1
|
Ding Y, Tan K, Sheng L, Ren H, Su Z, Yang H, Zhang X, Li J, Hu P. Integrated mental stress smartwatch based on sweat cortisol and HRV sensors. Biosens Bioelectron 2024; 265:116691. [PMID: 39182413 DOI: 10.1016/j.bios.2024.116691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/11/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Mental stress, a human's common emotion that is difficult to recognize and describe, can give rise to serious psychological disorders. Skin and sweat are easily accessible sources of biomarkers and bio-signals that contain information about mental stress. It is challenging for current wearable devices to monitor psychological stress in real-time with a non-invasive manner. Therefore, we have developed a smartwatch integrated with a sweat cortisol sensor and a heart rate variation (HRV) sensor. This smartwatch can simultaneously record the cortisol levels in sweat and HRV index in real time over a long period. The cortisol sensors based on organic electrochemical transistor (OECT) are fabricated by utilizing the Prussian-blue (PB) doped molecular imprinting polymer (MIP) modified gate electrode. The sensor signal current will decrease following the combination of sweat cortisol, due to the blocking of the PBMIP conductive path, demonstrating good sensitivity, selectivity, and stability. The HRV sensor is manufactured by a photoplethysmography method. We have integrated the two sensors into a wearable smartwatch that can match well with the mobile phone APP and the upper computer software. Through the use of this smartwatch, we have observed a negative correlation between cortisol levels in sweat and the HRV index in short-term stressful environments. Our research presents a great progress in real-time and non-invasive monitoring human's stress levels, which promotes not only the stress management, but also better psychological research.
Collapse
Affiliation(s)
- Yanan Ding
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Kaiwen Tan
- School of Electrical Engineering and Automation, Harbin Institute of Technology, Harbin, 150001, China
| | - Li Sheng
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Huiwen Ren
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Zhen Su
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Hongying Yang
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Xin Zhang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Jianyang Li
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - PingAn Hu
- Key Laboratory of Micro-systems and Micro-structures Manufacturing of Ministry of Education, Harbin Institute of Technology, Harbin, 150001, China; School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China; School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
2
|
Zhang Y, Li X, Wu Y, Tang X, Lu X. Preparation and properties of hydrogel photonic crystals assembled by biodegradable nanogels. J Colloid Interface Sci 2024; 663:554-565. [PMID: 38428113 DOI: 10.1016/j.jcis.2024.02.185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 02/16/2024] [Accepted: 02/26/2024] [Indexed: 03/03/2024]
Abstract
Thermally induced physical hydrogels formed through the sol-gel transition of nanogels usually lose structural color above phase transition temperature (Tp). Herein, temperature/pH/redox-responsive nanogels that undergo sol-gel transition still keep structural colors above the Tp have been synthesized and studied. N-isopropylacrylamide (NIPAm) was copolymerized with N-tert-butylacrylamide (TBA) and N-acrylamido-l-phenylalanine (Aphe) to form P(NIPAm/TBA/Aphe) nanogel crosslinked with N,N'-bis(acryloyl)cystine (BISS) (referred to as PNTA-BISS). PNTA-BISS nanogel with a broad range of biodegradable crosslinker BISS content can achieve a reversible sol-gel transition above the Tp, surprisingly, while PNTA nanogels with a comparable content of biodegradable N,N'-Bis(acryloyl)cystam (BAC) crosslinker (referred to as PNTA-BAC) didn't form sol-gel transition. Although BISS and BAC possess same disulfide bonds with redox properties, BISS, unlike BAC, is water-soluble and features two carboxyl groups. The mechanism by which PNTA-BISS nanogels form hydrogel photonic crystals has been deeply explored with temperature-variable NMR. The results showed the introduction of Aphe with both steric hindrance and carboxyl groups greatly slowed down the shrinkage of PNTA-BISS nanogels. Therefore, PNTA-BISS nanogels can form sol-gel transition and further structural color of hydrogel photonic crystals due to carboxyl groups above the Tp. Furthermore, the properties of biodegradable hydrogel photonic crystals above the Tp were investigated for the first time, attributed to the presence of the strong reducing agent 1,4-dithiothreitol (DTT). When loaded with doxorubicin (DOX), PNTA-BISS exhibited favorable degradation properties under the influence of DTT. In summary, the PNTA-BISS nanogel, in addition to its in-situ gelation capabilities, demonstrated degradability, potentially providing a novel nanoplatform for applications in drug delivery, biotechnology, and related fields.
Collapse
Affiliation(s)
- Yan Zhang
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Xueting Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China; Shanghai Evanston Advanced Materials Sci. & Tech. Co. Ltd., Yangpu, Shanghai 244000, China
| | - Youtong Wu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoliang Tang
- College of Science, Donghua University, Shanghai 201620, China
| | - Xihua Lu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, China; Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Jinjiang Innovation Entrepreneurship and Creativity Park, Jinjiang, Fujian 362200, China; Shanghai Evanston Advanced Materials Sci. & Tech. Co. Ltd., Yangpu, Shanghai 244000, China.
| |
Collapse
|
3
|
Xu S, Qian Z, Zhao N, Yuan W. Thermoresponsive injectable self-healing hydrogel containing polydopamine-coated Fe/Mo-doped TiO 2 nanoparticles for efficient synergistic sonodynamic-chemodynamic-photothermal-chemo therapy. J Colloid Interface Sci 2024; 654:1431-1446. [PMID: 37922629 DOI: 10.1016/j.jcis.2023.10.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/20/2023] [Accepted: 10/27/2023] [Indexed: 11/07/2023]
Abstract
A smart hydrogel loading multifunctional nanoparticles and anticancer drugs was designed to achieve synergistic therapy against tumors with high efficiency and specificity. The thermoresponsive injectable self-healing hydrogel was prepared through the Schiff base between aldehyde-functionalized poly(2-(2-methoxyethoxy) ethyl methacrylate)-co-oligo(ethylene glycol) methacrylate-co-2-hydroxyethyl methacrylate) (P(MEO2MA-co-OEGMA-co-HEMA), APMOH) and hydroxypropyl chitosan (HPCS). The polydopamine-coated Fe/Mo-doped titanium dioxide nanoparticles (PDA@dTiO2 NPs) were prepared and dispersed into the hydrogel with anticancer drug doxorubicin (DOX). PDA@dTiO2 NPs as sonosensitizers can convert oxygen into singlet oxygen (1O2) under ultrasound (US) irradiation, achieving sonodynamic therapy (SDT). They were also considered nanoenzymes, generating oxygen to supply an oxygen source for SDT, producing hydroxyl radical (·OH) to achieve chemodynamic therapy (CDT), and eliminating glutathione (GSH) to enhance the level of oxidative stress. After near-infrared (NIR) irradiation, the temperature of the hydrogel increased due to the photothermal ability of the polydopamine (PDA) layer. When the temperature reached the hydrogel's lower critical solution temperature (LCST), the hydrophilic-hydrophobic transformation occurred, and the hydrogel volume contracted. Consequently, the release rate of PDA@dTiO2 NPs and DOX increased, improving the therapeutic effects. The nanocomposite hydrogel system can achieve synergistic sonodynamic-chemodynamic-photothermal-chemo therapy (SDT-CDT-PTT-CT) for tumors, providing a novel platform for synergistic tumor treatment.
Collapse
Affiliation(s)
- Sicheng Xu
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Zhiyi Qian
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Nuoya Zhao
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China
| | - Weizhong Yuan
- School of Materials Science and Engineering, Key Laboratory of Advanced Civil Materials of Ministry of Education, Tongji University, Shanghai 201804, People's Republic of China.
| |
Collapse
|
4
|
Li X, Li X, Xia T, Chen W, Shea KJ, Lu X. Remarkable sol-gel transition of PNIPAm-based nanogels via large steric hindrance of side-chains. MATERIALS HORIZONS 2023; 10:4452-4462. [PMID: 37503733 DOI: 10.1039/d3mh00892d] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
While the block/graft/branched structures are widely studied to favor the reversible physical gelation, there are no reports regarding the steric hindrance-induced sol-gel transition of PNIPAm-based nanogels above their phase transition temperature (Tp). Generally, the introduction of hydrophobic components into poly (N-isopropylacrylamide) (PNIPAm)-based nanogels only led to collapse and lower viscosity instead of the sol-gel transition upon heating above the Tp. Herein, the results of temperature-variable 1HNMR and FTIR confirm that the introduction of hydrophobic N-tert-butylacrylamide (TBA) with the large steric hindrance of side groups of N-tert-butyl to form NIPAm/TBA copolymer nanogels can dramatically slow down the dehydration of all the hydrophobic alkyl groups, thus resulting in the formation of thermally induced sol-gel transition above the Tp. Furthermore, the N-acrylamido-L-phenylalanine (APhe) monomer composed of a strongly water absorbing carboxyl group and a phenyl group with larger steric hindrance is studied to form P(NIPAm/TBA/APhe) terpolymer nanogels which can self-assemble into colorful colloidal crystals. Surprisingly, owing to the synergistic effect between the water absorbing carboxyl group and the steric hindrance group on the same side group, these colloidal crystals can achieve sol-gel transition above Tp, forming a physically crosslinked colorful hydrogel. This work is expected to greatly advance the design, synthesis, and application of the sol-gel transition of PNIPAm-based nanogel systems.
Collapse
Affiliation(s)
- Xiaoxiao Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, People's Republic of China
| | - Xueting Li
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
- Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Three Creation Park, Jinjiang, Fujian 362200, People's Republic of China
- Anhui Microdelivery Smart Microcapsule Sci. & Tech. Co. Ltd., Tongling, Anhui 244000, People's Republic of China
| | - Tingting Xia
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Wei Chen
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
| | - Kenneth J Shea
- Department of Chemistry, University of California, Irvine, California 92697, USA
| | - Xihua Lu
- College of Chemistry and Chemical Engineering, Donghua University, Shanghai 201620, People's Republic of China.
- Fujian Nano-Micro Advanced Materials Sci. & Tech. Co. Ltd., Three Creation Park, Jinjiang, Fujian 362200, People's Republic of China
- Anhui Microdelivery Smart Microcapsule Sci. & Tech. Co. Ltd., Tongling, Anhui 244000, People's Republic of China
| |
Collapse
|
5
|
Elafify MS, Itagaki T, Elkasabgy NA, Sayed S, Ito Y, Ueda M. Reversible transformation of peptide assembly between densified-polysarcosine-driven kinetically and helix-orientation-driven thermodynamically stable morphologies. Biomater Sci 2023; 11:6280-6286. [PMID: 37548917 DOI: 10.1039/d3bm00714f] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Stimuli-responsive transformable biomaterials development can be manipulated practically by fine-tuning the built-in molecular design of their structural segments. Here, we demonstrate a peptide assembly by the bola-type amphiphilic polypeptide, glycolic acid-polysarcosine (PSar)13-b-(L-Leu-Aib)6-b-PSar13-glycolic acid (S13L12S13), which shows morphological transformations between hydrophilic chain-driven and hydrophobic unit-driven morphologies. The hydrophobic α-helical unit (L-Leu-Aib)6 precisely controls packing in the hydrophobic layer of the assembly and induces tubule formation. The densified, hydrophilic PSar chain on the assembly surface becomes slightly more hydrophobic as the temperature increases above 70 °C, starting to disturb the helix-helix interaction-driven formation of tubules. As a result, the S13L12S13 peptide assembly undergoes a reversible vesicle-nanotube transformation following a time course at room temperature and a heat treatment above 80 °C. Using membrane fluidity analysis with DPH and TMA-DPH and evaluating the environment surrounding the PSar side chain with NMR, we clarify that the vesicle was in a kinetically stable state driven by the dehydrated PSar chain, while the nanotube was in a thermodynamically stable state.
Collapse
Affiliation(s)
- Mohamed S Elafify
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Menoufia University, Gamal Abdel El-Nasr Street, Shebin El-Kom, Menoufia 32511, Egypt
| | - Toru Itagaki
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
| | - Nermeen A Elkasabgy
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Sinar Sayed
- Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo 11562, Egypt
| | - Yoshihiro Ito
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Motoki Ueda
- RIKEN Cluster for Pioneering Research (CPR), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan.
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
6
|
Terada E, Isono T, Satoh T, Yamamoto T, Kakuchi T, Sato S. All-Atom Molecular Dynamics Simulations of the Temperature Response of Poly(glycidyl ether)s with Oligooxyethylene Side Chains Terminated with Alkyl Groups. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13101628. [PMID: 37242043 DOI: 10.3390/nano13101628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023]
Abstract
Recently, experimental investigations of a class of temperature-responsive polymers tethered to oligooxyethylene side chains terminated with alkyl groups have been conducted. In this study, aqueous solutions of poly(glycidyl ether)s (PGE) with varying numbers of oxyethylene units, poly(methyl(oligooxyethylene)n glycidyl ether) (poly(Me(EO)nGE)), and poly(ethyl(oligooxyethylene)n glycidyl ether) (poly(Et(EO)nGE) (n = 0, 1, and 2) were investigated by all-atom molecular dynamics simulations, focusing on the thermal responses of their chain extensions, the recombination of intrapolymer and polymer-water hydrogen bonds, and water-solvation shells around the alkyl groups. No clear relationship was established between the phase-transition temperature and the polymer-chain extensions unlike the case for the coil-globule transition of poly(N-isopropylacrylamide). However, the temperature response of the first water-solvation shell around the alkyl group exhibited a notable correlation with the phase-transition temperature. In addition, the temperature at which the hydrophobic hydration shell strength around the terminal alkyl group equals the bulk water density (TCRP) was slightly lower than the cloud point temperature (TCLP) for the methyl-terminated poly(Me(EO)nGE) and slightly higher for the ethyl-terminated poly(Et(EO)nGE). It was concluded that the polymer-chain fluctuation affects the relationship between TCRP and TCLP.
Collapse
Affiliation(s)
- Erika Terada
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Isono
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toshifumi Satoh
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Takuya Yamamoto
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| | - Toyoji Kakuchi
- Research Center for Polymer Materials, School of Materials Science and Engineering, Changchun University of Science and Technology, Weixing Road 7989, Changchun 130012, China
| | - Shinichiro Sato
- Graduate School of Chemical Science and Engineering, Hokkaido University, Sapporo 060-8628, Japan
- Faculty of Engineering, Hokkaido University, Sapporo 060-8628, Japan
| |
Collapse
|
7
|
Ozer I, Slezak A, Sirohi P, Li X, Zakharov N, Yao Y, Everitt JI, Spasojevic I, Craig SL, Collier JH, Campbell JE, D'Alessio DA, Chilkoti A. An injectable PEG-like conjugate forms a subcutaneous depot and enables sustained delivery of a peptide drug. Biomaterials 2023; 294:121985. [PMID: 36630826 PMCID: PMC10918641 DOI: 10.1016/j.biomaterials.2022.121985] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 12/20/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Many biologics have a short plasma half-life, and their conjugation to polyethylene glycol (PEG) is commonly used to solve this problem. However, the improvement in the plasma half-life of PEGylated drugs' is at an asymptote because the development of branched PEG has only had a modest impact on pharmacokinetics and pharmacodynamics. Here, we developed an injectable PEG-like conjugate that forms a subcutaneous depot for the sustained delivery of biologics. The PEG-like conjugate consists of poly[oligo(ethylene glycol) methyl ether methacrylate] (POEGMA) conjugated to exendin, a peptide drug used in the clinic to treat type 2 diabetes. The depot-forming exendin-POEGMA conjugate showed greater efficacy than a PEG conjugate of exendin as well as Bydureon, a clinically approved sustained-release formulation of exendin. The injectable depot-forming exendin-POEGMA conjugate did not elicit an immune response against the polymer, so that it remained effective and safe for long-term management of type 2 diabetes upon chronic administration. In contrast, the PEG conjugate induced an anti-PEG immune response, leading to early clearance and loss of efficacy upon repeat dosing. The exendin-POEGMA depot also showed superior long-term efficacy compared to Bydureon. Collectively, these results suggest that an injectable POEGMA conjugate of biologic drugs that forms a drug depot under the skin, providing favorable pharmacokinetic properties and sustained efficacy while remaining non-immunogenic, offers significant advantages over other commonly used drug delivery technologies.
Collapse
Affiliation(s)
- Imran Ozer
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Anna Slezak
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Parul Sirohi
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Xinghai Li
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Nikita Zakharov
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Yunxin Yao
- Department of Chemistry, Duke University, Durham, NC, USA
| | - Jeffrey I Everitt
- Department of Pathology, Duke University Medical Center, Durham, NC, USA
| | - Ivan Spasojevic
- Duke School of Medicine, Department of Medicine-Oncology, Durham, NC, USA; Duke Cancer Institute, PK/PD Core Laboratory, Durham, NC, USA
| | | | - Joel H Collier
- Department of Biomedical Engineering, Duke University, Durham, NC, USA
| | - Jonathan E Campbell
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Division of Endocrinology, Duke University Medical Center, Durham, NC, USA; Department of Pharmacology and Cancer Biology, Duke University, Durham, NC, USA
| | - David A D'Alessio
- Duke Molecular Physiology Institute, Duke University, Durham, NC, USA; Division of Endocrinology, Duke University Medical Center, Durham, NC, USA
| | - Ashutosh Chilkoti
- Department of Biomedical Engineering, Duke University, Durham, NC, USA.
| |
Collapse
|
8
|
Temperature-adaptive hydrogel optical waveguide with soft tissue-affinity for thermal regulated interventional photomedicine. Nat Commun 2022; 13:7789. [PMID: 36526631 PMCID: PMC9758120 DOI: 10.1038/s41467-022-35440-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 12/02/2022] [Indexed: 12/23/2022] Open
Abstract
Photomedicine has gained great attention due to its nontoxicity, good selectivity and small trauma. However, owing to the limited penetration of light and difficult monitoring of the photo-media therapies, it is challenging to apply photomedical treatment in deep tissue as they may damage normal tissues. Herein, a thermal regulated interventional photomedicine based on a temperature-adaptive hydrogel fiber-based optical waveguide (THFOW) is proposed, capable of eliminating deeply seated tumor cells while lowering risks of overtemperature (causes the death of healthy cells around the tumor). The THFOW is fabricated by an integrated homogeneous-dynamic-crosslinking-spinning method, and shows a remarkable soft tissue-affinity (low cytotoxicity, swelling stability, and soft tissue-like Young's modulus). Moreover, the THFOW shows an excellent light propagation property with different wavenumbers (especially -0.32 dB cm-1 with 915 nm laser light), and temperature-gated light propagation effect. The THFOW and relevant therapeutic strategy offer a promising application for intelligent photomedicine in deep issue.
Collapse
|
9
|
Miclotte MJ, Varlas S, Reynolds CD, Rashid B, Chapman E, O’Reilly RK. Thermoresponsive Block Copolymer Core-Shell Nanoparticles with Tunable Flow Behavior in Porous Media. ACS APPLIED MATERIALS & INTERFACES 2022; 14:54182-54193. [PMID: 36401811 PMCID: PMC9743085 DOI: 10.1021/acsami.2c15024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
With the purpose of investigating new polymeric materials as potential flow modifiers for their future application in enhanced oil recovery (EOR), a series of amphiphilic poly(di(ethylene glycol) methyl ether methacrylate-co-oligo(ethylene glycol) methyl ether methacrylate) [P(DEGMA-co-OEGMA)]-based core-shell nanoparticles were prepared by aqueous reversible addition-fragmentation chain transfer-mediated polymerization-induced self-assembly. The developed nano-objects were shown to be thermoresponsive, demonstrating a reversible lower-critical solution temperature (LCST)-type phase transition with increasing solution temperature. Characterization of their thermoresponsive nature by variable-temperature UV-vis and dynamic light scattering analyses revealed that these particles reversibly aggregate when heated above their LCST and that the critical transition temperature could be accurately tuned by simply altering the molar ratio of core-forming monomers. Sandpack experiments were conducted to evaluate their pore-blocking performance at low flow rates in a porous medium heated at temperatures above their LCST. This analysis revealed that particles aggregated in the sandpack column and caused pore blockage with a significant reduction in the porous medium permeability. The developed aggregates and the increased pressure generated by the blockage were found to remain stable under the injection of brine and were observed to rapidly dissipate upon reducing the temperature below the LCST of each formulation. Further investigation by double-column sandpack analysis showed that the blockage was able to reform when re-heated and tracked the thermal front. Moreover, the rate of blockage formation was observed to be slower when the LCST of the injected particles was higher. Our investigation is expected to pave the way for the design of "smart" and versatile polymer technologies for EOR applications in future studies.
Collapse
Affiliation(s)
| | - Spyridon Varlas
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Carl D. Reynolds
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| | - Bilal Rashid
- BP
Exploration Operating Company Ltd., Sunbury-on-Thames, Middlesex TW16 7LN, U.K.
| | - Emma Chapman
- BP
Exploration Operating Company Ltd., Sunbury-on-Thames, Middlesex TW16 7LN, U.K.
| | - Rachel K. O’Reilly
- School
of Chemistry, University of Birmingham, Edgbaston, Birmingham B15 2TT, U.K.
| |
Collapse
|
10
|
Nishida K, Anada T, Tanaka M. Roles of interfacial water states on advanced biomedical material design. Adv Drug Deliv Rev 2022; 186:114310. [PMID: 35487283 DOI: 10.1016/j.addr.2022.114310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/12/2022] [Accepted: 04/21/2022] [Indexed: 12/15/2022]
Abstract
When biomedical materials come into contact with body fluids, the first reaction that occurs on the material surface is hydration; proteins are then adsorbed and denatured on the hydrated material surface. The amount and degree of denaturation of adsorbed proteins affect subsequent cell behavior, including cell adhesion, migration, proliferation, and differentiation. Biomolecules are important for understanding the interactions and biological reactions of biomedical materials to elucidate the role of hydration in biomedical materials and their interaction partners. Analysis of the water states of hydrated materials is complicated and remains controversial; however, knowledge about interfacial water is useful for the design and development of advanced biomaterials. Herein, we summarize recent findings on the hydration of synthetic polymers, supramolecular materials, inorganic materials, proteins, and lipid membranes. Furthermore, we present recent advances in our understanding of the classification of interfacial water and advanced polymer biomaterials, based on the intermediate water concept.
Collapse
Affiliation(s)
- Kei Nishida
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan; Department of Life Science and Technology, School of Life Science and Technology, Tokyo Institute of Technology, Japan(1)
| | - Takahisa Anada
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan
| | - Masaru Tanaka
- Institute for Materials Chemistry and Engineering Kyushu university, 744 Motooka, Nishi-ku Fukuoka 819-0395, Japan.
| |
Collapse
|
11
|
Razzaq W, Serra CA, Chan-Seng D. Microfluidic Janus fibers with dual thermoresponsive behavior for thermoactuation. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
12
|
Xu J, Abetz V. Synthesis of a Degradable Hydrogel Based on a Graft Copolymer with Unexpected Thermoresponsiveness. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jingcong Xu
- Institute of Physical Chemistry Universität Hamburg Grindelallee 117 Hamburg 20146 Germany
| | - Volker Abetz
- Institute of Physical Chemistry Universität Hamburg Grindelallee 117 Hamburg 20146 Germany
- Institute of Membrane Research Helmholtz‐Zentrum Hereon Max‐Planck‐Straße 1 Geesthacht 21502 Germany
| |
Collapse
|
13
|
Xu J, Abetz V. Double thermoresponsive graft copolymers with different chain ends: feasible precursors for covalently crosslinked hydrogels. SOFT MATTER 2022; 18:2082-2091. [PMID: 35199817 DOI: 10.1039/d1sm01692j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The tailored synthesis of graft copolymers from acrylic and methacrylic monomers can be accomplished solely through photoiniferter reversible addition-fragmentation chain transfer (RAFT) polymerization. Samples with poly[oligo(ethylene glycol) methacrylate] (POEGMA) backbones synthesized under green light irradiation and poly(N-isopropylacrylamide) (PNIPAM) side chains growing under blue light irradiation are presented. As monitored by temperature-dependent dynamic light scattering (DLS) measurements and temperature-variable nuclear magnetic resonance (NMR) spectroscopy, the architecture of the graft copolymers allows unique two-step lower critical solution temperature (LCST) transitions in aqueous solutions. Meanwhile, different end-groups introduced by the corresponding RAFT agents affect the detailed thermoresponsive behavior remarkably. This RAFT strategy shows more advantages when the multiple trithiocarbonate groups are converted into thiol reactive pyridyl disulfide (PDS) groups via a facile post-polymerization modification. The PDS-terminated graft copolymer can then be regarded as a usable precursor for various applications, such as thermoresponsive hydrogels.
Collapse
Affiliation(s)
- Jingcong Xu
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Volker Abetz
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
- Institute of Membrane Research, Helmholtz-Zentrum Hereon, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| |
Collapse
|
14
|
Ge W, Zhang F, Wang D, Wei Q, Li Q, Feng Z, Feng S, Xue X, Qing G, Liu Y. Highly Tough, Stretchable, and Solvent-Resistant Cellulose Nanocrystal Photonic Films for Mechanochromism and Actuator Properties. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107105. [PMID: 35107207 DOI: 10.1002/smll.202107105] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/17/2021] [Indexed: 05/24/2023]
Abstract
Cellulose nanocrystals (CNCs)-derived photonic materials have confirmed great potential in producing renewable optical and engineering areas. However, it remains challenging to simultaneously possess toughness, strength, and multiple responses for developing high-performance sensors, intelligent coatings, flexible textiles, and multifunctional devices. Herein, the authors report a facile and robust strategy that poly(ethylene glycol) dimethacrylate (PEGDMA) can be converged into the chiral nematic structure of CNCs by ultraviolet-triggered free radical polymerization in an N,N-dimethylformamide solvent system. The resulting CNC-poly(PEGDMA) composite exhibits impressive strength (42 MPa), stretchability (104%), toughness (31 MJ m-3 ), and solvent resistance. Notably, it preserves vivid optical iridescence, displaying stretchable variation from red, yellow, to green responding to the applied mechanical stimuli. More interestingly, upon exposure to spraying moisture, it executes sensitive actuation (4.6° s-1 ) and multiple complex 3D deformation behaviors, accompanied by synergistic iridescent appearances. Due to its structural anisotropy of CNC with typical left-handedness, the actuation shows the capability to generate a high probability (63%) of right-handed helical shapes, mimicking a coiled tendril. The authors envision that this versatile system with sustainability, robustness, mechanochromism, and specific actuating ability will open a sustainable avenue in mechanical sensors, stretchable optics, intelligent actuators, and soft robots.
Collapse
Affiliation(s)
- Wenna Ge
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Fusheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
| | - Quanmao Wei
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Qiongya Li
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Zhixin Feng
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Shile Feng
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| | - Xingya Xue
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yahua Liu
- School of Mechanical Engineering, Dalian University of Technology, Dalian, 116024, P. R. China
| |
Collapse
|
15
|
Kureha T, Ohira M, Takahashi Y, Li X, Gilbert EP, Shibayama M. Nanoscale Structures of Poly(oligo ethylene glycol methyl ether methacrylate) Hydrogels Revealed by Small-Angle Neutron Scattering. Macromolecules 2022. [DOI: 10.1021/acs.macromol.1c02259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Takuma Kureha
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Masashi Ohira
- Department of Bioengineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8685, Japan
| | - Yuki Takahashi
- Department of Frontier Materials Chemistry, Graduate School of Science and Technology, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori 036-8561, Japan
| | - Xiang Li
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Elliot P. Gilbert
- Australian Centre for Neutron Scattering, Australian Nuclear Science and Technology Organisation, New Illawarra Road, Lucas Heights, New South Wales 2234, Australia
| | - Mitsuhiro Shibayama
- Neutron Science and Technology Center, Comprehensive Research Organization for Science and Society, 162-1 Tokai, Ibaraki 319-1106, Japan
| |
Collapse
|
16
|
Stimuli-responsive copolymeric hydrogels based on oligo(ethylene glycol) dimethacrylate for biomedical applications: An optimisation study of pH and thermoresponsive behaviour. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2021.105140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Influence of TEMPO oxidation on the properties of ethylene glycol methyl ether acrylate grafted cellulose sponges. Carbohydr Polym 2021; 272:118458. [PMID: 34420718 DOI: 10.1016/j.carbpol.2021.118458] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/25/2021] [Accepted: 07/16/2021] [Indexed: 11/21/2022]
Abstract
In this study, cellulose nanofibers (CNF) obtained via high-pressure microfluidization were 2,6,6-tetra-methylpiperidine-1-oxyl (TEMPO) oxidized (TOCNF) in order to facilitate the grafting of ethylene glycol methyl ether acrylate (EGA). FTIR and XPS analyses revealed a more efficient grafting of EGA oligomers on the surface of TOCNF as compared to the original CNF. As a result, a consistent covering of the TOCNF fibers with EGA oligomers, an increased hydrophobicity and a reduction in porosity were noticed for TOCNF-EGA. However, the swelling ratio of TOCNF-EGA was similar to that of original CNF grafted with EGA and higher than that of TOCNF, because the higher amount of grafted EGA onto oxidized cellulose and the looser structure reduced the contacts between the fibrils and increased the absorption of water. All these results corroborated with a good cytocompatibility and compression strength recommend TOCNF-EGA for applications in regenerative medicine.
Collapse
|
18
|
Aoki D, Miyake A, Tachaboonyakiat W, Ajiro H. Remarkable diastereomeric effect on thermoresponsive behavior of polyurethane based on lysine and tartrate ester derivatives. RSC Adv 2021; 11:35607-35613. [PMID: 35493186 PMCID: PMC9043254 DOI: 10.1039/d1ra05877k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 10/23/2021] [Indexed: 11/24/2022] Open
Abstract
This study describes the long-distance diastereomeric effect on thermoresponsive properties in water-soluble diastereomeric polyurethanes (PUs) composed of an l-lysine ethyl ester diisocyanate and a trimethylene glycol l-/d-tartrate ester, which have differences in spatial arrangements of the ethyl esters in the mirror image. The PUs based on l-lysine and l-/d-tartrate ester, named l-PU and d-PU, were synthesized with various number average molecular weights from 4700 to 13 100. In turbidimetry, l-PU showed a steep phase transition from 100%T to 0%T within about 10 °C at 4 g L−1, whereas d-PU did not change completely to 0%T transmittance even at 80 °C at 4 g L−1. In addition, the thermoresponsive properties of l-PU were less affected by concentration than those of d-PU. This long-distance diastereomeric effect on thermoresponsive behavior between l-PU and d-PU appeared in common among 6 samples with 4700 to 13 100 number average molecular weight. In the dynamic light scattering experiments at each transmittance, the hydrodynamic diameter (Dh) of l-PU increased up to 1000 nm, while the Dh of d-PU remained almost at 200–300 nm. The C
Created by potrace 1.16, written by Peter Selinger 2001-2019
]]>
O stretching vibration of FT-IR spectra showed that d-PU has more hydrogen-bonded ester groups than L-PU. Thus, we speculated that the difference in the retention of polymer chains in the micelle to promote intermicellar bridging generates the long-distance diastereomeric effect. The long-distance diastereomeric effect on thermoresponsive properties in a polyurethane system consisting of chiral monomers was reported.![]()
Collapse
Affiliation(s)
- Daisuke Aoki
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Akihiro Miyake
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| | - Wanpen Tachaboonyakiat
- Department of Materials Science, Faculty of Science, Chulalongkorn University Phayathai, Pathumwan Bangkok 10330 Thailand
| | - Hiroharu Ajiro
- Division of Materials Science, Graduate School of Science and Technology, Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan .,Data Science Center, Nara Institute of Science and Technology 8916-5 Takayama-cho Ikoma Nara 630-0192 Japan
| |
Collapse
|
19
|
Feng D, Cao F, Hou L, Li T, Jiao Y, Wu P. Immunizing Aqueous Zn Batteries against Dendrite Formation and Side Reactions at Various Temperatures via Electrolyte Additives. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2103195. [PMID: 34528386 DOI: 10.1002/smll.202103195] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 07/14/2021] [Indexed: 06/13/2023]
Abstract
Aqueous Zn-ion batteries own great potential on next generation wearable batteries due to the high safety and low cost. However, the uncontrollable dendrites growth and the negligible subzero temperature performance impede the batteries practical applications. Herein, it is demonstrated that dimethyl sulfoxide (DMSO) is an effective additive in ZnSO4 electrolyte for side reactions and dendrites suppression by regulating the Zn-ion solvation structure and inducing the Zn2+ to form the more electrochemical stable (002) basal plane, via the higher absorption energy of DMSO with Zn2+ and (002) plane. Moreover, the stable reconstructed hydrogen bonds between DMSO and H2 O dramatically lower the freezing point of the electrolyte, which significantly increases the ionic conductivity and cycling performance of the aqueous batteries at subzero temperatures. As a consequence, the symmetrical Zn/Zn cell can be kept stable for more than 2100 h at 20 °C and 1200 h at -20 °C without dendrite and by-products formation. The Zn/MnO2 batteries can perform steadily for more than 3000 cycles at 20 °C and 300 cycles at -20 °C. This work provides a facile and feasible strategy on designing high performance and dendrite free aqueous Zn-ion batteries for various temperatures.
Collapse
Affiliation(s)
- Doudou Feng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Faqing Cao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Lei Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Tianyu Li
- Division of Energy Storage, Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, P. R. China
| | - Yucong Jiao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| | - Peiyi Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
20
|
Zhao P, Deng M, Yang Y, Zhang J, Zhang Y. Synthesis and Self-Assembly of Thermoresponsive Biohybrid Graft Copolymers Based on a Combination of Passerini Multicomponent Reaction and Molecular Recognition. Macromol Rapid Commun 2021; 42:e2100424. [PMID: 34505724 DOI: 10.1002/marc.202100424] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/07/2021] [Indexed: 12/25/2022]
Abstract
Amphiphilic graft copolymers exhibit fascinating self-assembly behaviors. Their molecular architectures significantly affect the morphology and functionality of the self-assemblies. Considering the potential application of amphiphilic graft copolymers in the fabrication of nanocarriers, it is essential to synthesize well-defined graft copolymers with desired functional groups. Herein, the Passerini reaction and molecular recognition are introduced to the synthesis of functional thermoresponsive graft copolymers. A bifunctional monomer 2-((adamantan-1-yl)amino)-1-(4-((2-bromo-2-methylpropanoyl)oxy)phenyl)-2-oxoethyl methacrylate (ABMA) with a bromo group for atom transfer radical polymerization (ATRP) and an adamantyl group for molecular recognition is synthesized through the Passerini reaction. The graft copolymers are prepared by reversible addition-fragmentation transfer (RAFT) copolymerization of ABMA and oligo(ethylene glycol) methyl ether methacrylate (OEGMA) followed by RAFT end group removal and ATRP of di(ethylene glycol)methyl ether methacrylate (DEGMA) initiated by the ABMA units. The graft copolymer P(OEGMA-co-ABMA)-g-PDEGMA can be functionalized with β-cyclodextrin modified peptides, affording a thermoresponsive biohybrid graft copolymer. At a temperature above its lower critical solution temperature, the biohybrid graft copolymer self-assembles into peptide-modified polymersomes.
Collapse
Affiliation(s)
- Peiqiong Zhao
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Meigui Deng
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yongfang Yang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Jimin Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| | - Yue Zhang
- Hebei Key Laboratory of Functional Polymers, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, 300130, China
| |
Collapse
|
21
|
Huynh V, Ifraimov N, Wylie RG. Modulating the Thermoresponse of Polymer-Protein Conjugates with Hydrogels for Controlled Release. Polymers (Basel) 2021; 13:2772. [PMID: 34451311 PMCID: PMC8399950 DOI: 10.3390/polym13162772] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/04/2021] [Accepted: 08/13/2021] [Indexed: 01/06/2023] Open
Abstract
Sustained release is being explored to increase plasma and tissue residence times of polymer-protein therapeutics for improved efficacy. Recently, poly(oligo(ethylene glycol) methyl ether methacrylate) (PEGMA) polymers have been established as potential PEG alternatives to further decrease immunogenicity and introduce responsive or sieving properties. We developed a drug delivery system that locally depresses the lower critical solution temperature (LCST) of PEGMA-protein conjugates within zwitterionic hydrogels for controlled release. Inside the hydrogel the conjugates partially aggregate through PEGMA-PEGMA chain interactions to limit their release rates, whereas conjugates outside of the hydrogel are completely solubilized. Release can therefore be tuned by altering hydrogel components and the PEGMA's temperature sensitivity without the need for traditional controlled release mechanisms such as particle encapsulation or affinity interactions. Combining local LCST depression technology and degradable zwitterionic hydrogels, complete release of the conjugate was achieved over 13 days.
Collapse
Affiliation(s)
- Vincent Huynh
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Natalie Ifraimov
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4M1, Canada;
| | - Ryan G. Wylie
- Department of Chemistry and Chemical Biology, McMaster University, Hamilton, ON L8S 4M1, Canada;
- School of Biomedical Engineering, McMaster University, Hamilton, ON L8S 4M1, Canada;
| |
Collapse
|
22
|
Wu D, Xu Z, Li Z, Yuan W, Wang HQ, Xie X. Reduction and temperature dually-triggered size-shrinkage and drug release of micelles for synergistic photothermal-chemotherapy of cancer. Eur Polym J 2021. [DOI: 10.1016/j.eurpolymj.2021.110535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
23
|
Santos AC, Alves SP, Carvalhão G, Correia NT, Viciosa MT, Farinha JPS. Phase diagrams of temperature-responsive copolymers p(MEO2MA-co-OEGMA) in water. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123858] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Choi JW, Choi SH, Won JI. Self-Assembly Behavior of Elastin-like Polypeptide Diblock Copolymers Containing a Charged Moiety. Biomacromolecules 2021; 22:2604-2613. [PMID: 34038105 DOI: 10.1021/acs.biomac.1c00322] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Elastin-like polypeptides (ELPs) are stimulus-responsive protein-based biopolymers, and some ELP block copolymers can assemble into spherical nanoparticles with thermosensitivity. In this study, two different ELP diblock copolymers, each composed of a hydrophobic and a charged moiety, were synthesized, and the dependence of their physical properties on pH, temperature, and salt concentration was investigated. A series of analyses revealed that hydrophobic core micelles could be generated in response to a change in their surroundings and that micelles did not self-aggregate, a phenomenon due to the repulsive forces between like-charged molecules on the surface. We also demonstrated that self-assembly behavior was closely dependent on the character of the charged amino acid and the specific anion in solution.
Collapse
Affiliation(s)
- Jeong-Wan Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Soo-Hyung Choi
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| | - Jong-In Won
- Department of Chemical Engineering, Hongik University, Seoul 04066, Republic of Korea
| |
Collapse
|
25
|
Swelling properties and drug release of new biocompatible POEGOPGMA hydrogels with VPTT near to the human body temperature. Polym Bull (Berl) 2021. [DOI: 10.1007/s00289-020-03217-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
26
|
Song F, Wang Z, Gao W, Fu Y, Wu Q, Liu S. Novel Temperature/Reduction Dual-Stimulus Responsive Triblock Copolymer [P(MEO 2MA- co- OEGMA)- b-PLLA-SS-PLLA- b-P(MEO 2MA- co-OEGMA)] via a Combination of ROP and ATRP: Synthesis, Characterization and Application of Self-Assembled Micelles. Polymers (Basel) 2020; 12:polym12112482. [PMID: 33114693 PMCID: PMC7694170 DOI: 10.3390/polym12112482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 12/23/2022] Open
Abstract
Novel temperature/reduction dual stimulus-responsive triblock copolymers, poly [2-(2-methoxyethoxy) ethyl methacrylate-co-oligo (ethylene glycol) methacrylate]-b-(L-polylactic acid)-SS-b-(L-polylactic acid)-b-poly[2-(2-methoxyethoxy) ethyl methacrylate-co-oligo(ethylene glycol)methacrylate] [P(MEO2MA-co-OEGMA)-b-PLLA-SS-PLLA-b-P(MEO2MA-co-OEGMA)] (SPMO), were synthesized by ring opening polymerization (ROP) of L-lactide and 2,2’-dithio diethanol (SS-DOH), and random copolymerization of MEO2MA and OEGMA monomers via atom transfer radical polymerization (ATRP) technology. The chemical structures and compositions of the novel copolymers were demonstrated by proton nuclear magnetic resonance (1H NMR) and Fourier transform infrared spectroscopy (FTIR). The molecular weights of the novel copolymers were measured by size exclusive chromatography (SEC) and proved to have a relatively narrow molecular weight distribution coefficient (ÐM ≤ 1.50). The water solubility and transmittance of the novel copolymers were tested via visual observation and UV–Vis spectroscopy, which proved the SPMO had a good hydrophilicity and suitable low critical solution temperature (LCST). The critical micelle concentration (CMC) of the novel polymeric micelles were determined using surface tension method and fluorescent probe technology. The particle size and morphology of the novel polymeric micelles were characterized by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The sol–gel transition behavior of the novel copolymers was studied via vial flip experiments. Finally, the hydrophobic anticancer drug doxorubicin (DOX) was used to study the in vitro release behavior of the novel drug-loaded micelles. The results show that the novel polymeric micelles are expected to become a favorable drug carrier. In addition, they exhibit reductive responsiveness to the small molecule reducing agent dithiothreitol (DTT) and temperature responsiveness with temperature changes.
Collapse
|
27
|
Wen L, Zhang S, Xiao Y, He J, Zhu S, Zhang J, Wu Z, Lang M. Organocatalytic Ring-Opening Polymerization Toward Poly(γ-amide-ε-caprolactone)s with Tunable Lower Critical Solution Temperatures. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00253] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Lianlei Wen
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shaoze Zhang
- National Engineering Laboratory for Vacuum Metallurgy, Engineering Laboratory for Advanced Battery and Materials of Yunnan Province, Kunming University of Science and Technology, Kunming 650093, China
| | - Yan Xiao
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jin He
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Shuang Zhu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Jun Zhang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Zihan Wu
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Meidong Lang
- Shanghai Key Laboratory of Advanced Polymeric Materials, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, China
| |
Collapse
|
28
|
Shi X, Wu J, Wang Z, Song F, Gao W, Liu S. Synthesis and properties of a temperature-sensitive hydrogel based on physical crosslinking via stereocomplexation of PLLA-PDLA. RSC Adv 2020; 10:19759-19769. [PMID: 35520454 PMCID: PMC9054217 DOI: 10.1039/d0ra01790f] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/12/2020] [Indexed: 12/14/2022] Open
Abstract
A synthetic route to amphiphilic conetwork (APCN) gels was developed and involved (1) a ring-opening polymerization (ROP) synthesis of the macromonomer HEMA-PLLA/PDLA, and (2) a radical polymerization of a stereocomplex of the synthesized macromonomers with P(MEO2MA-co-OEGMA) to form the APCN gels. The structure of the gel was successfully verified using X-ray diffraction. Thermal analysis and differential scanning calorimetry data showed that the thermal behaviors of the gels were greatly improved compared with that of polylactic acid (PLA). The mechanical properties of the gels were measured by using a dynamic viscometer, and the results indicated a greater mechanical strength before swelling than afterwards, and an increasing strength of the gels with increasing amount of PLA stereocomplex. Gels placed in different aqueous phases at different temperatures showed different swelling ratio (SR) values. Specifically, the SR gradually decreased as the temperature was increased, indicating a temperature sensitivity of the gels. In addition, the gels placed in the aqueous and organic phases presented as hydrogels and hydrophobic gels, respectively, and their SR values were relatively low. These results indicated the amphiphilic nature of the gel, and indicated great application prospects for the gel in biomedicine. A synthetic route to amphiphilic conetwork (APCN) gels was developed and involved (1) ring-opening polymerization synthesis of the macromonomer, and (2) radical polymerization of stereocomplex of the synthesized macromonomers with MEO2MA, OEGMA to form the APCN gels.![]()
Collapse
Affiliation(s)
- Xiaoyu Shi
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education Xi'an 710062 PR China +86-29-81530781.,School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 PR China
| | - Jie Wu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education Xi'an 710062 PR China +86-29-81530781.,School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 PR China
| | - Zhidan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education Xi'an 710062 PR China +86-29-81530781.,School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 PR China
| | - Fei Song
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education Xi'an 710062 PR China +86-29-81530781.,School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 PR China
| | - Wenli Gao
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education Xi'an 710062 PR China +86-29-81530781.,School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 PR China
| | - Shouxin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry (Shaanxi Normal University), Ministry of Education Xi'an 710062 PR China +86-29-81530781.,School of Chemistry & Chemical Engineering, Shaanxi Normal University Xi'an 710062 PR China
| |
Collapse
|
29
|
Inui K, Watanabe T, Minato H, Matsui S, Ishikawa K, Yoshida R, Suzuki D. The Belousov-Zhabotinsky Reaction in Thermoresponsive Core-Shell Hydrogel Microspheres with a Tris(2,2'-bipyridyl)ruthenium Catalyst in the Core. J Phys Chem B 2020; 124:3828-3835. [PMID: 32293889 DOI: 10.1021/acs.jpcb.0c02238] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The Belousov-Zhabotinsky (BZ) reaction shows temporal or spatiotemporal structures such as redox oscillation of the catalyst, [ruthenium(II)tris(2,2'-bipyridine)][PF6]2 ([Ru(bpy)3][PF6]2). In this study, autonomously oscillating hydrogel microspheres (microgels) were investigated, which show swelling/deswelling oscillation induced by the redox oscillation of the BZ reaction inside the gel. Despite the periodically and autonomously induced oscillation that does not require an external stimulus, it has not been possible to perform any manipulation of the oscillatory behavior over time. The results of the present study show that it is possible to reversibly switch the microgel oscillations from an "on" active state of the BZ reaction to an "off" inactive state by changing the temperature in combination with thermoresponsive microgels. To realize on-demand switching, the construction of double-shell structures is crucial; the thermoresponsive first shell allows the microgels to modulate the diffusion of the substrates or intermediates in the BZ reaction, while the second shell maintains colloidal stability under high temperatures and high ion concentrations. The functionalized double-shell microgels were prepared via multistep seeded precipitation polymerization. The oscillatory switching behavior of the BZ reaction was observed directly and evaluated by ultraviolet-visible (UV-vis) spectroscopy. The central concept of this study, i.e., "on-off switching" can be expected to benefit the development of advanced bioinspired materials.
Collapse
Affiliation(s)
| | | | | | | | | | - Ryo Yoshida
- Department of Materials Engineering, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | | |
Collapse
|
30
|
Bozorg M, Hankiewicz B, Abetz V. Solubility behaviour of random and gradient copolymers of di- and oligo(ethylene oxide) methacrylate in water: effect of various additives. SOFT MATTER 2020; 16:1066-1081. [PMID: 31859702 DOI: 10.1039/c9sm02032b] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Poly[oligo(ethylene oxide)] based gradient and random copolymers with different compositions are synthesized via Cu-based atom transfer radical polymerization. The solubility behavior of these copolymers in pure water and in the presence of different salts, surfactants and ethanol is investigated. According to dynamic light scattering results, the lower critical solution temperature (LCST) depends on the structure of the copolymer and changes slightly in the presence of additives. Good cosolvents like ethanol can increase the LCST through dissolving the collapsed copolymer chains to some extent. The same effect is observed for surfactants that make the copolymer solution more stable by preventing aggregation. Above a certain concentration of surfactant, depending on the copolymer structure, the solution is stable at all temperatures (no LCST). The effect of salts on the solubility of the copolymers follows the Hofmeister series and it is related linearly to the salt concentration. Based on their affinity to the copolymer, the salts can increase or decrease the LCST. There is a considerable difference in phase transition changes for gradient or random copolymers after salt addition. While both copolymers show a two-step phase transition in the presence of different salts, the changes in the hydrodynamic radius and normalized scattering intensity are rather broad for random compared to gradient copolymers. Contrary to what was expected, varying the cations has no distinguishable effect on the LCST for both copolymers. All chlorides decrease the LCST. This decrease is almost the same for gradient copolymers and fluctuates for random copolymers.
Collapse
Affiliation(s)
- Maryam Bozorg
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Birgit Hankiewicz
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany
| | - Volker Abetz
- Institute of Physical Chemistry, Universität Hamburg, Grindelallee 117, 20146 Hamburg, Germany and Institute of Polymer Research, Helmholtz-Zentrum Geesthacht, Max-Planck-Straße 1, 21502 Geesthacht, Germany.
| |
Collapse
|
31
|
Investigation on Reaction Sequence and Group Site of Citric Acid with Cellulose Characterized by FTIR in Combination with Two-Dimensional Correlation Spectroscopy. Polymers (Basel) 2019; 11:polym11122071. [PMID: 31842322 PMCID: PMC6961030 DOI: 10.3390/polym11122071] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 12/04/2022] Open
Abstract
Cotton fabrics are prone to wrinkles and can be treated with citric acid (CA) to obtain good anti-wrinkle properties. However, the yellowing of the CA-treated fabrics is one big obstacle to the practical application of citric acid. The changing sequence order of CA anhydride and unsaturated acid (the reason for yellowing), such as aconitic acid (AA), has not been investigated. Herein, Fourier transform infrared (FTIR) spectroscopy, two-dimensional correlation spectroscopy (2Dcos), and Gaussian calculation were employed to characterize the reaction mechanism between CA with cellulose. FTIR spectra of the CA-treated fabrics heated under different temperatures were collected and further analyzed with 2Dcos. The results indicated the changing sequence order: 1656 cm−1→1784 cm−1→1701 cm−1, (“→” means earlier than), i.e., unsaturated acid→anhydride→ester. Moreover, a change of Gibbs free energy (ΔG) showed that trans-AA (ΔG = −22.10 kJ/mol) is more thermodynamically favorable to be formed than CA anhydride 1 (ΔG = −0.90 kJ/mol), which was proved by Gaussian computational modeling. By taking cellobiose as a model of cellulose, the ΔG results proved that O(6)–H(6) on the glucose ring is the most likely hydroxyl to react with anhydride originated from CA or AA, especially with the terminal carbonyl group.
Collapse
|
32
|
Wu J, Shi X, Wang Z, Song F, Gao W, Liu S. Stereocomplex Poly(Lactic Acid) Amphiphilic Conetwork Gel with Temperature and pH Dual Sensitivity. Polymers (Basel) 2019; 11:E1940. [PMID: 31775381 PMCID: PMC6960947 DOI: 10.3390/polym11121940] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 11/17/2022] Open
Abstract
A novel stereocomplex poly(lactic acid) amphiphilic conetwork gel with temperature and pH dual sensitivity was synthesized by ring-opening polymerization (ROP) and free radical copolymerization. The chemical structure and composition of hydrogel were characterized by Fourier transform infrared spectroscopy (FT-IR), proton nuclear magnetic resonance (1H NMR) and X-ray diffraction (XRD). The temperature and pH sensitivity and good amphiphilicity of hydrogel were studied using digital photos, the swelling ratios and a scanning electron microscope (SEM). The thermal stability and mechanical properties of hydrogel were studied by differential scanning calorimeter (DSC) and dynamic viscoelastic spectrometer. The results indicated that the hydrogel has amphiphilicity, temperature and pH sensitivity, good thermal stability and mechanical strength.
Collapse
Affiliation(s)
| | | | | | | | | | - Shouxin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China; (J.W.); (X.S.); (Z.W.); (F.S.); (W.G.)
| |
Collapse
|
33
|
Syamala PPN, Soberats B, Görl D, Gekle S, Würthner F. Thermodynamic insights into the entropically driven self-assembly of amphiphilic dyes in water. Chem Sci 2019; 10:9358-9366. [PMID: 32110300 PMCID: PMC7017873 DOI: 10.1039/c9sc03103k] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2019] [Accepted: 08/19/2019] [Indexed: 01/04/2023] Open
Abstract
Self-assembly of amphiphilic dyes and π-systems are more difficult to understand and to control in water compared to organic solvents due to the hydrophobic effect. Herein, we elucidate in detail the self-assembly of a series of archetype bolaamphiphiles bearing a naphthalene bisimide (NBI) π-core with appended oligoethylene glycol (OEG) dendrons of different size. By utilizing temperature-dependent UV-vis spectroscopy and isothermal titration calorimetry (ITC), we have dissected the enthalpic and entropic parameters pertaining to the molecules' self-assembly. All investigated compounds show an enthalpically disfavored aggregation process leading to aggregate growth and eventually precipitation at elevated temperature, which is attributed to the dehydration of oligoethylene glycol units and their concomitant conformational changes. Back-folded conformation of the side chains plays a major role, as revealed by molecular dynamics (MD) and two dimensional NMR (2D NMR) studies, in directing the association. The sterical effect imparted by the jacketing of monomers and dimers also changes the aggregation mechanism from isodesmic to weakly anti-cooperative.
Collapse
Affiliation(s)
- Pradeep P N Syamala
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany .
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Bartolome Soberats
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Daniel Görl
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| | - Stephan Gekle
- Universität Bayreuth , Biofluid Simulation and Modeling, Theoretische Physik VI & Bavarian Polymer Institute (BPI) , 95440 Bayreuth , Germany .
| | - Frank Würthner
- Universität Würzburg , Institut für Organische Chemie , Am Hubland , 97074 Würzburg , Germany .
- Center for Nanosystems Chemistry & Bavarian Polymer Institute (BPI) , Universität Würzburg , Theodor-Boveri-Weg , 97074 Würzburg , Germany
| |
Collapse
|
34
|
Suljovrujic E, Miladinovic ZR, Micic M, Suljovrujic D, Milicevic D. The influence of monomer/solvent feed ratio on POEGDMA thermoresponsive hydrogels: Radiation-induced synthesis, swelling properties and VPTT. Radiat Phys Chem Oxf Engl 1993 2019. [DOI: 10.1016/j.radphyschem.2018.12.034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
35
|
Shang P, Wu J, Shi X, Wang Z, Song F, Liu S. Synthesis of Thermo-Responsive Block-Graft Copolymer Based on PCL and PEG Analogs, and Preparation of Hydrogel via Click Chemistry. Polymers (Basel) 2019; 11:E765. [PMID: 31052405 PMCID: PMC6572280 DOI: 10.3390/polym11050765] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/10/2019] [Accepted: 04/20/2019] [Indexed: 01/05/2023] Open
Abstract
Thermo-responsive cross-linkable mPEG-b-[PCL-g-(MEO2MA-co-OEGMA)]-b-mPEG was synthesized by ring-opening polymerization (ROP) and atom transfer radical polymerization (ATRP). Then, the cross-linkable block-graft copolymer was used to prepare hydrogel via a copper-catalyzed 1,3-dipolar azide-alkyne cycloaddition reaction. The chemical structure and composition of copolymer were characterized by proton nuclear magnetic resonance (1H NMR), Fourier-transform infrared (FT-IR) and gel permeation chromatography (GPC). The self-assembly behaviors of the copolymer in aqueous solution were studied by UV spectrophotometer, fluorescence probes, the surface tension method, dynamic light scattering, and transmission electron microscopy. The results proved that the copolymer has excellent solubility and better temperature response. The three-dimensional network structure of the gels, observed by scanning electron microscopy at different temperatures, indicated that the gels have temperature response.
Collapse
Affiliation(s)
- Pei Shang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Jie Wu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Xiaoyu Shi
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Zhidan Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Fei Song
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| | - Shouxin Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
36
|
Wang L, Zhu X, Cai W, Shao X. Understanding the role of water in the aggregation of poly(N,N-dimethylaminoethyl methacrylate) in aqueous solution using temperature-dependent near-infrared spectroscopy. Phys Chem Chem Phys 2019; 21:5780-5789. [PMID: 30801574 DOI: 10.1039/c8cp07153e] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
For understanding the role of water in the aggregation of polymers, the variation of water structures with the structural change of polymers in the process of aggregation was studied by temperature-dependent near-infrared (NIR) spectroscopy. The NIR spectra of the aqueous poly(N,N-dimethylaminoethyl methacrylate) (PDMAEMA) solutions of different concentrations were measured at different temperatures. The spectral changes of the polymer and water with temperature were analyzed by N-way principal component analysis (NPCA). It was found that, at low concentration, the chains of the polymer tend to form a loose hydrophobic structure below 36 °C and then aggregate into a micelle at a lower critical solution temperature (LCST) of around 39 °C. In the process of the aggregation, the water species with two hydrogen bonds (S2) increases gradually before 36 °C and then a sudden decrease occurs after that temperature. The results clearly indicate that water species S2 plays an important role in the formation of the intermediate, i.e., the loose hydrophobic structure of the polymer chains linked by the two hydrogen bonds of S2 water. When the temperature increases, the dissociation of the hydrogen bonds enables the intermediate to be destroyed to form a micelle structure. For the high concentration solution, however, the spectral information of S2 was not found in the aggregation, suggesting direct formation of the micelle from the dehydrated chains.
Collapse
Affiliation(s)
- Li Wang
- Research Center for Analytical Sciences, College of Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | | | | | | |
Collapse
|
37
|
Huynh V, Jesmer AH, Shoaib MM, Wylie RG. Influence of Hydrophobic Cross-Linkers on Carboxybetaine Copolymer Stimuli Response and Hydrogel Biological Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:1631-1641. [PMID: 30558419 DOI: 10.1021/acs.langmuir.8b03908] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Poly(carboxybetaine) (pCB) hydrogels do not elicit a foreign body response due to their low-fouling properties, making them ideal implantable materials for in vivo drug and cell delivery. Current reported pCB hydrogels are cross-linked using cytotoxic UV-initiated radical polymerization limiting clinical and in vivo translation. For clinical translation, we require in situ and biorthogonal cross-linking of pCB hydrogels that are both low-fouling and low-swelling to limit nonspecific interactions and minimize tissue damage, respectively. To this end, we synthesized carboxybetaine (CB) random copolymers (molecular weight (MW): ∼7-33 kDa; Đ: 1.1-1.36) containing azide (pCB-azide) or strained alkyne (Dibenzocyclooctyne (DBCO); pCB-DBCO) that rapidly cross-link upon mixing. Unlike CB homopolymers and other CB copolymers studied, high DBCO content pCB-DBCO30 (30% DBCO mole fraction) is thermoresponsive with a upper critical solution temperature (UCST; cloud point of ∼20 °C at 50 g/L) in water due to electrostatic associations. Due to the antipolyelectrolyte effect, pCB-DBCO30 is salt-responsive and is soluble even at low temperatures in 5 M NaCl, which prevents zwitterion electrostatic associations. pCB-azide and pCB-DBCO with 0.05 to 0.16 cross-linker mole fractions rapidly formed 10 wt % hydrogels upon mixing that were low-swelling (increase of ∼10% in wet weight) while remaining low-fouling to proteins (∼10-20 μg cm-2) and cells, making them suitable for in vivo applications. pCB-X31 hydrogels composed of pCB-azide32 and pCB-DBCO30 formed opaque gels in water and physiological conditions that shrunk to ∼70% of their original wet weight due to pCB-DBCO30's greater hydrophobicity and interchain electrostatic interactions, which promotes nonspecific protein adsorption (∼35 μg cm-2) and cell binding. Once formed, the electrostatic interactions in pCB-X31 hydrogels are not fully reversible with heat or salt. Although, pCB-X31 hydrogels are transparent when initially prepared in 5 M NaCl. This is the first demonstration of a thermo- and salt-responsive CB copolymer that can tune hydrogel protein and cell fouling properties.
Collapse
Affiliation(s)
- Vincent Huynh
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Ontario L8S 4M1 , Canada
| | - Alexander H Jesmer
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Ontario L8S 4M1 , Canada
| | - Muhammad M Shoaib
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Ontario L8S 4M1 , Canada
| | - Ryan G Wylie
- Department of Chemistry and Chemical Biology , McMaster University , Hamilton , Ontario L8S 4M1 , Canada
| |
Collapse
|
38
|
Hou L, Wu P. Exploring the hydrogen-bond structures in sodium alginate through two-dimensional correlation infrared spectroscopy. Carbohydr Polym 2019; 205:420-426. [DOI: 10.1016/j.carbpol.2018.10.091] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 10/12/2018] [Accepted: 10/27/2018] [Indexed: 10/28/2022]
|
39
|
Teng L, Chen Y, Jia YG, Ren L. Supramolecular and dynamic covalent hydrogel scaffolds: from gelation chemistry to enhanced cell retention and cartilage regeneration. J Mater Chem B 2019; 7:6705-6736. [DOI: 10.1039/c9tb01698h] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This review highlights the most recent progress in gelation strategies of biomedical supramolecular and dynamic covalent crosslinking hydrogels and their applications for enhancing cell retention and cartilage regeneration.
Collapse
Affiliation(s)
- Lijing Teng
- School of Medicine
- South China University of Technology
- Guangzhou 510006
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction
| | - Yunhua Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- China
- School of Materials Science and Engineering
| | - Yong-Guang Jia
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- China
- School of Materials Science and Engineering
| | - Li Ren
- National Engineering Research Center for Tissue Restoration and Reconstruction
- South China University of Technology
- Guangzhou 510006
- China
- School of Materials Science and Engineering
| |
Collapse
|
40
|
Liu S, Tian L, Mao H, Ning W, Shang P, Wu J, Shi X. Micellization and sol-gel transition of novel thermo- and pH-responsive ABC triblock copolymer synthesized by RAFT. JOURNAL OF POLYMER RESEARCH 2018. [DOI: 10.1007/s10965-018-1658-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
41
|
Murdoch TJ, Humphreys BA, Johnson EC, Webber GB, Wanless EJ. Specific ion effects on thermoresponsive polymer brushes: Comparison to other architectures. J Colloid Interface Sci 2018; 526:429-450. [DOI: 10.1016/j.jcis.2018.04.086] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 02/06/2023]
|
42
|
Cao H, Guo F, Chen Z, Kong XZ. Preparation of Thermoresponsive Polymer Nanogels of Oligo(Ethylene Glycol) Diacrylate-Methacrylic Acid and Their Property Characterization. NANOSCALE RESEARCH LETTERS 2018; 13:209. [PMID: 30006818 PMCID: PMC6045526 DOI: 10.1186/s11671-018-2610-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2018] [Accepted: 06/25/2018] [Indexed: 06/08/2023]
Abstract
Stimuli-responsive polymers have received growing attention in recent years owing to their wide applications in diverse fields. A novel stimuli-responsive polymer, based on oligo(ethylene glycol) diacrylate (OEGDA) and methacrylic acid (MAA), P(OEGDA-MAA), is prepared by precipitation polymerization and is shown to have a LCST-type VPTT (volume phase transition temperature) at 33 °C in water and a UCST-type VPTT at 43 °C in ethanol, all at concentration of 1 mg/mL. Both VPTTs are strongly concentration and pH dependent, providing an easy way to tune the phase transition temperature. The polymer is characterized with regard to its composition and its morphology in water and in ethanol at different concentration. The two transitions are studied and interpreted based on the results. This work provides a novel way for the preparation of a new type of stimuli-responsive polymer with great potential for different applications, particularly those in biomedical areas because PEG-based stimuli-responsive polymers are known to be nontoxic and non-immunogenic.
Collapse
Affiliation(s)
- Hongyan Cao
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 China
| | - Fenghao Guo
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 China
| | - Zhiyong Chen
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 China
| | - Xiang Zheng Kong
- College of Chemistry and Chemical Engineering, University of Jinan, Jinan, 250022 China
| |
Collapse
|
43
|
Zhang Y, Tang H, Wu P. Insights into the thermal phase transition behavior of a gemini dicationic polyelectrolyte in aqueous solution. SOFT MATTER 2018; 14:4380-4387. [PMID: 29767208 DOI: 10.1039/c8sm00598b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The thermal-induced phase transition behavior of a LCST-type poly(ionic liquid) (PIL) aqueous solution with gemini-cationic structure, poly[(1,8-octanediyl-bis(tri-n-butylphosphonium)4-styrene sulfonate)] (P[SS-P2]), was investigated in this paper. Based on the calorimetric measurements, a unique dependence of transition points on concentration was found in P[SS-P2] aqueous solution compared to its mono-cationic PIL and [SS-P2] aqueous solution. Optical microscopy showed that globular microscopic droplets were formed during the phase transition, suggesting that gemini dications and the possible dynamic ionic bonds may facilitate the liquid-liquid phase separation (LLPS) in P[SS-P2] aqueous solution. Temperature-variable 1H NMR and FT-IR investigations manifested that the dehydration of anionic chains instead of the dehydration of dications served as the driving force of the phase separation in the P[SS-P2] aqueous solution, implying that the polymerized anions tended to aggregate together first and lay in the core with dications distributed around the globules at the end of the transition process. Notably, considering that the SO3 groups in the gemini-cationic system tended to be distributed around the surface of collapsed anionic main chains rather than be wrapped into the aggregates, it is supposed that dynamic ionic bonding between dication and anionic backbones was distributed in the periphery of the globules and acted as the "cross-linkers", which enhanced the stability of regular droplets after the phase transition in P[SS-P2] aqueous solution.
Collapse
Affiliation(s)
- Yingna Zhang
- The State Key Laboratory of Molecular Engineering of Polymers and Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University, Shanghai 200433, China.
| | | | | |
Collapse
|
44
|
The role of copolymer composition on the specific ion and thermo-response of ethylene glycol-based brushes. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.01.053] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Sun W, Wu P. The structure and volume phase transition behavior of poly(N-vinylcaprolactam)-based hybrid microgels containing carbon nanodots. Phys Chem Chem Phys 2018; 19:127-134. [PMID: 27901139 DOI: 10.1039/c6cp06862f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
In this paper, we investigated the internal structure and the volume phase transition (VPT) behavior of poly(N-vinylcaprolactam-co-vinylimidazole)/polymerizable carbon nanodot (P(VCL-co-VIM)/PCND) microgels with different amounts of PCNDs. Our study shows that compared to the pure P(VCL-co-VIM) microgel, the hybrid microgels undergo a two-step VPT as the temperature increases and a core-shell(-corona) structure of the hybrid microgels is formed by copolymerization with PCNDs. A change in the amount of PCNDs has effects on both of the volume phase transition temperature and internal structure of microgels. Moreover, based on FT-IR in combination with perturbation correlation moving window (PCMW) and two-dimensional correlation spectral (2Dcos) analyses, the difference in VPT behavior between the shell and the core (corona) structure of the hybrid microgels at the molecular level is elucidated. The core/shell of the hybrid microgels fixed with hydrophilic PCNDs has a higher transition temperature during heating and a more compact structure due to the additional crosslinkers PCNDs.
Collapse
Affiliation(s)
- Wenhui Sun
- The State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University, Shanghai 200433, China.
| | - Peiyi Wu
- The State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
46
|
Kureha T, Suzuki D. Nanocomposite Microgels for the Selective Separation of Halogen Compounds from Aqueous Solution. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:837-846. [PMID: 28618227 DOI: 10.1021/acs.langmuir.7b01485] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Nanocomposite microgels that selectively adsorb and release halogen compounds were developed. These nanocomposite microgels consist of poly(2-methoxyethyl acrylate) (pMEA) and a poly(oligo ethylene glycol methacrylate) hydrogel matrix. Therefore, the methoxy groups of the former are crucial for the halogen bonding, while the presence of the latter adds colloidal stability and allows controlled uptake/release of the halogen compounds. Such nanocomposite microgels may not only be used as dispersed carriers, but also in films and columnar formations. Thus, these unprecedented polymer/polymer nanocomposite microgels resolve a variety of problems associated with, e.g., the removal of halogen compounds from wastewater, or with the delivery of halogen-containing drugs.
Collapse
Affiliation(s)
- Takuma Kureha
- Graduate School of Textile Science & Technology, Shinshu University , 3-15-1 Tokida, Ueda 386-8567, Japan
| | - Daisuke Suzuki
- Graduate School of Textile Science & Technology, Shinshu University , 3-15-1 Tokida, Ueda 386-8567, Japan
- Division of Smart Textiles, Institute for Fiber Engineering, Interdisciplinary Cluster for Cutting Edge Research, Shinshu University , 3-15-1 Tokida, Ueda 386-8567, Japan
| |
Collapse
|
47
|
Sun W, Wu P. A molecular level study of the phase transition process of hydrogen-bonding UCST polymers. Phys Chem Chem Phys 2018; 20:20849-20855. [DOI: 10.1039/c8cp04147d] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A molecular level study of the UCST-type transition process of PNAGA-based polymers in water and a water/methanol mixture.
Collapse
Affiliation(s)
- Wenhui Sun
- The State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
| | - Peiyi Wu
- The State Key Laboratory of Molecular Engineering of Polymers
- Department of Macromolecular Science
- Laboratory for Advanced Materials
- Fudan University
- Shanghai 200433
| |
Collapse
|
48
|
Dalgakiran E, Tatlipinar H. The role of hydrophobic hydration in the LCST behaviour of POEGMA300 by all-atom molecular dynamics simulations. Phys Chem Chem Phys 2018; 20:15389-15399. [DOI: 10.1039/c8cp02026d] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The role of hydrophobic hydration in the LCST phase transition of POEGMA300 by means of the breakage of cage-like water formations around the side chains.
Collapse
Affiliation(s)
- Eray Dalgakiran
- Department of Physics
- Faculty of Arts and Sciences
- Yildiz Technical University
- Istanbul
- Turkey
| | - Hasan Tatlipinar
- Department of Physics
- Faculty of Arts and Sciences
- Yildiz Technical University
- Istanbul
- Turkey
| |
Collapse
|
49
|
Smart hydrogels with ethylene glycol propylene glycol pendant chains. JOURNAL OF POLYMER RESEARCH 2017. [DOI: 10.1007/s10965-017-1408-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
50
|
Ma L, Tang H, Wu P. Volume Phase Transition Mechanism of Poly[di(ethylene glycol)ethyl ether acrylate]-Based Microgels Involving a Thermosensitive Poly(ionic liquid). LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2017; 33:12326-12335. [PMID: 28972775 DOI: 10.1021/acs.langmuir.7b02884] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The microdynamic volume phase transition mechanism of poly[di(ethylene glycol)ethyl ether acrylate] (PDEGA)-based microgels with newly developed thermoresponsive polyionic liquid (PIL) (poly(tetrabutylphosphonium styrenesulfonate) P[P4,4,4,4][SS]) moieties was studied by applying temperature-variable Fourier transform infrared (FTIR) spectroscopy in combination with two-dimensional correlation spectroscopy (2Dcos) and the perturbation correlation moving window (PCMW) technique. It can be found that the content of hydrophilic PIL moieties plays a significant role in the thermally induced phase transition behavior of microgel systems; namely, the microgels containing fewer PIL moieties present a sharp transition behavior and a gel-like state (10%, w/v) in water whereas the microgels with more PIL moieties undergo a slightly broad phase transition process and a flowable solution state. Herein, the C═O···D2O-PIL hydrogen bonds as the interaction between PDEGA and P[P4,4,4,4][SS] moieties result in a complete dehydration process for the microgels with fewer PIL moieties and the dehydrated behavior of SO3- groups acts as the driving force during the phase transition. As for the microgels with more PIL moieties, the whole transition process is dominated by the hydrophobic interaction of C-H groups. Even though the intermolecular hydrogen bonds (C═O···D2O-PIL) appear as well, the more remarkable effect of the Coulombic repulsive force of PIL restrains the water molecules from breaking away, thus causing a gradual and incomplete dehydration process during heating.
Collapse
Affiliation(s)
- Lan Ma
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University , Shanghai 200433, China
| | - Hui Tang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University , Shanghai 200433, China
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University , Shanghai 200433, China
| |
Collapse
|