1
|
Zhang F, Zhang S, Cui S, Jing X, Feng Y, Coseri S. Rapid self-healing carboxymethyl chitosan/hyaluronic acid hydrogels with injectable ability for drug delivery. Carbohydr Polym 2024; 328:121707. [PMID: 38220342 DOI: 10.1016/j.carbpol.2023.121707] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/03/2023] [Accepted: 12/15/2023] [Indexed: 01/16/2024]
Abstract
In this study, the quaternized carboxymethyl chitosan (QCMCS), oxidized hyaluronic acid (OHA), 3,3'-dithiobis-(propionohydrazide) (DTP) were used as raw materials for the synthesis of hydrogels with excellent properties as carriers for drug release. The hydrogels were prepared by a simple "one-pot" method without external stimuli on the basis of interactions between formed dynamic covalent bonds (imine bonds, acylhydrazone bonds, disulfide bonds) and hydrogen bonds. The hydrogels had rapid self-healing properties, with a self-healing rate of 96 % after 30 min, as well as good pH responsiveness and excellent cytocompatibility (up to 98 % cell survival). The compressive stress of the hydrogels reached 423 kPa. Moreover, a representative drug (acetylsalicylic acid) demonstrated sustained release in the hydrogels (>72 h). The drug release behaviour was shown to be consistent with the Fick diffusion mechanism by kinetic modelling. Collectively, the findings demonstrate that the QCMCS + OHA + DTP injectable self-healing hydrogels are a potential material for the construction of pH-controlled drug delivery platforms.
Collapse
Affiliation(s)
- Fengjiao Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Sufeng Zhang
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Shuyuan Cui
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Xiaokai Jing
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yao Feng
- Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Sergiu Coseri
- "Petru Poni" Institute of Macromolecular Chemistry of Romanian Academy, 41 A Gr. Ghica Voda Alley, Iasi 700487, Romania
| |
Collapse
|
2
|
Dynamic and Self-Healable Chitosan/Hyaluronic Acid-Based In Situ-Forming Hydrogels. Gels 2022; 8:gels8080477. [PMID: 36005079 PMCID: PMC9407353 DOI: 10.3390/gels8080477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/26/2022] [Accepted: 07/27/2022] [Indexed: 02/06/2023] Open
Abstract
In situ-forming, biodegradable, and self-healing hydrogels, which maintain their integrity after damage, owing to dynamic interactions, are essential biomaterials for bioapplications, such as tissue engineering and drug delivery. This work aims to develop in situ, biodegradable and self-healable hydrogels based on dynamic covalent bonds between N-succinyl chitosan (S-CHI) and oxidized aldehyde hyaluronic acid (A-HA). A robust effect of the molar ratio of both S-CHI and A-HA was observed on the swelling, mechanical stability, rheological properties and biodegradation kinetics of these hydrogels, being the stoichiometric ratio that which leads to the lowest swelling factor (×12), highest compression modulus (1.1·10−3 MPa), and slowest degradation (9 days). Besides, a rapid (3 s) self-repairing ability was demonstrated in the macro scale as well as by rheology and mechanical tests. Finally, the potential of these biomaterials was evidenced by cytotoxicity essay (>85%).
Collapse
|
3
|
Wei X, Cui C, Fan C, Wu T, Li Y, Zhang X, Wang K, Pang Y, Yao P, Yang J. Injectable hydrogel based on dodecyl-modified N-carboxyethyl chitosan/oxidized konjac glucomannan effectively prevents bleeding and postoperative adhesions after partial hepatectomy. Int J Biol Macromol 2022; 199:401-412. [PMID: 34999041 DOI: 10.1016/j.ijbiomac.2021.12.193] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/18/2021] [Accepted: 12/30/2021] [Indexed: 11/27/2022]
Abstract
Hemostasis and prevention of postoperative adhesions after hepatectomy are still challenges. In this work, we chose chitosan, a competitive candidate hemostatic material, as the backbone, and konjac glucomannan as the functional moieties, to form an injectable hydrogel. The hydrogel was prepared by the Schiff base reaction of dodecyl-modified N-carboxyethyl chitosan (DCEC) and oxidized konjac glucomannan (OKGM), which could effectively prevent bleeding and postoperative adhesions. The resultant hydrogel possessed self-healing and tissue adhesive capability, and combined the unique bioactivities of two polysaccharides: DCEC endowed the hydrogel with excellent antibacterial and hemostatic ability by the electrostatic and hydrophobic interactions between the cell membrane and amine/dodecyl groups, and OKGM imparted hydrogel anti-inflammatory action by activating macrophages. Moreover, the notable hemostatic efficacy of the hydrogel was confirmed in a rat hepatectomy model. The hydrogel could prevent postoperative adhesions and down-regulate the inflammatory factor TNF-α and the pro-fibrotic factor TGF-β1 in situ, which might be caused by the combination of the barrier function of hydrogel and instinct bioactivities of DCEC and OKGM. Thus, this multifunctional injectable hydrogel is potentially valuable for preventing bleeding and postoperative adhesions after hepatectomy.
Collapse
Affiliation(s)
- Xiangyu Wei
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Chunyan Cui
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Chuanchuan Fan
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Tengling Wu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yuan Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Xiaoping Zhang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Kuan Wang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yudi Pang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Puqing Yao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
4
|
Wang W, Liu X, Wang X, Zong L, Kang Y, Wang A. Fast and Highly Efficient Adsorption Removal of Toxic Pb(II) by a Reusable Porous Semi-IPN Hydrogel Based on Alginate and Poly(Vinyl Alcohol). Front Chem 2021; 9:662482. [PMID: 34395376 PMCID: PMC8355593 DOI: 10.3389/fchem.2021.662482] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 07/19/2021] [Indexed: 11/13/2022] Open
Abstract
A porous semi-interpenetrating network (semi-IPN) hydrogel adsorbent with excellent adsorption properties and removal efficiency towards Pb(II) was prepared by a facile grafting polymerization reaction in aqueous medium using natural biopolymer sodium alginate (SA) as the main chains, sodium acrylate (NaA) as the monomers, and poly(vinyl alcohol) (PVA) as the semi-IPN component. FTIR, TGA and SEM analyses confirm that NaA monomers were grafted onto the macromolecular chains of SA, and PVA chains were interpenetrated and entangled with the crosslinked network. The incorporation of PVA facilitates to form pores on the surface of hydrogel adsorbent. The semi-IPN hydrogel containing 2 wt% of PVA exhibits high adsorption capacity and fast adsorption rate for Pb(II). The best adsorption capacity reaches 784.97 mg/g, and the optimal removal rate reaches 98.39% (adsorbent dosage, 2 g/L). In addition, the incorporation of PVA improved the gel strength of hydrogel, and the storage modulus of hydrogel increased by 19.4% after incorporating 2 wt% of PVA. The increase of gel strength facilitates to improve the reusability of hydrogel. After 5 times of regeneration, the adsorption capacity of SA-g-PNaA decreased by 23.2%, while the adsorption capacity of semi-IPN hydrogel only decreased by 10.8%. The adsorption kinetics of the hydrogel in the initial stage (the moment when the adsorbent contacts solution) and the second stage are fitted by segmentation. It is intriguing that the adsorption kinetics fits well with both pseudo-second-order kinetic model and pseudo-first-order model before 60 s, while only fits well with pseudo-second-order adsorption model in the whole adsorption process. The chemical complexing adsorption mainly contribute to the efficient capturing of Pb(II).
Collapse
Affiliation(s)
- Wenbo Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Xiangyu Liu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Xue Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
| | - Li Zong
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Yuru Kang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| | - Aiqin Wang
- Key Laboratory of Clay Mineral Applied Research of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, China
| |
Collapse
|
5
|
Ossipov DA, Lüchow M, Malkoch M. Differentiating Co-Delivery of Bisphosphonate and Simvastatin by Self-Healing Hyaluronan Hydrogel Formed by Orthogonal "Clicks": An In-Vitro Assessment. Polymers (Basel) 2021; 13:polym13132106. [PMID: 34206872 PMCID: PMC8272211 DOI: 10.3390/polym13132106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/22/2022] Open
Abstract
Due to its unique properties resembling living tissues, hydrogels are attractive carriers for the localized and targeted delivery of various drugs. Drug release kinetics from hydrogels are commonly controlled by network properties and the drug-network interactions. However, and simultaneously, the programmable delivery of multiple drugs with opposing properties (hydrophilicity, molecular weight, etc.) from hydrogels with determined network properties is still challenging. Herein, we describe the preparation of injectable self-healing hyaluronic acid (HA) hydrogels that release hydrophobic simvastatin and hydrophilic aminobisphosphonate (BP) drugs independently in response to acidic and thiol-containing microenvironments, respectively. We apply a prodrug strategy to BP by conjugating it to HA via a self-immolative disulfide linker that is stable in the blood plasma and is cleavable in the cytoplasm. Moreover, we utilize HA-linked BP ligands to reversibly bind Ca2+ ions and form coordination hydrogels. Hydrazone coupling of hydrophobic ligands to HA permits the encapsulation of simvastatin molecules in the resulting amphiphilic HA derivative and the subsequent acid-triggered release of the drug. The conjugation of BP and hydrophobic ligands to HA enables preparation of both bulk self-healing hydrogels and nanogels. Moreover, the developed hydrogel system is shown to be multi-responsive by applying orthogonally cleavable linkers. The presented hydrogel is a potential candidate for the combination treatment of osteoporosis and bone cancers as well as for bone tissue regeneration since it can deliver bone anabolic and anti-catabolic agents in response to bone diseases microenvironments.
Collapse
Affiliation(s)
- Dmitri A. Ossipov
- Department of Biosciences and Nutrition, Karolinska Institutet, SE-141 83 Stockholm, Sweden
- Correspondence:
| | - Mads Lüchow
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (M.L.); (M.M.)
| | - Michael Malkoch
- Department of Fiber and Polymer Technology, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden; (M.L.); (M.M.)
| |
Collapse
|
6
|
Ke L, Wei F, Liao X, Rees TW, Kuang S, Liu Z, Chen Y, Ji L, Chao H. Nano-assembly of ruthenium(II) photosensitizers for endogenous glutathione depletion and enhanced two-photon photodynamic therapy. NANOSCALE 2021; 13:7590-7599. [PMID: 33884385 DOI: 10.1039/d1nr00773d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Photodynamic therapy (PDT) is a promising noninvasive cancer treatment. PDT in the clinic faces several hurdles due to the unique tumor environment, a feature of which is high levels of glutathione (GSH). An excess amount of GSH consumes reactive oxygen species (ROS) generated by photosensitizers (PSs), reducing PDT efficiency. Herein, nano-photosensitizers (RuS1 NPs and RuS2 NPs) are reported. These consist of ruthenium complexes joined by disulfide bonds forming GSH sensitive polymer nanoparticles. The NPs achieve enhanced uptake compared to their constituent monomers. Inside cancer cells, high levels of GSH break the S-S bonds releasing PS molecules in the cell. The level of GSH is also then reduced leading to excellent PDT activity. Furthermore, RuS2 NPs functionalized with tumor targeting hyaluronic acid (HA@RuS2 NPs) assessed in vivo were highly effective with minimal side effects. To the best of our knowledge, RuS NPs are the first metal complex-based nano-assembled photosensitizers which exhibit enhanced specificity and consume endogenous GSH simultaneously, thus achieving excellent two-photon PDT efficiency in vitro and in vivo.
Collapse
Affiliation(s)
- Libing Ke
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Fangmian Wei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Xinxing Liao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Thomas W Rees
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Shi Kuang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Zhou Liu
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Yu Chen
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Liangnian Ji
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| | - Hui Chao
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, China.
| |
Collapse
|
7
|
Effect of surface decoration on properties and drug release ability of nanogels. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126164] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Lyu Y, Xie J, Liu Y, Xiao M, Li Y, Yang J, Yang J, Liu W. Injectable Hyaluronic Acid Hydrogel Loaded with Functionalized Human Mesenchymal Stem Cell Aggregates for Repairing Infarcted Myocardium. ACS Biomater Sci Eng 2020; 6:6926-6937. [PMID: 33320638 DOI: 10.1021/acsbiomaterials.0c01344] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Conventional strategies of stem cell injection in treating myocardial infarction (MI) remain a challenge because of low retention rate and insufficient secretion of exogenous cytokines for efficiently improving the microenvironment in the infarcted myocardium, thus hampering the therapeutic effect. Herein, poly(lactic-co-glycolic acid) (PLGA) microparticles modified with human VE-cad-Fc fusion protein are fabricated and integrated with human mesenchymal stem cells (hMSCs) to construct functionalized MSC aggregates (FMAs). This fusion protein can effectively promote the paracrine activity of MSCs. The FMA is encapsulated with an injectable hyaluronic acid (HA)-based hydrogel, which is prepared by Schiff base reaction between oxidized HA (OHA) and hydrazided HA (HHA). The OHA@HHA hydrogel loading FMA is injected into the infarcted myocardium of rats, thereby efficiently improving the MI microenvironment in terms of decreased expressions of inflammatory cytokines and upregulated secretion of angiogenic factors compared to the plain hydrogel only and hydrogel encapsulating MSCs. The results of both echocardiography and histological analyses demonstrate the efficient reconstruction of cardiac function and structure and revascularization in the infarct myocardium. The delivery of functionalized stem cell aggregates with an injectable hydrogel offers a promising strategy for treating myocardial infarction and may be expanded to other tissue repair and reconstruction.
Collapse
Affiliation(s)
- Yuanning Lyu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Jinghui Xie
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Yang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Meng Xiao
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Yuan Li
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Jianhai Yang
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| | - Jun Yang
- The Key Laboratory of Bioactive Materials, Ministry of Education, College of Life Science, Nankai University, Tianjin 300071, China
| | - Wenguang Liu
- School of Materials Science and Engineering, Tianjin Key Laboratory of Composite and Functional Materials, Tianjin University, Tianjin 300350, China
| |
Collapse
|
9
|
Abstract
Dental implants are frequently used to support fixed or removable dental prostheses to replace missing teeth. The clinical success of titanium dental implants is owed to the exceptional biocompatibility and osseointegration with the bone. Therefore, the enhanced therapeutic effectiveness of dental implants had always been preferred. Several concepts for implant coating and local drug delivery had been developed during the last decades. A drug is generally released by diffusion-controlled, solvent-controlled, and chemical controlled methods. Although a range of surface modifications and coatings (antimicrobial, bioactive, therapeutic drugs) have been explored for dental implants, it is still a long way from designing sophisticated therapeutic implant surfaces to achieve the specific needs of dental patients. The present article reviews various interdisciplinary aspects of surface coatings on dental implants from the perspectives of biomaterials, coatings, drug release, and related therapeutic effects. Additionally, the various types of implant coatings, localized drug release from coatings, and how released agents influence the bone–implant surface interface characteristics are discussed. This paper also highlights several strategies for local drug delivery and their limitations in dental implant coatings as some of these concepts are yet to be applied in clinical settings due to the specific requirements of individual patients.
Collapse
|
10
|
Arslan M, Bolu BS, Sanyal R, Sanyal A. A modular and orthogonally reactive platform for fabrication of polymer–drug conjugates for targeted delivery. Polym Chem 2020. [DOI: 10.1039/d0py01049a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increasing interest in utilization of polymeric systems in targeted drug delivery has necessitated fabrication of polymers that undergo facile functionalization with targeting groups and therapeutic agents in a modular and orthogonal fashion.
Collapse
Affiliation(s)
- Mehmet Arslan
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
| | - Burcu Sumer Bolu
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| | - Rana Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| | - Amitav Sanyal
- Department of Chemistry
- Bogazici University
- Istanbul
- Turkey
- Center for Life Sciences and Technologies
| |
Collapse
|
11
|
Stanislawska I, Liwinska W, Lyp M, Stojek Z, Zabost E. Recent Advances in Degradable Hybrids of Biomolecules and NGs for Targeted Delivery. Molecules 2019; 24:E1873. [PMID: 31096669 PMCID: PMC6572277 DOI: 10.3390/molecules24101873] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 02/07/2023] Open
Abstract
Recently, the fast development of hybrid nanogels dedicated to various applications has been seen. In this context, nanogels incorporating biomolecules into their nanonetworks are promising innovative carriers that gain great potential in biomedical applications. Hybrid nanogels containing various types of biomolecules are exclusively designed for: improved and controlled release of drugs, targeted delivery, improvement of biocompatibility, and overcoming of immunological response and cell self-defense. This review provides recent advances in this rapidly developing field and concentrates on: (1) the key physical consequences of using hybrid nanogels and introduction of biomolecules; (2) the construction and functionalization of degradable hybrid nanogels; (3) the advantages of hybrid nanogels in controlled and targeted delivery; and (4) the analysis of the specificity of drug release mechanisms in hybrid nanogels. The limitations and future directions of hybrid nanogels in targeted specific- and real-time delivery are also discussed.
Collapse
Affiliation(s)
- Iwona Stanislawska
- Department of Nutrition, College of Rehabilitation, Kasprzaka 49, 01-234 Warsaw, Poland.
| | - Wioletta Liwinska
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Marek Lyp
- Department of Nutrition, College of Rehabilitation, Kasprzaka 49, 01-234 Warsaw, Poland.
| | - Zbigniew Stojek
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| | - Ewelina Zabost
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland.
| |
Collapse
|
12
|
Stem cell paracrine effect and delivery strategies for spinal cord injury regeneration. J Control Release 2019; 300:141-153. [PMID: 30851286 DOI: 10.1016/j.jconrel.2019.02.038] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2018] [Revised: 02/22/2019] [Accepted: 02/25/2019] [Indexed: 12/29/2022]
Abstract
Spinal cord injury (SCI) is a complicated neuropathological condition that results in functional dysfunction and paralysis. Various treatments have been proposed including drugs, biological factors and cells administered in several ways. Stem cell therapy offers a potentially revolutionary mode to repair the damaged spinal cord after injury. Initially, stem cells were considered promising for replacing cells and tissue lost after SCI. Many studies looked at their differentiation to replace neuronal and glial cells for a better functional outcome. However, it is becoming clear that different functional improvements recognized to stem cells are due to biomolecular activities by the transplanted stem cells rather than cell replacement. This review aimed to discuss the paracrine mechanisms for tissue repair and regeneration after stem cell transplantation in SCI. It focuses on stem cell factor production, effect in tissue restoration, and novel delivery strategies to use them for SCI therapy.
Collapse
|
13
|
Sharma PK, Taneja S, Singh Y. Hydrazone-Linkage-Based Self-Healing and Injectable Xanthan-Poly(ethylene glycol) Hydrogels for Controlled Drug Release and 3D Cell Culture. ACS APPLIED MATERIALS & INTERFACES 2018; 10:30936-30945. [PMID: 30148349 DOI: 10.1021/acsami.8b07310] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Polymeric hydrogels have been extensively explored for controlled drug-delivery applications, but there is an increasing demand for smart drug delivery combined with tunable physicochemical attributes and tissue engineering potential. In this work, novel xanthan-poly(ethylene glycol) (PEG) hydrogels were developed by cross-linking polysaccharide, oxidized xanthan, and 8-arm PEG hydrazine through dynamic, pH-responsive, and biodegradable hydrazone linkages. Aqueous solutions (pH 6.5) of oxidized xanthan and PEG hydrazine were mixed together at 37 °C to obtain hydrogels within minutes, and the formation of hydrazone linkages was ascertained using Fourier transform infrared spectroscopy. Fabrication of xanthan-PEG hydrogels using hydrazone linkages has not been reported previously. The 3% hydrogels exhibited the storage modulus of 194 Pa, which increased to 770 Pa for 5% hydrogels. When subjected to alternating cycles of varying strains of 1 and 800% (5 cycles), hydrogels demonstrated instant recovery each time the extreme strain was relieved, thus suggesting excellent self-healing capabilities. Doxorubicin (DOX), chemotherapeutic agent, was loaded onto hydrogels, and release studies were carried out at pH 5.5 (tumoral) and 7.4 (physiological). The cumulative release from 3, 4, and 5% hydrogels at pH 5.5 was 81.06, 61.98, and 41.67%, whereas the release at pH 7.4 was 47.43, 37.01, and 35.34% at 30 days. MTT assay showed that oxidized xanthan and PEG hydrazine are not toxic to mammalian cells (NIH-3T3), as the cell viabilities were found to be 84.66 and 102% for concentrations up to 1 mg/mL. The live/dead assay with encapsulated NIH-3T3 cells showed no significant dead cell population, suggesting excellent compatibility of hydrogels in 2D and 3D culture. DOX-loaded hydrogels exhibited cytotoxicity against A549 cells when exposed to media released from hydrogels. Overall, hydrogels developed in this work may have potential applications in drug delivery and 3D cell culture for cell delivery.
Collapse
Affiliation(s)
- Peeyush Kumar Sharma
- Department of Chemistry , Indian Institute of Technology Ropar , Rupnagar 140001 Punjab , India
| | - Sagarika Taneja
- Department of Chemistry , Indian Institute of Technology Ropar , Rupnagar 140001 Punjab , India
| | - Yashveer Singh
- Department of Chemistry , Indian Institute of Technology Ropar , Rupnagar 140001 Punjab , India
| |
Collapse
|
14
|
Mauri E, Negri A, Rebellato E, Masi M, Perale G, Rossi F. Hydrogel-Nanoparticles Composite System for Controlled Drug Delivery. Gels 2018; 4:E74. [PMID: 30674850 PMCID: PMC6209253 DOI: 10.3390/gels4030074] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/20/2018] [Accepted: 08/29/2018] [Indexed: 12/28/2022] Open
Abstract
Biodegradable poly(ethylene glycol)-block-poly(-lactic acid) (PEG-b-PLA) nanoparticles (NPs) were prepared by nanoprecipitation with controlled dimension and with different electric charges, as monitored by dynamic light scattering (DLS). Then NPs were loaded within hydrogels (HG) developed for biomedical applications in the central nervous system, with different pore sizes (30 and 90 nm). The characteristics of the resulting composite hydrogel-NPs system were firstly studied in terms of ability to control the release of small steric hindrance drug mimetic. Then, diffusion-controlled release of different charged NPs from different entangled hydrogels was studied in vitro and correlated with NPs electric charges and hydrogel mean mesh size. These studies showed different trends, that depend on NPs superficial charge and HG mesh size. Release experiments and diffusion studies, then rationalized by mathematical modeling, allowed us to build different drug delivery devices that can satisfy different medical needs.
Collapse
Affiliation(s)
- Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
| | - Anna Negri
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
| | - Erica Rebellato
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
| | - Maurizio Masi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
| | - Giuseppe Perale
- Biomaterials Laboratory, Institute for Mechanical Engineering and Materials Technology, SUPSI-University of Applied Sciences and Arts of Southern Switzerland, via Cantonale 2C, Galleria 2, 6928 Manno, Switzerland.
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering "G. Natta", Politecnico di Milano, via Mancinelli 7, 20131 Milan, Italy.
| |
Collapse
|
15
|
Mauri E, Cappella F, Masi M, Rossi F. PEGylation influences drug delivery from nanogels. J Drug Deliv Sci Technol 2018. [DOI: 10.1016/j.jddst.2018.05.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
16
|
|
17
|
Ossipov DA, Romero AB, Ossipova E. Light-activatable prodrugs based on hyaluronic acid biomaterials. Carbohydr Polym 2018; 180:145-155. [DOI: 10.1016/j.carbpol.2017.10.028] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 09/06/2017] [Accepted: 10/05/2017] [Indexed: 01/08/2023]
|
18
|
Huang G, Li F, Zhao X, Ma Y, Li Y, Lin M, Jin G, Lu TJ, Genin GM, Xu F. Functional and Biomimetic Materials for Engineering of the Three-Dimensional Cell Microenvironment. Chem Rev 2017; 117:12764-12850. [PMID: 28991456 PMCID: PMC6494624 DOI: 10.1021/acs.chemrev.7b00094] [Citation(s) in RCA: 479] [Impact Index Per Article: 68.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The cell microenvironment has emerged as a key determinant of cell behavior and function in development, physiology, and pathophysiology. The extracellular matrix (ECM) within the cell microenvironment serves not only as a structural foundation for cells but also as a source of three-dimensional (3D) biochemical and biophysical cues that trigger and regulate cell behaviors. Increasing evidence suggests that the 3D character of the microenvironment is required for development of many critical cell responses observed in vivo, fueling a surge in the development of functional and biomimetic materials for engineering the 3D cell microenvironment. Progress in the design of such materials has improved control of cell behaviors in 3D and advanced the fields of tissue regeneration, in vitro tissue models, large-scale cell differentiation, immunotherapy, and gene therapy. However, the field is still in its infancy, and discoveries about the nature of cell-microenvironment interactions continue to overturn much early progress in the field. Key challenges continue to be dissecting the roles of chemistry, structure, mechanics, and electrophysiology in the cell microenvironment, and understanding and harnessing the roles of periodicity and drift in these factors. This review encapsulates where recent advances appear to leave the ever-shifting state of the art, and it highlights areas in which substantial potential and uncertainty remain.
Collapse
Affiliation(s)
- Guoyou Huang
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Fei Li
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Chemistry, School of Science,
Xi’an Jiaotong University, Xi’an 710049, People’s Republic
of China
| | - Xin Zhao
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Interdisciplinary Division of Biomedical
Engineering, The Hong Kong Polytechnic University, Hung Hom, Hong Kong,
People’s Republic of China
| | - Yufei Ma
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Yuhui Li
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Min Lin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Guorui Jin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| | - Tian Jian Lu
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- MOE Key Laboratory for Multifunctional Materials
and Structures, Xi’an Jiaotong University, Xi’an 710049,
People’s Republic of China
| | - Guy M. Genin
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
- Department of Mechanical Engineering &
Materials Science, Washington University in St. Louis, St. Louis 63130, MO,
USA
- NSF Science and Technology Center for
Engineering MechanoBiology, Washington University in St. Louis, St. Louis 63130,
MO, USA
| | - Feng Xu
- MOE Key Laboratory of Biomedical Information
Engineering, School of Life Science and Technology, Xi’an Jiaotong
University, Xi’an 710049, People’s Republic of China
- Bioinspired Engineering and Biomechanics Center
(BEBC), Xi’an Jiaotong University, Xi’an 710049, People’s
Republic of China
| |
Collapse
|
19
|
Plichta A, Kowalczyk S, Kamiński K, Wasyłeczko M, Więckowski S, Olędzka E, Nałęcz-Jawecki G, Zgadzaj A, Sobczak M. ATRP of Methacrylic Derivative of Camptothecin Initiated with PLA toward Three-Arm Star Block Copolymer Conjugates with Favorable Drug Release. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01350] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Andrzej Plichta
- Chair
of Chemistry and Technology of Polymers, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Sebastian Kowalczyk
- Chair
of Chemistry and Technology of Polymers, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Krzysztof Kamiński
- Chair
of Chemistry and Technology of Polymers, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Monika Wasyłeczko
- Chair
of Chemistry and Technology of Polymers, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Stanisław Więckowski
- Chair
of Chemistry and Technology of Polymers, Faculty of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | | | | | | | | |
Collapse
|
20
|
Ma X, Sun X, Chen J, Lei Y. Natural or Natural-Synthetic Hybrid Polymer-Based Fluorescent Polymeric Materials for Bio-imaging-Related Applications. Appl Biochem Biotechnol 2017; 183:461-487. [DOI: 10.1007/s12010-017-2570-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
|
21
|
El-Fawal GF, Yassin AM, El-Deeb NM. The Novelty in Fabrication of Poly Vinyl Alcohol/κ-Carrageenan Hydrogel with Lactobacillus bulgaricus Extract as Anti-inflammatory Wound Dressing Agent. AAPS PharmSciTech 2017; 18:1605-1616. [PMID: 27620196 DOI: 10.1208/s12249-016-0628-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Accepted: 08/29/2016] [Indexed: 02/05/2023] Open
Abstract
Material barrier properties to microbes are an important issue in many pharmaceutical applications like wound dressings. A wide range of biomaterials has been used to manage the chronic inflamed wounds. Eight hydrogel membranes of poly vinyl alcohol (PVA) with κ-carrageenan (KC) and Lactobacillus bulgaricus extract (LAB) have been prepared by using freeze-thawing technique. To evaluate the membranes efficiency as wound dressing agents, various tests have been done like gel fraction, swelling behavior, mechanical properties, etc. The antibacterial activities of the prepared membranes were tested against the antibiotic-resistant bacterial isolates. In addition, the safety usage of the prepared hydrogel was checked on human dermal fibroblast cells. The anti-inflammatory properties of the prepared hydrogel on LPS-PBMC cell inflammatory model were quantified using enzyme-linked immunosorbent assay (ELISA) and real-time polymerase chain reaction (RT-qPCR). The analysis data of TGA, SEM, gel fraction, and swelling behavior showed changes in properties of prepared PVA\KC\LAB hydrogel membrane than pure PVA hydrogel membrane. The antibacterial activities of the prepared membranes augmented in LAB extract-prepared membranes. Out of the eight used hydrogel membranes, the PVAKC4 hydrogel membrane is the safest one on fibroblast cellular proliferation with a maximum proliferation percentage 97.3%. Also, all the used hydrogel membrane showed abilities to reduce the concentration of IL-2 and IL-8 compared with both negative and positive control. In addition, almost all the prepared hydrogel membrane showed variable abilities to downregulate the expression of TNF-α gene with superior effect of hydrogel membrane KC1. PVA/KC/LAB extract hydrogel membrane may be a promising material for wound dressing application and could accelerate the healing process of the chronic wound because of its antimicrobial and anti-inflammatory properties.
Collapse
|
22
|
Mauri E, Chincarini GM, Rigamonti R, Magagnin L, Sacchetti A, Rossi F. Modulation of electrostatic interactions to improve controlled drug delivery from nanogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:308-315. [DOI: 10.1016/j.msec.2016.11.081] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/07/2016] [Accepted: 11/21/2016] [Indexed: 12/31/2022]
|
23
|
Kascholke C, Loth T, Kohn-Polster C, Möller S, Bellstedt P, Schulz-Siegmund M, Schnabelrauch M, Hacker MC. Dual-Functional Hydrazide-Reactive and Anhydride-Containing Oligomeric Hydrogel Building Blocks. Biomacromolecules 2017; 18:683-694. [PMID: 28125209 DOI: 10.1021/acs.biomac.6b01355] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Biomimetic hydrogels are advanced biomaterials that have been developed following different synthetic routes. Covalent postfabrication functionalization is a promising strategy to achieve efficient matrix modification decoupled of general material properties. To this end, dual-functional macromers were synthesized by free radical polymerization of maleic anhydride with diacetone acrylamide (N-(1,1-dimethyl-3-oxobutyl)acrylamide) and pentaerythritol diacrylate monostearate. Amphiphilic oligomers (Mn < 7.5 kDa) with anhydride contents of 7-20% offered cross-linking reactivity to yield rigid hydrogels with gelatinous peptides (E = 4-13 kPa) and good cell adhesion properties. Mildly reactive methyl ketones as second functionality remained intact during hydrogel formation and potential of covalent matrix modification was shown using hydrazide and hydrazine model compounds. Successful secondary dihydrazide cross-linking was demonstrated by an increase of hydrogel stiffness (>40%). Efficient hydrazide/hydrazine immobilization depending on solution pH, hydrogel ketone content as well as ligand concentration for bioconjugation was shown and reversibility of hydrazone formation was indicated by physiologically relevant hydrazide release over 7 days. Proof-of-concept experiments with hydrazido-functionalized hyaluronan demonstrated potential for covalent aECM immobilization. The presented dual-functional macromers have perspective as reactive hydrogel building blocks for various biomedical applications.
Collapse
Affiliation(s)
- Christian Kascholke
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University , Eilenburger Straße 15 a, 04317 Leipzig, Germany.,Collaborative Research Center (SFB/Transregio 67), Matrixengineering, Leipzig and Dresden, Germany
| | - Tina Loth
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University , Eilenburger Straße 15 a, 04317 Leipzig, Germany.,Collaborative Research Center (SFB/Transregio 67), Matrixengineering, Leipzig and Dresden, Germany
| | - Caroline Kohn-Polster
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University , Eilenburger Straße 15 a, 04317 Leipzig, Germany.,Collaborative Research Center (SFB/Transregio 67), Matrixengineering, Leipzig and Dresden, Germany
| | - Stephanie Möller
- Biomaterials Department, INNOVENT e.V. , Prüssingstraße 27 b, 07745 Jena, Germany.,Collaborative Research Center (SFB/Transregio 67), Matrixengineering, Leipzig and Dresden, Germany
| | - Peter Bellstedt
- Institute of Organic Chemistry and Macromolecular Chemistry, Friedrich-Schiller University Jena , Humboldtstraße 10, 07743 Jena, Germany
| | - Michaela Schulz-Siegmund
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University , Eilenburger Straße 15 a, 04317 Leipzig, Germany.,Collaborative Research Center (SFB/Transregio 67), Matrixengineering, Leipzig and Dresden, Germany
| | - Matthias Schnabelrauch
- Biomaterials Department, INNOVENT e.V. , Prüssingstraße 27 b, 07745 Jena, Germany.,Collaborative Research Center (SFB/Transregio 67), Matrixengineering, Leipzig and Dresden, Germany
| | - Michael C Hacker
- Institute of Pharmacy, Pharmaceutical Technology, Leipzig University , Eilenburger Straße 15 a, 04317 Leipzig, Germany.,Collaborative Research Center (SFB/Transregio 67), Matrixengineering, Leipzig and Dresden, Germany
| |
Collapse
|
24
|
Mauri E, Papa S, Masi M, Veglianese P, Rossi F. Novel functionalization strategies to improve drug delivery from polymers. Expert Opin Drug Deliv 2017; 14:1305-1313. [DOI: 10.1080/17425247.2017.1285280] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Emanuele Mauri
- Dipartimento di Chimica, Materiali e Ingegneria Chimica ‘Giulio Natta’, Politecnico di Milano, Milano, Italy
| | - Simonetta Papa
- Dipartimento di Neuroscienze, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Maurizio Masi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica ‘Giulio Natta’, Politecnico di Milano, Milano, Italy
| | - Pietro Veglianese
- Dipartimento di Neuroscienze, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Milano, Italy
| | - Filippo Rossi
- Dipartimento di Chimica, Materiali e Ingegneria Chimica ‘Giulio Natta’, Politecnico di Milano, Milano, Italy
| |
Collapse
|
25
|
Kheirabadi M, Shi L, Bagheri R, Kabiri K, Hilborn J, Ossipov DA. In situ forming interpenetrating hydrogels of hyaluronic acid hybridized with iron oxide nanoparticles. Biomater Sci 2017; 3:1466-74. [PMID: 26247066 DOI: 10.1039/c5bm00150a] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four derivatives of hyaluronic acid (HA) bearing thiol (HA-SH), hydrazide (HA-hy), 2-dithiopyridyl (HA-SSPy), and aldehyde groups (HA-al) respectively were synthesized. Thiol and 2-dithiopyridyl as well as hydrazide and aldehyde make up two chemically orthogonal pairs of chemo-selective functionalities that allow in situ formation of interpenetrating (IPN) disulfide and hydrazone networks simultaneously upon the mixing of the above derivatives at once. The formation of IPN was demonstrated by comparing it with the formulations of the same total HA concentration but lacking one of the reactive components. The hydrogel composed of all four components was characterized by a larger elastic modulus than those of the control single networks (either disulfide or hydrazone) and the three component formulations gave the softest hydrogels. Moreover, a hydrazone cross-linkage was designed to contain a 1,2-diol fragment. This allowed us to partially disassemble one type of network in the IPN leaving another one unaffected. In particular, treatment of the IPN with either sodium periodate or dithiothreitol resulted in disassembly of the hydrazone and disulfide networks respectively and thus softening of the hydrogel. Contrarily, the single network hydrogels completely dissolved under the corresponding conditions. In corroboration with this, enzymatic degradation of the IPN by hyaluronidase was also substantially slower than the degradation of the single networks. In order to further improve the mechanical properties of the elaborated injectable IPN, it has been in situ hybridized with iron oxide nanoparticles (IONPs). The mesh size of the IPN was smaller than the size of the IONPs resulting in the retention of nanoparticles in the matrix under equilibrium swelling conditions. However, these nanoparticles were released upon enzymatic degradation suggesting their use as MRI tags for non-invasive tracking of the hydrogel material in vivo. Additionally, this injectable hybridized hydrogel with encapsulated IONPs can be used in hyperthermia cancer therapy.
Collapse
Affiliation(s)
- Malihe Kheirabadi
- Institute for Nanoscience and Nanotechnology, Sharif University of Technology, Azadi Street, P.O. Box 11155-8639, Tehran, Iran
| | | | | | | | | | | |
Collapse
|
26
|
Mauri E, Veglianese P, Papa S, Mariani A, De Paola M, Rigamonti R, Chincarini GF, Vismara I, Rimondo S, Sacchetti A, Rossi F. Double conjugated nanogels for selective intracellular drug delivery. RSC Adv 2017. [DOI: 10.1039/c7ra04584k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
One of the most important drawbacks of nanomedicine is related to the unwanted rapid diffusion of drugs loaded within nanocarriers towards the external biological environment, according to the high clearance of body fluids.
Collapse
Affiliation(s)
- Emanuele Mauri
- Dipartimento di Chimica
- Materiali e Ingegneria Chimica “Giulio Natta”
- 20131 Milan
- Italy
| | - Pietro Veglianese
- Dipartimento di Neuroscienze
- IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”
- 20156 Milan
- Italy
| | - Simonetta Papa
- Dipartimento di Neuroscienze
- IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”
- 20156 Milan
- Italy
| | - Alessandro Mariani
- Dipartimento di Ambiente e Salute
- IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”
- 20156 Milan
- Italy
| | - Massimiliano De Paola
- Dipartimento di Ambiente e Salute
- IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”
- 20156 Milan
- Italy
| | - Riccardo Rigamonti
- Dipartimento di Chimica
- Materiali e Ingegneria Chimica “Giulio Natta”
- 20131 Milan
- Italy
| | | | - Irma Vismara
- Dipartimento di Neuroscienze
- IRCCS Istituto di Ricerche Farmacologiche “Mario Negri”
- 20156 Milan
- Italy
| | - Stefano Rimondo
- Dipartimento di Chimica
- Materiali e Ingegneria Chimica “Giulio Natta”
- 20131 Milan
- Italy
| | - Alessandro Sacchetti
- Dipartimento di Chimica
- Materiali e Ingegneria Chimica “Giulio Natta”
- 20131 Milan
- Italy
| | - Filippo Rossi
- Dipartimento di Chimica
- Materiali e Ingegneria Chimica “Giulio Natta”
- 20131 Milan
- Italy
| |
Collapse
|
27
|
Gao C, Tang F, Zhang J, Lee SMY, Wang R. Glutathione-responsive nanoparticles based on a sodium alginate derivative for selective release of doxorubicin in tumor cells. J Mater Chem B 2017; 5:2337-2346. [DOI: 10.1039/c6tb03032g] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
GSH-responsive nanoparticles based on disulfide crosslinked amphiphilic alginate demonstrated selected drug release in cancer cells with a much improved safety profile.
Collapse
Affiliation(s)
- Cheng Gao
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Fan Tang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Jianxiang Zhang
- Department of Pharmaceutics
- College of Pharmacy
- Third Military Medical University
- Chongqing 400038
- China
| | - Simon M. Y. Lee
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| | - Ruibing Wang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- China
| |
Collapse
|
28
|
Yan S, Wang T, Li X, Jian Y, Zhang K, Li G, Yin J. Fabrication of injectable hydrogels based on poly(l-glutamic acid) and chitosan. RSC Adv 2017. [DOI: 10.1039/c7ra01864a] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The in situ forming hydrogels based on oppositely charged poly(l-glutamic acid) (PLGA) and chitosan (CS) were prepared via a Schiff base crosslinking reaction.
Collapse
Affiliation(s)
- Shifeng Yan
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Taotao Wang
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Xing Li
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Yuhang Jian
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Kunxi Zhang
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Guifei Li
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| | - Jingbo Yin
- Department of Polymer Materials
- Shanghai University
- Shanghai 200444
- People's Republic of China
| |
Collapse
|
29
|
Freudenberg U, Liang Y, Kiick KL, Werner C. Glycosaminoglycan-Based Biohybrid Hydrogels: A Sweet and Smart Choice for Multifunctional Biomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2016; 28:8861-8891. [PMID: 27461855 PMCID: PMC5152626 DOI: 10.1002/adma.201601908] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Revised: 05/30/2016] [Indexed: 05/12/2023]
Abstract
Glycosaminoglycans (GAGs) govern important functional characteristics of the extracellular matrix (ECM) in living tissues. Incorporation of GAGs into biomaterials opens up new routes for the presentation of signaling molecules, providing control over development, homeostasis, inflammation, and tumor formation and progression. Recent approaches to GAG-based materials are reviewed, highlighting the formation of modular, tunable biohybrid hydrogels by covalent and non-covalent conjugation schemes, including both theory-driven design concepts and advanced processing technologies. Examples of the application of the resulting materials in biomedical studies are provided. For perspective, solid-phase and chemoenzymatic oligosaccharide synthesis methods for GAG-derived motifs, rational and high-throughput design strategies for GAG-based materials, and the utilization of the factor-scavenging characteristics of GAGs are highlighted.
Collapse
Affiliation(s)
- Uwe Freudenberg
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Hohe Str. 6, 01069 Dresden, Germany
| | - Yingkai Liang
- Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States,
| | - Kristi L. Kiick
- Department of Materials Science and Engineering and Department of Biomedical Engineering, University of Delaware, Newark, Delaware 19716, United States and Delaware Biotechnology Institute, 15 Innovation Way, Newark, Delaware 19716, United States
| | - Carsten Werner
- Leibniz Institute of Polymer Research Dresden (IPF), Max Bergmann Center of Biomaterials Dresden (MBC), Technische Universität Dresden, Center for Regenerative Therapies Dresden (CRTD), Hohe Str. 6, 01069 Dresden, Germany
| |
Collapse
|
30
|
Mauri E, Moroni I, Magagnin L, Masi M, Sacchetti A, Rossi F. Comparison between two different click strategies to synthesize fluorescent nanogels for therapeutic applications. REACT FUNCT POLYM 2016. [DOI: 10.1016/j.reactfunctpolym.2016.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
31
|
Palumbo FS, Agnello S, Fiorica C, Pitarresi G, Puleio R, Tamburello A, Loria R, Giammona G. Hyaluronic Acid Derivative with Improved Versatility for Processing and Biological Functionalization. Macromol Biosci 2016; 16:1485-1496. [DOI: 10.1002/mabi.201600114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 06/06/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Fabio S. Palumbo
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche; Sezione di Chimica e Tecnologie Farmaceutiche; Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
| | - Stefano Agnello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche; Sezione di Chimica e Tecnologie Farmaceutiche; Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
| | - Calogero Fiorica
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche; Sezione di Chimica e Tecnologie Farmaceutiche; Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
| | - Giovanna Pitarresi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche; Sezione di Chimica e Tecnologie Farmaceutiche; Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
| | - Roberto Puleio
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”; Histopathology and Immunohistochemistry Laboratory; Palermo Italy
| | - Anna Tamburello
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”; Histopathology and Immunohistochemistry Laboratory; Palermo Italy
| | - Ruggero Loria
- Istituto Zooprofilattico Sperimentale della Sicilia “A. Mirri”; Histopathology and Immunohistochemistry Laboratory; Palermo Italy
| | - Gaetano Giammona
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche; Sezione di Chimica e Tecnologie Farmaceutiche; Università degli Studi di Palermo; Via Archirafi 32 90123 Palermo Italy
| |
Collapse
|
32
|
Hyaluronic acid-fibrin interpenetrating double network hydrogel prepared in situ by orthogonal disulfide cross-linking reaction for biomedical applications. Acta Biomater 2016; 38:23-32. [PMID: 27134013 DOI: 10.1016/j.actbio.2016.04.041] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 04/22/2016] [Accepted: 04/27/2016] [Indexed: 11/24/2022]
Abstract
UNLABELLED To strengthen the mechanical properties of a fibrin gel and improve its applicability as a scaffold for tissue engineering (TE) applications, a strategy for the in situ preparation of the interpenetrating network (IPN) of fibrin and hyaluronic acid (HA) was developed on the basis of simultaneous and orthogonal fibrinogenesis and disulfide cross-linking. The synthetic pathway included the preparation of mutually reactive HA derivatives bearing thiol and 2-dithiopyridyl groups. Combining thiol-derivatized HA with thrombin and 2-dithiopyridyl-modified HA with fibrinogen and then mixing the obtained liquid formulations afforded IPNs with fibrin-resembling fibrillar architectures at different ratios between fibrin and HA networks. The formation of two networks was confirmed by conducting reference experiments with the compositions lacking one of the four components. The composition of 2% (w/v) fibrin and 1% (w/v) HA showed the highest storage modulus (G'), as compared with the single network counterparts. The degradation of fibrin in IPN hydrogels was slower than that in pure fibrin gels both during incubation of the hydrogels in a fibrin-cleaving nattokinase solution and during the culturing of cells after their encapsulation in the hydrogels. Together with the persistence of HA network, it permitted longer cell culturing time in the IPN. Moreover, the proliferation and spreading of MG63 cells that express the hyaluronan receptor CD44 in IPN hydrogel was increased, as compared with its single network analogues. These results are promising for tunable ECM-based materials for TE and regenerative medicine. STATEMENT OF SIGNIFICANCE The present work is devoted to in situ fabrication of injectable extracellular matrix hydrogels through simultaneous generation of networks of fibrin and hyaluronic acid (HA) that interpenetrate each other. This is accomplished by combination of enzymatic fibrin cross-linking with orthogonal disulphide cross-linking of HA. High hydrophilicity of HA prevents compaction of the fibrin network, while fibrin provides an adhesive environment for in situ encapsulated cells. The interpenetrating network hydrogel shows an increased stiffness along with a lower degradation rate of fibrin in comparison to the single fibrin network. As a result, the cells have sufficient time for the remodelling of the scaffold. This new approach can be applied for modular construction of in vitro tissue models and tissue engineering scaffolds in vivo.
Collapse
|
33
|
Kuehl C, Zhang T, Kaminskas LM, Porter CJH, Davies NM, Forrest L, Berkland C. Hyaluronic Acid Molecular Weight Determines Lung Clearance and Biodistribution after Instillation. Mol Pharm 2016; 13:1904-14. [PMID: 27157508 DOI: 10.1021/acs.molpharmaceut.6b00069] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Hyaluronic acid (HA) has emerged as a versatile polymer for drug delivery. Multiple commercial products utilize HA, it can be obtained in a variety of molecular weights, and it offers chemical handles for cross-linkers, drugs, or imaging agents. Previous studies have investigated multiple administration routes, but the absorption, biodistribution, and pharmacokinetics of HA after delivery to the lung is relatively unknown. Here, pharmacokinetic parameters were investigated by delivering different molecular weights of HA (between 7 and 741 kDa) to the lungs of mice. HA was labeled with either a near-infrared dye or with iodine-125 conjugated to HA using a tyrosine linker. In initial studies, dye-labeled HA was instilled into the lungs and fluorescent images of organs were collected at 1, 8, and 24 h post administration. Data suggested longer lung persistence of higher molecular weight HA, but signal diminished for all molecular weights at 8 h. To better quantitate pharmacokinetic parameters, different molecular weights of iodine-125 labeled HA were instilled and organ radioactivity was determined after 1, 2, 4, 6, and 8 h. The data showed that, after instillation, the lungs contained the highest levels of HA, as expected, followed by the gastrointestinal tract. Smaller molecular weights of HA showed more rapid systemic distribution, while 67 and 215 kDa HA showed longer persistence in the lungs. Lung exposure appeared to be optimum in this size range due to the rapid absorption of <67 kDa HA and the poor lung penetration and mucociliary clearance of viscous solutions of HA > 215 kDa. The versatility of HA molecular weight and conjugation chemistries may, therefore, provide new opportunities to extend pulmonary drug exposure and potentially facilitate access to lymph nodes draining the pulmonary bed.
Collapse
Affiliation(s)
| | | | - Lisa M Kaminskas
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria, Australia , 3052
| | - Christopher J H Porter
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University , 381 Royal Parade, Parkville, Victoria, Australia , 3052
| | - Neal M Davies
- College of Pharmacy, University of Manitoba , Winnipeg, Manitoba, Canada , R3E 0T5
| | | | | |
Collapse
|
34
|
Mauri E, Rossi F, Sacchetti A. Tunable drug delivery using chemoselective functionalization of hydrogels. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 61:851-7. [DOI: 10.1016/j.msec.2016.01.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 12/16/2015] [Accepted: 01/09/2016] [Indexed: 01/01/2023]
|
35
|
You J, Xie S, Cao J, Ge H, Xu M, Zhang L, Zhou J. Quaternized Chitosan/Poly(acrylic acid) Polyelectrolyte Complex Hydrogels with Tough, Self-Recovery, and Tunable Mechanical Properties. Macromolecules 2016. [DOI: 10.1021/acs.macromol.5b02231] [Citation(s) in RCA: 123] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Jun You
- Department
of Chemistry and Key Laboratory of Biomedical Polymers of Ministry
of Education, Wuhan University, Wuhan 430072, China
| | - Shuyi Xie
- Department
of Chemistry and Key Laboratory of Biomedical Polymers of Ministry
of Education, Wuhan University, Wuhan 430072, China
| | - Jinfeng Cao
- Department
of Chemistry and Key Laboratory of Biomedical Polymers of Ministry
of Education, Wuhan University, Wuhan 430072, China
| | - Hao Ge
- Shanghai
Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai 200062, China
| | - Min Xu
- Shanghai
Key Laboratory of Magnetic Resonance, Department of Physics, East China Normal University, Shanghai 200062, China
| | - Lina Zhang
- Department
of Chemistry and Key Laboratory of Biomedical Polymers of Ministry
of Education, Wuhan University, Wuhan 430072, China
| | - Jinping Zhou
- Department
of Chemistry and Key Laboratory of Biomedical Polymers of Ministry
of Education, Wuhan University, Wuhan 430072, China
| |
Collapse
|
36
|
Non-invasive in vitro and in vivo monitoring of degradation of fluorescently labeled hyaluronan hydrogels for tissue engineering applications. Acta Biomater 2016; 30:188-198. [PMID: 26621694 DOI: 10.1016/j.actbio.2015.11.053] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/04/2015] [Accepted: 11/23/2015] [Indexed: 12/25/2022]
Abstract
Tracking of degradation of hydrogels-based biomaterials in vivo is very important for rational design of tissue engineering scaffolds that act as delivery carriers for bioactive factors. During the process of tissue development, an ideal scaffold should remodel at a rate matching with scaffold degradation. To reduce amount of animals sacrificed, non-invasive in vivo imaging of biomaterials is required which relies on using of biocompatible and in situ gel forming compounds carrying suitable imaging agents. In this study we developed a method of in situ fabrication of fluorescently labeled and injectable hyaluronan (HA) hydrogel based on one pot sequential use of Michael addition and thiol-disulfide exchange reactions for the macromolecules labeling and cross-linking respectively. Hydrogels with different content of HA were prepared and their enzymatic degradation was followed in vitro and in vivo using fluorescence multispectral imaging. First, we confirmed that the absorbance of the matrix-linked near-IR fluorescent IRDye® 800CW agent released due to the matrix enzymatic degradation in vitro matched the amount of the degraded hydrogel measured by classical gravimetric method. Secondly, the rate of degradation was inversely proportional to the hydrogel concentration and this structure-degradation relationship was similar for both in vitro and in vivo studies. It implies that the degradation of this disulfide cross-linked hyaluronan hydrogel in vivo can be predicted basing on the results of its in vitro degradation studies. The compliance of in vitro and in vivo methods is also promising for the future development of predictive in vitro tissue engineering models. STATEMENT OF SIGNIFICANCE The need for engineered hydrogel scaffolds that deliver bioactive factors to endogenous progenitor cells in vivo via gradual matrix resorption and thus facilitate tissue regeneration is increasing with the aging population. Importantly, scaffold should degrade at a modest rate that will not be too fast to support tissue growth nor too slow to provide space for tissue development. The present work is devoted to longitudinal tracking of a hydrogel material in vivo from the time of its implantation to the time of complete resorption without sacrificing animals. The method demonstrates correlation of resorption rates in vivo and in vitro for hydrogels with varied structural parameters. It opens the possibility to develop predictive in vitro models for tissue engineered scaffolds and reduce animal studies.
Collapse
|
37
|
Wei YZ, Chu YF, Uliyanchenko E, Schoenmakers PJ, Zhuo RX, Jiang XL. Separation and characterization of benzaldehyde-functional polyethylene glycols by liquid chromatography under critical conditions. Polym Chem 2016. [DOI: 10.1039/c6py01653g] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Baseline separation and characterization of benzaldehyde-substituted PEGs based on end-group functionality achieved by LCCC and confirmed by off-line MALDI-TOF-MS.
Collapse
Affiliation(s)
- Y.-Z. Wei
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - Y.-F. Chu
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - E. Uliyanchenko
- Analytical-Chemistry Group
- Faculty of Science
- van't Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1098 XH Amsterdam
| | - P. J. Schoenmakers
- Analytical-Chemistry Group
- Faculty of Science
- van't Hoff Institute for Molecular Sciences
- University of Amsterdam
- 1098 XH Amsterdam
| | - R.-X. Zhuo
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
| | - X.-L. Jiang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry
- Wuhan University
- Wuhan 430072
- P. R. China
- Analytical-Chemistry Group
| |
Collapse
|
38
|
Chen G, Guo J, Nie J, Ma G. Preparation, characterization, and application of PEO/HA core shell nanofibers based on electric field induced phase separation during electrospinning. POLYMER 2016. [DOI: 10.1016/j.polymer.2015.12.002] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Kootala S, Zhang Y, Ghalib S, Tolmachev V, Hilborn J, Ossipov DA. Control of growth factor binding and release in bisphosphonate functionalized hydrogels guides rapid differentiation of precursor cells in vitro. Biomater Sci 2016; 4:250-4. [DOI: 10.1039/c5bm00355e] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Sequestration and active release of BMP-2 in HA-BP hydrogels to precursor cells aid rapid differentiation to osteoblasts.
Collapse
Affiliation(s)
- Sujit Kootala
- Science for Life Laboratory
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Yu Zhang
- Science for Life Laboratory
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Sara Ghalib
- Science for Life Laboratory
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Vladimir Tolmachev
- Unit of Biomedical Radiation Sciences
- Rudbeck Laboratory
- Uppsala University
- S-75121 Uppsala
- Sweden
| | - Jöns Hilborn
- Science for Life Laboratory
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| | - Dmitri A. Ossipov
- Science for Life Laboratory
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- Uppsala
- Sweden
| |
Collapse
|
40
|
Buffa R, Šedová P, Basarabová I, Moravcová M, Wolfová L, Bobula T, Velebný V. α,β-Unsaturated aldehyde of hyaluronan—Synthesis, analysis and applications. Carbohydr Polym 2015; 134:293-9. [DOI: 10.1016/j.carbpol.2015.07.084] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 07/22/2015] [Accepted: 07/24/2015] [Indexed: 10/23/2022]
|
41
|
Mauri E, Rossi F, Sacchetti A. Simple and efficient strategy to synthesize PEG-aldehyde derivatives for hydrazone orthogonal chemistry. POLYM ADVAN TECHNOL 2015. [DOI: 10.1002/pat.3578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Emanuele Mauri
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; via Mancinelli 7 20131 Milan Italy
| | - Filippo Rossi
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; via Mancinelli 7 20131 Milan Italy
| | - Alessandro Sacchetti
- Department of Chemistry, Materials and Chemical Engineering “Giulio Natta”; Politecnico di Milano; via Mancinelli 7 20131 Milan Italy
| |
Collapse
|
42
|
Tuley A, Lee YJ, Wu B, Wang ZU, Liu WR. A genetically encoded aldehyde for rapid protein labelling. Chem Commun (Camb) 2015; 50:7424-6. [PMID: 24756176 DOI: 10.1039/c4cc02000f] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Using a mutant pyrrolysyl-tRNA synthetase-tRNA(Pyl)(CUA) pair, 3-formyl-phenylalanine is genetically incorporated into proteins at amber mutation sites in Escherichia coli. This non-canonical amino acid readily reacts with hydroxylamine dyes, leading to rapid and site-selective protein labelling.
Collapse
Affiliation(s)
- Alfred Tuley
- Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.
| | | | | | | | | |
Collapse
|
43
|
Li L, Gu J, Zhang J, Xie Z, Lu Y, Shen L, Dong Q, Wang Y. Injectable and Biodegradable pH-Responsive Hydrogels for Localized and Sustained Treatment of Human Fibrosarcoma. ACS APPLIED MATERIALS & INTERFACES 2015; 7:8033-8040. [PMID: 25838258 DOI: 10.1021/acsami.5b00389] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Injectable hydrogels are an important class of biomaterials, and they have been widely used for controlled drug release. This study evaluated an injectable hydrogel formed in situ system by the reaction of a polyethylene glycol derivative with α,β-polyaspartylhydrazide for local cancer chemotherapy. This pH-responsive hydrogel was used to realize a sol-gel phase transition, where the gel remained a free-flowing fluid before injection but spontaneously changed into a semisolid hydrogel just after administration. As indicated by scanning electron microscopy images, the hydrogel exhibited a porous three-dimensional microstructure. The prepared hydrogel was biocompatible and biodegradable and could be utilized as a pH-responsive vector for drug delivery. The therapeutic effect of the hydrogel loaded with doxorubicin (DOX) after intratumoral administration in mice with human fibrosarcoma was evaluated. The inhibition of tumor growth was more obvious in the group treated by the DOX-loaded hydrogel, compared to that treated with the free DOX solution. Hence, this hydrogel with good syringeability and high biodegradability, which focuses on local chemotherapy, may enhance the therapeutic effect on human fibrosarcoma.
Collapse
Affiliation(s)
- Liubing Li
- †The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jun Gu
- †The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Jie Zhang
- §Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, China
| | - Zonggang Xie
- †The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Yufeng Lu
- †The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Liqin Shen
- †The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Qirong Dong
- †The Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, Jiangsu, China
| | - Yangyun Wang
- §Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, 199 Renai Road, Suzhou Industrial Park, Suzhou, 215123, Jiangsu, China
| |
Collapse
|
44
|
Qi X, Hu X, Wei W, Yu H, Li J, Zhang J, Dong W. Investigation of Salecan/poly(vinyl alcohol) hydrogels prepared by freeze/thaw method. Carbohydr Polym 2015; 118:60-9. [DOI: 10.1016/j.carbpol.2014.11.021] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Revised: 10/30/2014] [Accepted: 11/03/2014] [Indexed: 01/10/2023]
|
45
|
Yang C, Wang X, Yao X, Zhang Y, Wu W, Jiang X. Hyaluronic acid nanogels with enzyme-sensitive cross-linking group for drug delivery. J Control Release 2015; 205:206-17. [PMID: 25665867 DOI: 10.1016/j.jconrel.2015.02.008] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2014] [Revised: 02/02/2015] [Accepted: 02/04/2015] [Indexed: 12/12/2022]
Abstract
A methacrylation strategy was employed to functionalize hyaluronic acid and prepare hyaluronic acid (HA) nanogels. Dynamic light scattering, zeta potential analyzer and electron microscopy were utilized to characterize the nanogels and their enzyme-degradability in vitro. It was found that these nanogels had a spherical morphology with the diameter of about 70nm, and negative surface potential. When doxorubicin (DOX) was loaded into the nanogels, the diameter decreased to approximately 50nm with a drug loading content of 16% and encapsulation efficiency of 62%. Cellular uptake examinations showed that HA nanogels could be preferentially internalized by two-dimensional (2D) cells and three-dimensional (3D) multicellular spheroids (MCs) which both overexpress CD44 receptor. Near-infrared fluorescence imaging, biodistribution and penetration examinations in tumor tissue indicated that the HA nanogels could efficiently accumulate and penetrate the tumor matrix. In vivo antitumor evaluation found that DOX-loaded HA nanogels exhibited a significantly superior antitumor effect.
Collapse
Affiliation(s)
- Chenchen Yang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, PR China
| | - Xin Wang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, PR China
| | - Xikuang Yao
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, PR China
| | - Yajun Zhang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, PR China
| | - Wei Wu
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, PR China
| | - Xiqun Jiang
- MOE Key Laboratory of High Performance Polymer Materials and Technology, Department of Polymer Science & Engineering, College of Chemistry & Chemical Engineering, Nanjing University, Nanjing 210093, PR China; Jiangsu Key Laboratory for Nanotechnology, Nanjing University, Nanjing 210093, PR China.
| |
Collapse
|
46
|
Zhang X, Malhotra S, Molina M, Haag R. Micro- and nanogels with labile crosslinks – from synthesis to biomedical applications. Chem Soc Rev 2015; 44:1948-73. [DOI: 10.1039/c4cs00341a] [Citation(s) in RCA: 239] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
We emphasize the synthetic strategies to produce micro-/nanogels and the importance of degradable linkers incorporated in the gel network.
Collapse
Affiliation(s)
- Xuejiao Zhang
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Shashwat Malhotra
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Maria Molina
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| | - Rainer Haag
- Institute of Chemistry and Biochemistry
- Freie Universität Berlin
- Berlin 14195
- Germany
| |
Collapse
|
47
|
Xu Y, Li Y, Cao X, Chen Q, An Z. Versatile RAFT dispersion polymerization in cononsolvents for the synthesis of thermoresponsive nanogels with controlled composition, functionality and architecture. Polym Chem 2014. [DOI: 10.1039/c4py00867g] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Yang X, Sun Y, Kootala S, Hilborn J, Heerschap A, Ossipov D. Injectable hyaluronic acid hydrogel for 19F magnetic resonance imaging. Carbohydr Polym 2014; 110:95-9. [PMID: 24906733 DOI: 10.1016/j.carbpol.2014.03.070] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2013] [Revised: 02/28/2014] [Accepted: 03/20/2014] [Indexed: 10/25/2022]
Abstract
We report on a 19F labeled injectable hyaluronic acid (HA) hydrogel that can be monitored by both 1H and 19F MR imaging. The HA based hydrogel formed via carbazone reaction can be obtained within a minute by simple mixing of HA-carbazate and HA-aldehyde derivatized polymers. 19F contrast agent was linked to with carbazate and thiol dually functionalized HA via orthogonal Michael addition reaction which afforded cross-linkable and 19F labeled HA. The 19F labeling of HA polymer did not affect the mechanical properties of the formed hydrogel. As a result, the shape of a hydrogel sample could be imaged very well by both 1H MRI and high resolution 19F MRI. This hydrogel has high potential in clinical applications since it is injectable, biocompatible, and can be tracked in a minimally invasive manner. The present approach can be applied in preparation of injectable 19F labeled hydrogel biomaterials from other natural biomacromolecules.
Collapse
Affiliation(s)
- Xia Yang
- Department of Chemistry-Angstrom, Uppsala University, Uppsala, Sweden
| | - Yi Sun
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands; Department of Urology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Sujit Kootala
- Department of Chemistry-Angstrom, Uppsala University, Uppsala, Sweden
| | - Jöns Hilborn
- Department of Chemistry-Angstrom, Uppsala University, Uppsala, Sweden
| | - Arend Heerschap
- Department of Radiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Dmitri Ossipov
- Department of Chemistry-Angstrom, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
49
|
Jiang Y, Chen J, Deng C, Suuronen EJ, Zhong Z. Click hydrogels, microgels and nanogels: emerging platforms for drug delivery and tissue engineering. Biomaterials 2014; 35:4969-85. [PMID: 24674460 DOI: 10.1016/j.biomaterials.2014.03.001] [Citation(s) in RCA: 492] [Impact Index Per Article: 49.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Accepted: 03/03/2014] [Indexed: 02/06/2023]
Abstract
Hydrogels, microgels and nanogels have emerged as versatile and viable platforms for sustained protein release, targeted drug delivery, and tissue engineering due to excellent biocompatibility, a microporous structure with tunable porosity and pore size, and dimensions spanning from human organs, cells to viruses. In the past decade, remarkable advances in hydrogels, microgels and nanogels have been achieved with click chemistry. It is a most promising strategy to prepare gels with varying dimensions owing to its high reactivity, superb selectivity, and mild reaction conditions. In particular, the recent development of copper-free click chemistry such as strain-promoted azide-alkyne cycloaddition, radical mediated thiol-ene chemistry, Diels-Alder reaction, tetrazole-alkene photo-click chemistry, and oxime reaction renders it possible to form hydrogels, microgels and nanogels without the use of potentially toxic catalysts or immunogenic enzymes that are commonly required. Notably, unlike other chemical approaches, click chemistry owing to its unique bioorthogonal feature does not interfere with encapsulated bioactives such as living cells, proteins and drugs and furthermore allows versatile preparation of micropatterned biomimetic hydrogels, functional microgels and nanogels. In this review, recent exciting developments in click hydrogels, microgels and nanogels, as well as their biomedical applications such as controlled protein and drug release, tissue engineering, and regenerative medicine are presented and discussed.
Collapse
Affiliation(s)
- Yanjiao Jiang
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Jing Chen
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China
| | - Chao Deng
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| | - Erik J Suuronen
- Division of Cardiac Surgery, University of Ottawa Heart Institute, Ottawa K1Y 4W7, Canada
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory, and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, People's Republic of China.
| |
Collapse
|
50
|
Liu G, An Z. Frontiers in the design and synthesis of advanced nanogels for nanomedicine. Polym Chem 2014. [DOI: 10.1039/c3py01502e] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|