crystal microbalance with dissipation monitoring (QCM-D) studies on methyl viologen (MV)-functionalized oligo ethylene glycol-based self-assembled monolayers, gel and liquid-state SLBs have been compared for their nonfouling properties in the case of ConA and bacteria. In combination with bacterial adhesion test, negligible nonspecific bacterial adhesion is observed only in the case of methyl-viologen-modified liquid-state SLBs. Therefore, liquid-state SLBs have been identified as most suitable for studying specific cell interactions when MV is incorporated as a guest on the surface. The photoswitchable supramolecular ternary complex is formed by assembling cucurbit[8]uril (CB[8]) and an azobenzene-mannose conjugate (Azo-Man) onto MV-functionalized liquid-state SLBs and the assembly process has been characterized using QCM-D and fluorescence techniques. Mannose has been found to enable binding of E. coli via cell-surface receptors on the nonfouling supramolecular SLBs. Optical switching of the azobenzene moiety allows us to "erase" the bioactive surface after bacterial binding, providing the potential to develop reusable sensors. Localized photorelease of bacterial cells has also been shown indicating the possibility of optically guiding cellular growth, migration, and intercellular interactions.
Collapse
Affiliation(s)
- Shrikrishnan Sankaran
- Molecular Nanofabrication Group of the MESA+ Institute for Nanotechnology, Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Jasper van Weerd
- Molecular Nanofabrication Group of the MESA+ Institute for Nanotechnology, Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
- Department of Developmental Bioengineering of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Jens Voskuhl
- Molecular Nanofabrication Group of the MESA+ Institute for Nanotechnology, Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Marcel Karperien
- Department of Developmental Bioengineering of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| | - Pascal Jonkheijm
- Molecular Nanofabrication Group of the MESA+ Institute for Nanotechnology, Bioinspired Molecular Engineering Laboratory of the MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, P.O. Box 217, 7500, AE Enschede, The Netherlands
| |
Collapse
|
33
|
Han K, Yin WN, Fan JX, Cao FY, Zhang XZ. Photo-Activatable Substrates for Site-Specific Differentiation of Stem Cells. ACS APPLIED MATERIALS & INTERFACES 2015; 7:23679-23684. [PMID: 26452046 DOI: 10.1021/acsami.5b07455] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this report, a UV sensitive, PEGylated PFSSTKTC (Pro-Phe-Ser-Ser-Thr-Lys-Thr-Cys) peptide was modified on quartz substrate to investigate the spatial controlled differentiation of stem cells. This substrate could restrict the cell adhesion due to the steric hindrance of PEG shell. With UV irradiation, PFSSTKTC became exposed owing to the breakage of o-nitrobenzyl group with the detachment of PEG shell. The irradiation boundary on substrate was stable in the long term. The in vitro osteogenic differentiation results revealed that under the site-specific irradiation, the mesenchymal stem cells (MSCs) could specifically differentiate into osteoblast under the induction of PFSSTKTC peptide. This photoactivatable biomaterial shows great potential for region controllable and precise MSCs differentiation.
Collapse
Affiliation(s)
- Kai Han
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, China
- College of Science, Huazhong Agricultural University , Wuhan 430070, China
| | - Wei-Na Yin
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, China
| | - Feng-Yi Cao
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University , Wuhan 430072, China
| |
Collapse
|
34
|
Xue X, Yang J, Huang W, Yang H, Jiang B, Li F, Jiang Y. Dual thermo- and light-responsive nanorods from self-assembly of the 4-propoxyazobenzene-terminated poly(N-isopropylacrylamide) in aqueous solution. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.07.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
35
|
Dhowre HS, Rajput S, Russell NA, Zelzer M. Responsive cell–material interfaces. Nanomedicine (Lond) 2015; 10:849-71. [DOI: 10.2217/nnm.14.222] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Major design aspects for novel biomaterials are driven by the desire to mimic more varied and complex properties of a natural cellular environment with man-made materials. The development of stimulus responsive materials makes considerable contributions to the effort to incorporate dynamic and reversible elements into a biomaterial. This is particularly challenging for cell–material interactions that occur at an interface (biointerfaces); however, the design of responsive biointerfaces also presents opportunities in a variety of applications in biomedical research and regenerative medicine. This review will identify the requirements imposed on a responsive biointerface and use recent examples to demonstrate how some of these requirements have been met. Finally, the next steps in the development of more complex biomaterial interfaces, including multiple stimuli-responsive surfaces, surfaces of 3D objects and interactive biointerfaces will be discussed.
Collapse
Affiliation(s)
- Hala S Dhowre
- University of Nottingham, Neurophotonics Lab, Faculty of Engineering, Nottingham, NG7 2RD, UK
- University of Nottingham, School of Pharmacy, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
| | - Sunil Rajput
- University of Nottingham, Neurophotonics Lab, Faculty of Engineering, Nottingham, NG7 2RD, UK
- University of Nottingham, School of Pharmacy, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
| | - Noah A Russell
- University of Nottingham, Neurophotonics Lab, Faculty of Engineering, Nottingham, NG7 2RD, UK
| | - Mischa Zelzer
- University of Nottingham, School of Pharmacy, Boots Science Building, University Park, Nottingham, NG7 2RD, UK
- Interface & Surface Analysis Centre, Boots Science Building, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
- National Physical Laboratory, Teddington, Middlesex, TW11 0LW, UK
| |
Collapse
|
36
|
QIN CG, LU CX, OUYANG GW, QIN K, ZHANG F, SHI HT, WANG XH. Progress of Azobenzene-based Photoswitchable Molecular Probes and Sensory Chips for Chemical and Biological Analysis. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2015. [DOI: 10.1016/s1872-2040(15)60809-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
37
|
Cao FY, Yin WN, Fan JX, Zhuo RX, Zhang XZ. A novel function of BMHP1 and cBMHP1 peptides to induce the osteogenic differentiation of mesenchymal stem cells. Biomater Sci 2015. [DOI: 10.1039/c4bm00300d] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BMHP1 or cBMHP1 peptide is found to induce MSCs towards the osteogenic lineage when tethered to modified quartz substrates.
Collapse
Affiliation(s)
- Feng-Yi Cao
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Wei-Na Yin
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Jin-Xuan Fan
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Ren-Xi Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- PR China
| |
Collapse
|
38
|
Deng J, Liu X, Shi W, Cheng C, He C, Zhao C. Light-Triggered Switching of Reversible and Alterable Biofunctionality via β-Cyclodextrin/Azobenzene-Based Host-Guest Interaction. ACS Macro Lett 2014; 3:1130-1133. [PMID: 35610810 DOI: 10.1021/mz500568k] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Most of the recent reports focused on using cyclodextrin/azobenzene/polymer for reversible immobilization of biomolecules, the reversible photoswitching of biofunctions via universal and low-cost strategy, were barely investigated. Herein, we report light-triggered switching of reversible and alterable biofunctionality on silicon interface via β-cyclodextrin/azobenzene based host-guest interaction. Biofunctional azobenzene-grafted polymers were synthesized and assembled onto β-cyclodextrin anchored interfaces to form "smart" monolayers of light-triggered switchable brushes. The photoresponsive interfaces exhibit reversible and alterable biofunctionality switching from antibacterial/hemostatic to bioadhesion/anticoagulant upon ultraviolet and visible (UV-vis) light cycles.
Collapse
Affiliation(s)
- Jie Deng
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xinyue Liu
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Wenbin Shi
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chong Cheng
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chao He
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Changsheng Zhao
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
- National
Engineering Research Center for Biomaterials, Sichuan University, Chengdu 610064, China
| |
Collapse
|
39
|
Higuchi A, Ling QD, Kumar SS, Chang Y, Kao TC, Munusamy MA, Alarfaj AA, Hsu ST, Umezawa A. External stimulus-responsive biomaterials designed for the culture and differentiation of ES, iPS, and adult stem cells. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2014.05.001] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
40
|
Shen Q, Liu L, Zhang W. Fabrication of a photocontrolled surface with switchable wettability based on host-guest inclusion complexation and protein resistance. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:9361-9369. [PMID: 25053175 DOI: 10.1021/la500792v] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
A novel surface-modification strategy has been developed for the construction of a photocontrolled silicon wafer surface with switchable wettability based on host-guest inclusion complexation. The silicon wafer was first modified by guest molecule azobenzene (Azo) via a silanization reaction. Subsequently, a series of polymers with different polarities were attached to host molecule β-cyclodextrin (β-CD) to prepare β-CD-containing hemitelechelic polymers via click chemistry. Finally, a photocontrolled silicon wafer surface modified with polymers was fabricated by inclusion complexation between β-CD and Azo, and the surface properties of the substrate are dependent on the polymers we used. The elemental composition, surface morphology, and hydrophilic/hydrophobic property of the modified surfaces were characterized by X-ray photoelectron spectroscopy (XPS), atomic force microscope, and contact angle measurements, respectively. The antifouling property of the PEG-functionalized surface was evaluated by a protein adsorption assay using bovine serum albumin, which was also characterized by XPS. The results demonstrate that the surface modified with PEG possesses good protein-resistant properties.
Collapse
Affiliation(s)
- Qiongxia Shen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology , 130 Meilong Road, Shanghai 200237, China
| | | | | |
Collapse
|
41
|
Wang N, Zhang J, Sun L, Wang P, Liu W. Gene-modified cell detachment on photoresponsive hydrogels strengthened through hydrogen bonding. Acta Biomater 2014; 10:2529-38. [PMID: 24556449 DOI: 10.1016/j.actbio.2014.02.017] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 02/07/2014] [Accepted: 02/10/2014] [Indexed: 11/25/2022]
Abstract
Photoresponsive hydrogels are potentially useful as drug delivery and cell culture media, but there has been no report on manipulation of cell attachment/detachment and gene transfection simultaneously on the surface of this single gel. In the present study, strong light sensitive hydrogels were prepared mechanically by photoinitiated copolymerization of spiropyran-containing monomer, 2-vinyl-4,6-diamino-1,3,5-triazine, hydrogen bonding monomer, oligo(ethylene glycol) methacrylate and polyethylene glycol diacrylate (PEGDA, Mn=575). The multiple hydrogen bondings of diaminotriazine residues could contribute to the increase in compressive strengths of the photosensitive hydrogels up to 5.1MPa. UV (365nm) irradiation led to detachment of adhered cells as a result of the increased surface hydrophilicity caused by a switch from hydrophobic spiropyran to hydrophilic merocyanine form. Furthermore, selective detachment of cells could also be achieved by UV light illumination on the specified gel surface. Hydrogen bonding between diaminotriazines were shown to tightly anchor the PVDT/pDNA complex particles on the gel surface, where reverse gene transfection was achieved. Following up with UV irradiation triggered the unharmful detachment of gene-modified cells from the gel surface. It is envisioned that this photosensitive hydrogel holds potential as a versatile platform for operating gene delivery and controlled harvest of desired cells for tissue engineering.
Collapse
|
42
|
Zhang X, Zhao H, Tian D, Deng H, Li H. A Photoresponsive Wettability Switch Based on a Dimethylamino Calix[4]arene. Chemistry 2014; 20:9367-71. [DOI: 10.1002/chem.201402476] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2014] [Indexed: 01/27/2023]
|
43
|
Brinkmann J, Cavatorta E, Sankaran S, Schmidt B, van Weerd J, Jonkheijm P. About supramolecular systems for dynamically probing cells. Chem Soc Rev 2014; 43:4449-69. [PMID: 24681633 DOI: 10.1039/c4cs00034j] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This article reviews the state of the art in the development of strategies for generating supramolecular systems for dynamic cell studies. Dynamic systems are crucial to further our understanding of cell biology and are consequently at the heart of many medical applications. Increasing interest has therefore been focused recently on rendering systems bioactive and dynamic that can subsequently be employed to engage with cells. Different approaches using supramolecular chemistry are reviewed with particular emphasis on their application in cell studies. We conclude with an outlook on future challenges for dynamic cell research and applications.
Collapse
Affiliation(s)
- Jenny Brinkmann
- MESA+ Institute for Nanotechnology and Department of Science and Technology, Laboratory Group of Bioinspired Molecular Engineering, University of Twente, P.O. Box 217, 7500 AE, Enschede, The Netherlands.
| | | | | | | | | | | |
Collapse
|
44
|
Schmidt BV, Hetzer M, Ritter H, Barner-Kowollik C. Complex macromolecular architecture design via cyclodextrin host/guest complexes. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.09.006] [Citation(s) in RCA: 157] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
45
|
Voskuhl J, Sankaran S, Jonkheijm P. Optical control over bioactive ligands at supramolecular surfaces. Chem Commun (Camb) 2014; 50:15144-7. [DOI: 10.1039/c4cc03184a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Addressing whole protein and bacterial immobilization and their optical control on a β-cyclodextrin supramolecular platform.
Collapse
Affiliation(s)
- J. Voskuhl
- Laboratory Group Bioinspired Molecular Engineering
- MESA+ Institute for Nanotechnology
- Department of Science and Technology
- University of Twente
- , The Netherlands
| | - S. Sankaran
- Laboratory Group Bioinspired Molecular Engineering
- MESA+ Institute for Nanotechnology
- Department of Science and Technology
- University of Twente
- , The Netherlands
| | - P. Jonkheijm
- Laboratory Group Bioinspired Molecular Engineering
- MESA+ Institute for Nanotechnology
- Department of Science and Technology
- University of Twente
- , The Netherlands
| |
Collapse
|
46
|
Abstract
Recently, there has been an outburst of research on engineered cell-material interfaces driven by nanotechnology and its tools and techniques. This tutorial review begins by providing a brief introduction to nanostructured materials, followed by an overview of the wealth of nanoscale fabrication and analysis tools available for their development. This background serves as the basis for a discussion of early breakthroughs and recent key developments in the endeavour to develop nanostructured materials as smart interfaces for fundamental cellular studies, tissue engineering and regenerative medicine. The review covers three major aspects of nanostructured interfaces - nanotopographical control, dynamic behaviour and intracellular manipulation and sensing - where efforts are continuously being made to further understand cell function and provide new ways to control cell behaviour. A critical reflection of the current status and future challenges are discussed as a conclusion to the review.
Collapse
Affiliation(s)
- Paula M Mendes
- School of Chemical Engineering, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
47
|
Xiao Y, Friis EA, Gehrke SH, Detamore MS. Mechanical testing of hydrogels in cartilage tissue engineering: beyond the compressive modulus. TISSUE ENGINEERING. PART B, REVIEWS 2013; 19:403-12. [PMID: 23448091 PMCID: PMC3752504 DOI: 10.1089/ten.teb.2012.0461] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 02/08/2013] [Indexed: 11/12/2022]
Abstract
Injuries to articular cartilage result in significant pain to patients and high medical costs. Unfortunately, cartilage repair strategies have been notoriously unreliable and/or complex. Biomaterial-based tissue-engineering strategies offer great promise, including the use of hydrogels to regenerate articular cartilage. Mechanical integrity is arguably the most important functional outcome of engineered cartilage, although mechanical testing of hydrogel-based constructs to date has focused primarily on deformation rather than failure properties. In addition to deformation testing, as the field of cartilage tissue engineering matures, this community will benefit from the addition of mechanical failure testing to outcome analyses, given the crucial clinical importance of the success of engineered constructs. However, there is a tremendous disparity in the methods used to evaluate mechanical failure of hydrogels and articular cartilage. In an effort to bridge the gap in mechanical testing methods of articular cartilage and hydrogels in cartilage regeneration, this review classifies the different toughness measurements for each. The urgency for identifying the common ground between these two disparate fields is high, as mechanical failure is ready to stand alongside stiffness as a functional design requirement. In comparing toughness measurement methods between hydrogels and cartilage, we recommend that the best option for evaluating mechanical failure of hydrogel-based constructs for cartilage tissue engineering may be tensile testing based on the single edge notch test, in part because specimen preparation is more straightforward and a related American Society for Testing and Materials (ASTM) standard can be adopted in a fracture mechanics context.
Collapse
Affiliation(s)
- Yinghua Xiao
- Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas
| | | | - Stevin H. Gehrke
- Chemical and Petroleum Engineering, University of Kansas, Lawrence, Kansas
| | | |
Collapse
|
48
|
Gong YH, Yang J, Cao FY, Zhang J, Cheng H, Zhuo RX, Zhang XZ. Photoresponsive smart template for reversible cell micropatterning. J Mater Chem B 2013; 1:2013-2017. [DOI: 10.1039/c3tb20073f] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
49
|
Neirynck P, Brinkmann J, An Q, van der Schaft DWJ, Milroy LG, Jonkheijm P, Brunsveld L. Supramolecular control of cell adhesion via ferrocene–cucurbit[7]uril host–guest binding on gold surfaces. Chem Commun (Camb) 2013; 49:3679-81. [DOI: 10.1039/c3cc37592g] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Wang G, Zhang J. Photoresponsive molecular switches for biotechnology. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2012. [DOI: 10.1016/j.jphotochemrev.2012.06.002] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|