1
|
Zhu FY, Mei LJ, Tian R, Li C, Wang YL, Xiang SL, Zhu MQ, Tang BZ. Recent advances in super-resolution optical imaging based on aggregation-induced emission. Chem Soc Rev 2024; 53:3350-3383. [PMID: 38406832 DOI: 10.1039/d3cs00698k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024]
Abstract
Super-resolution imaging has rapidly emerged as an optical microscopy technique, offering advantages of high optical resolution over the past two decades; achieving improved imaging resolution requires significant efforts in developing super-resolution imaging agents characterized by high brightness, high contrast and high sensitivity to fluorescence switching. Apart from technical requirements in optical systems and algorithms, super-resolution imaging relies on fluorescent dyes with special photophysical or photochemical properties. The concept of aggregation-induced emission (AIE) was proposed in 2001, coinciding with unprecedented advancements and innovations in super-resolution imaging technology. AIE probes offer many advantages, including high brightness in the aggregated state, low background signal, a larger Stokes shift, ultra-high photostability, and excellent biocompatibility, making them highly promising for applications in super-resolution imaging. In this review, we summarize the progress in implementation methods and provide insights into the mechanism of AIE-based super-resolution imaging, including fluorescence switching resulting from photochemically-converted aggregation-induced emission, electrostatically controlled aggregation-induced emission and specific binding-regulated aggregation-induced emission. Particularly, the aggregation-induced emission principle has been proposed to achieve spontaneous fluorescence switching, expanding the selection and application scenarios of super-resolution imaging probes. By combining the aggregation-induced emission principle and specific molecular design, we offer some comprehensive insights to facilitate the applications of AIEgens (AIE-active molecules) in super-resolution imaging.
Collapse
Affiliation(s)
- Feng-Yu Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Li-Jun Mei
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Rui Tian
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Ya-Long Wang
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Shi-Li Xiang
- Hubei Jiufengshan Laboratory, Wuhan, 430206, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics, School of Optical and Electronic Information, College of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Key Laboratory of Biomedical Engineering of Hainan Province, School of Biomedical Engineering, Hainan University, Haikou, 570228, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China.
| |
Collapse
|
2
|
Sardari N, Abdollahi A, Farokhi Yaychi M. Chameleon-like Photoluminescent Janus Nanoparticles as Full-Color Multicomponent Organic Nanoinks: Combination of Förster Resonance Energy Transfer and Photochromism for Encryption and Anticounterfeiting with Multilevel Authentication. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 38035478 DOI: 10.1021/acsami.3c14144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
Increasing the security by the multilevel authentication mechanism was the most significant challenge in recent years for the development of anticounterfeiting inks based on photoluminescent nanomaterials. For this purpose, the greatest strategy is the use of multicomponent organic materials and a combination of Förster resonance energy transfer (FRET) with the intelligent behavior of photochromic compounds like spiropyran. Here, the hydroxyl-functionalized polymer nanoparticles were synthesized by emulsion copolymerization of methyl methacrylate (MMA) and 2-hydroxyethyl methacrylate (HEMA) in different compositions (0-30 wt % of HEMA). Results illustrated that the size of the nanoparticles changed from 64 to 204 nm, and a morphology evolution from spherical to Janus shape was observed by increasing the concentration of HEMA. Photoluminescent inks with red, green, and blue (RGB) fluorescence emissions were prepared by modification of nanoparticles containing 15 wt % of HEMA with spiropyran, fluorescein, and coumarin, respectively. To develop dual-color and multicolor photoluminescent inks that display static and dynamic emission, RGB latex samples were mixed together in different ratios and printed on cellulosic paper. Results display that the fluorescence emission of developed inks can be photoswitched between different statuses, including white to blue, green to blue, green to red/orange, purple to pink, and white to pink, utilizing the FRET phenomenon, photochromism, and a combination of both phenomena. Samples containing spiropyran displayed dynamic color changes in the emission to red, orange, and pink depending on the composition. Hence, developed dual-color and multicolor photoluminescent inks were used for printing of security tags and also painting of some hand-drawn artworks, which obtained results indicating high printability, maximum fluorescence intensity, high resolution, and fast responsivity upon UV-light irradiations of 254 nm (for static mode) and 365 nm (for dynamic mode). In addition, the multilevel authentication mechanism by a static emission under UV-light irradiation of 254 nm, a dynamic emission under UV-light irradiation of 365 nm, and photochromic color change was observed, resulting in increasing the security of developed inks. Actually, developed multicolor photoluminescent inks are the most efficient candidates for developing a new category of chameleon-like high-security anticounterfeiting inks that have tunable optical properties and complex multilevel authentication mechanisms.
Collapse
Affiliation(s)
- Negar Sardari
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Amin Abdollahi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| | - Mojtaba Farokhi Yaychi
- Department of Chemistry, Institute for Advanced Studies in Basic Sciences (IASBS), Zanjan 45137-66731, Iran
| |
Collapse
|
3
|
Marco A, Guirado G, Sebastián RM, Hernando J. Spiropyran-based chromic hydrogels for CO 2 absorption and detection. Front Chem 2023; 11:1176661. [PMID: 37288075 PMCID: PMC10242082 DOI: 10.3389/fchem.2023.1176661] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 05/10/2023] [Indexed: 06/09/2023] Open
Abstract
By enabling rapid, cost-effective, user-friendly and in situ detection of carbon dioxide, colorimetric CO2 sensors are of relevance for a variety of fields. However, it still remains a challenge the development of optical chemosensors for CO2 that combine high sensitivity, selectivity and reusability with facile integration into solid materials. Herein we pursued this goal by preparing hydrogels functionalized with spiropyrans, a well-known class of molecular switches that undergo different color changes upon application of light and acid stimuli. By varying the nature of the substituents of the spiropyran core, different acidochromic responses are obtained in aqueous media that allow discriminating CO2 from other acid gases (e.g., HCl). Interestingly, this behavior can be transferred to functional solid materials by synthesizing polymerizable spiropyran derivatives, which are used to prepare hydrogels. These materials preserve the acidochromic properties of the incorporated spiropyrans, thus leading to selective, reversible and quantifiable color changes upon exposure to different CO2 amounts. In addition, CO2 desorption and, therefore, recovery of the initial state of the chemosensor is favored by irradiation with visible light. This makes spiropyran-based chromic hydrogels promising systems for the colorimetric monitorization of carbon dioxide in a diversity of applications.
Collapse
Affiliation(s)
| | | | | | - Jordi Hernando
- *Correspondence: Rosa María Sebastián, ; Jordi Hernando,
| |
Collapse
|
4
|
Kozlenko AS, Ozhogin IV, Pugachev AD, Lukyanova MB, El-Sewify IM, Lukyanov BS. A Modern Look at Spiropyrans: From Single Molecules to Smart Materials. Top Curr Chem (Cham) 2023; 381:8. [PMID: 36624333 DOI: 10.1007/s41061-022-00417-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023]
Abstract
Photochromic compounds of the spiropyran family have two main isomers capable of inter-switching with UV or visible light. In the current review, we discuss recent advances in the synthesis, investigation of properties, and applications of spiropyran derivatives. Spiropyrans of the indoline series are in focus as the most promising representatives of multi-sensitive spirocyclic compounds, which can be switched by a number of external stimuli, including light, temperature, pH, presence of metal ions, and mechanical stress. Particular attention is paid to the structural features of molecules, their influence on photochromic properties, and the reactions taking place during isomerization, as the understanding of the structure-property relationships will rationalize the synthesis of compounds with predetermined characteristics. The main prospects for applications of spiropyrans in such fields as smart material production, molecular electronics and nanomachinery, sensing of environmental and biological molecules, and photopharmacology are also discussed.
Collapse
Affiliation(s)
- Anastasia S Kozlenko
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia.
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| | - Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| | - Maria B Lukyanova
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| | - Islam M El-Sewify
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia.,Department of Chemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, Stachki Prosp., 194/2, Rostov-On-Don, 344090, Russia
| |
Collapse
|
5
|
Liu J, Wu Y, Tang J, Wang T, Ni F, Wu Q, Yang X, Ayyaz Ahmad A, Ramzan N, Xu Y. Polymeric assembled nanoparticles through kinetic stabilization by confined impingement jets dilution mixer for fluorescence switching imaging. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2022.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Gao Y, Zhang W, Han N, Zhang X, Li W. Cotton fabric containing photochromic microcapsules combined thermal energy storage features. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.129249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
7
|
Marcelo G, Salardón N, Pecharromán C, Mendicuti F, Trabado I, Batanero B. Tuneable fluorescence and structural colour in PNIPAM microgel assemblies. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
8
|
Xiang F, Chen S, Yuan Z, Li L, Fan Z, Yao Z, Liu C, Xiang S, Zhang Z. Switched Proton Conduction in Metal-Organic Frameworks. JACS AU 2022; 2:1043-1053. [PMID: 35647587 PMCID: PMC9131472 DOI: 10.1021/jacsau.2c00069] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 04/14/2023]
Abstract
Stimuli-responsive materials can respond to external effects, and proton transport is widespread and plays a key role in living systems, making stimuli-responsive proton transport in artificial materials of particular interest to researchers due to its desirable application prospects. On the basis of the rapid growth of proton-conducting porous metal-organic frameworks (MOFs), switched proton-conducting MOFs have also begun to attract attention. MOFs have advantages in crystallinity, porosity, functionalization, and structural designability, and they can facilitate the fabrication of novel switchable proton conductors and promote an understanding of the comprehensive mechanisms. In this Perspective, we highlight the current progress in the rational design and fabrication of stimuli-responsive proton-conducting MOFs and their applications. The dynamic structural change of proton transfer pathways and the role of trigger molecules are discussed to elucidate the stimuli-responsive mechanisms. Subsequently, we also discuss the challenges and propose new research opportunities for further development.
Collapse
|
9
|
Chen X, Wang Y, Zhang X, Liu C. Advances in super-resolution fluorescence microscopy for the study of nano-cell interactions. Biomater Sci 2021; 9:5484-5496. [PMID: 34286716 DOI: 10.1039/d1bm00676b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Understanding the interactions between nanomaterials and biological systems plays an essential role in enhancing the efficacy of nanomedicines and deepening the understanding of the biological domain. Fluorescence microscopy is a powerful optical imaging technique that allows direct visualization of the behavior of fluorescent-labeled nanomaterials in the intracellular microenvironment. However, conventional fluorescence microscopy, such as confocal microscopy, has limited optical resolution due to the diffraction of light and therefore cannot provide the precise details of nanomaterials with diameters of less than ∼250 nm. Fortunately, the development of super-resolution fluorescence microscopy has overcome the resolution limitation, enabling more comprehensive studies of nano-cell interactions. Herein, we have summarized the recent advances in nano-cell interactions investigated by a variety of super-resolution microscopic techniques, which may benefit researchers in this multi-disciplinary area by providing a guideline to select appropriate platforms for studying materiobiology.
Collapse
Affiliation(s)
- Xi Chen
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Yu Wang
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Xuewei Zhang
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, Frontiers Science Center for Materiobiology and Dynamic Chemistry, Engineering Research Center for Biomaterials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China.
| |
Collapse
|
10
|
Hajiali M, Keyvan Rad J, Ghezelsefloo S, Mahdavian AR. Solvent-free and anticounterfeiting fluorescent inks based on epoxy-functionalized polyacrylic nanoparticles modified with Rhodamine B for cellulosic substrates. J IND ENG CHEM 2020. [DOI: 10.1016/j.jiec.2020.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Chai X, Han HH, Sedgwick AC, Li N, Zang Y, James TD, Zhang J, Hu XL, Yu Y, Li Y, Wang Y, Li J, He XP, Tian H. Photochromic Fluorescent Probe Strategy for the Super-resolution Imaging of Biologically Important Biomarkers. J Am Chem Soc 2020; 142:18005-18013. [DOI: 10.1021/jacs.0c05379] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xianzhi Chai
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Hai-Hao Han
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, P. R. China
| | - Adam C. Sedgwick
- Department of Chemistry, The University of Texas at Austin, 105 East 24th Street A5300, Austin, Texas 78712-1224, United States
| | - Na Li
- National Center for Protein Science Shanghai, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yi Zang
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, P. R. China
| | - Tony D. James
- Department of Chemistry, University of Bath, Bath BA2 7AY, U.K
| | - Junji Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Xi-Le Hu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - Yang Yu
- National Center for Protein Science Shanghai, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yao Li
- National Center for Protein Science Shanghai, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Yan Wang
- National Center for Protein Science Shanghai, Shanghai Institute of Biological Sciences, Chinese Academy of Sciences, Shanghai 200031, P. R. China
| | - Jia Li
- National Center for Drug Screening, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 189 Guo Shoujing Road, Shanghai 201203, P. R. China
| | - Xiao-Peng He
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| | - He Tian
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, P. R. China
| |
Collapse
|
12
|
Wang J, Wang Z, Xu Y, Wang X, Yang Z, Wang H, Tian Z. Correlative dual-alternating-color photoswitching fluorescence imaging and AFM enable ultrastructural analyses of complex structures with nanoscale resolution. NANOSCALE 2020; 12:17203-17212. [PMID: 32789405 DOI: 10.1039/d0nr04584e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
There is a practical motivation for correlating different types of microscopy for revealing complementary information of ultrastructures with resolution beyond the diffraction limit. The correlative microscopy strategy based on the combination of super-resolution fluorescence imaging with atomic force microscopy (AFM) is expected to provide both the specificity and three-dimensional structural information of nanomaterials. Herein we synthesized a dual-alternating-color photoswitchable fluorescent probe based on a naphthalimide-spiropyran dyad (NI-SP) and explored the capability of such correlative microscopy for visualizing nanostructures with complex structural hierarchy. NI-SP underwent reversible photoswitching between green and red fluorescence based on a reversible photochemical reaction and such reaction-linked correlation between two distinct types of fluorescence signals intrinsically enabled mutual authentication in super-resolution fluorescence imaging. Additionally, such correlative microscopy also demonstrated mutual complementation between different pieces of structural information of the target acquired via fluorescence imaging and AFM, respectively, in which the former reveals spatial distribution of fluorescent dyes in the nanoscale polymer fibroid micelles while the latter maps the topographical structure of the target with complex structural hierarchy. The results obtained in this work proclaimed that the combination of such correlative microscopy with our NI-SP probe is an effective modality for ultrastructural analysis and has future applications in various complex systems such as tissue/organ imaging.
Collapse
Affiliation(s)
- Jie Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| | - Zicheng Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| | - Yangyue Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun 130022, PR China.
| | - Xuefei Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| | - Zhiyong Yang
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (CAS), Changchun 130022, PR China.
| | - Zhiyuan Tian
- School of Chemical Sciences, University of Chinese Academy of Sciences (UCAS), Beijing 100049, PR China.
| |
Collapse
|
13
|
F Reis I, Miguez FB, Vargas CAA, Menzonatto TG, Silva IMS, Verano-Braga T, Lopes JF, Brandão TAS, De Sousa FB. Structural and Electronic Characterization of a Photoresponsive Lanthanum(III) Complex Incorporated into Electrospun Fibers for Phosphate Ester Catalysis. ACS APPLIED MATERIALS & INTERFACES 2020; 12:28607-28615. [PMID: 32463219 DOI: 10.1021/acsami.0c03571] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Herein, we present the light-induced synthesis and characterization of a La3+/spiropyran derivative complex (LaMC) and its application as a catalyst when incorporated into electrospun polycaprolactone (PCL) fibers. In addition to experimental methods, computational calculations were also essential to better understand the structure and electronic characteristics of LaMC. The LaMC complex was identified as a 10-coordinated structure with the La3+ ion coordinated by four oxygens from the phenolate and the carbonyl of the carboxyl acid group from both MC ligands and by six oxygens from three nitrate ligands. In addition, LaMC was capable of getting reversibly isomerized by UV or visible light cycling. All PCL fibers were successively obtained, and their morphologies, surface properties, and catalytic behavior were studied. Results showed that PCL/LaMC fibers were capable of catalyzing bis(2,4-dinitrophenyl)phosphate degradation efficiently. Complete hydrolysis was accomplished in only 1.5 days relative to the half-life time of 35 days for the uncatalyzed hydrolysis at pH 8.1 and 25 °C.
Collapse
Affiliation(s)
- Izadora F Reis
- Laboratório de Sistemas Poliméricos e Supramoleculares (LSPS) -Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, 37500-903 Minas Gerais, Brazil
| | - Flávio B Miguez
- Laboratório de Sistemas Poliméricos e Supramoleculares (LSPS) -Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, 37500-903 Minas Gerais, Brazil
| | - Carlos A Amaya Vargas
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Thiago G Menzonatto
- Laboratório de Química Computacional (LaQC)-Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, 37500-903 Minas Gerais, Brazil
| | - Igor M S Silva
- Departamento de Fisiologia e Biofísica-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Thiago Verano-Braga
- Departamento de Fisiologia e Biofísica-Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Juliana Fedoce Lopes
- Laboratório de Química Computacional (LaQC)-Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, 37500-903 Minas Gerais, Brazil
| | - Tiago A S Brandão
- Departamento de Química, ICEx, Universidade Federal de Minas Gerais, Belo Horizonte, 31270-901 Minas Gerais, Brazil
| | - Frederico B De Sousa
- Laboratório de Sistemas Poliméricos e Supramoleculares (LSPS) -Instituto de Física e Química, Universidade Federal de Itajubá (UNIFEI), Itajubá, 37500-903 Minas Gerais, Brazil
| |
Collapse
|
14
|
Pugachev AD, Ozhogin IV, Lukyanova MB, Lukyanov BS, Rostovtseva IA, Dorogan IV, Makarova NI, Tkachev VV, Metelitsa AV, Aldoshin SM. Visible to near-IR molecular switches based on photochromic indoline spiropyrans with a conjugated cationic fragment. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 230:118041. [PMID: 31955116 DOI: 10.1016/j.saa.2020.118041] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 12/31/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
Photochromic molecules which can absorb and emit light within the "biological window" (650-1450 nm) are of great interest for using in various important biomedical applications such as bio-imaging, photopharmacology, targeted drug delivery, etc. Here we present three new indoline spiropyrans containing conjugated cationic fragments and halogen substituents in the 2H-chromene moiety which were synthesized by a simple one-pot method. The molecular structure of the obtained compounds was confirmed by FT-IR, 1H and 13C NMR spectroscopy (including 2D methods), HRMS, elemental and single crystal X-ray analysis. Photochemical studies revealed the photochromic activity of spiropyrans at room temperature which caused photoswitchable fluorescence in the near-IR region after UV-irradiation. While the spirocyclic forms of compounds demonstrated absorption bands in the UV-Vis spectra with maxima in the visible region at about 445 nm and were not fluorescent, the photogenerated merocyanine isomers absorbed in the near-IR range at 708-738 nm and emitted at 768-791 nm. It was found that compound 1a with fluorine substituent possesses the most red-shifted absorption and emission bands of merocyanine form among all the known photochromic spiropyrans with maxima at 738 and 791 nm correspondingly. TD DFT calculations have shown that the longest wavelength absorption maxima of the merocyanine forms correspond to S0-S1 transitions of the isomers with at least one trans-trans-trans-configured vinylindolium fragment which brings them closer to cyanine-like structure and causes an appearance of the absorption and emission bands in the near-IR region.
Collapse
Affiliation(s)
- Artem D Pugachev
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Ilya V Ozhogin
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation.
| | - Maria B Lukyanova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Boris S Lukyanov
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation; Don State Technical University, 1 Gagarin sq., 344000 Rostov-on-Don, Russian Federation
| | - Irina A Rostovtseva
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Igor V Dorogan
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Nadezhda I Makarova
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Valery V Tkachev
- Institute of Problems of Chemical Physics, Russian Acadeemy of Sciences, 1 Akad. Semenova ave., 142432 Chernogolovka, Moscow Region, Russian Federation; Institute of Physiologically Active Substances, 1 Severny proezd, 142432 Chernogolovka, Moscow Region, Russian Federation
| | - Anatoly V Metelitsa
- Institute of Physical and Organic Chemistry, Southern Federal University, 194/2 Stachka ave., 344090 Rostov-on-Don, Russian Federation
| | - Sergey M Aldoshin
- Institute of Problems of Chemical Physics, Russian Acadeemy of Sciences, 1 Akad. Semenova ave., 142432 Chernogolovka, Moscow Region, Russian Federation
| |
Collapse
|
15
|
Keyvan Rad J, Ghomi AR, Karimipour K, Mahdavian AR. Progressive Readout Platform Based on Photoswitchable Polyacrylic Nanofibers Containing Spiropyran in Photopatterning with Instant Responsivity to Acid–Base Vapors. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02603] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Jaber Keyvan Rad
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, Tehran 1497713115, Iran
| | - Amir Reza Ghomi
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, Tehran 1497713115, Iran
| | - Kianoush Karimipour
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, Tehran 1497713115, Iran
| | - Ali Reza Mahdavian
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box: 14965/115, Tehran 1497713115, Iran
| |
Collapse
|
16
|
Scott PJ, Kasprzak CR, Feller KD, Meenakshisundaram V, Williams CB, Long TE. Light and latex: advances in the photochemistry of polymer colloids. Polym Chem 2020. [DOI: 10.1039/d0py00349b] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Unparalleled temporal and spatial control of colloidal chemical processes introduces immense potential for the manufacturing, modification, and manipulation of latex particles.
Collapse
Affiliation(s)
- Philip J. Scott
- Department of Chemistry
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | | | - Keyton D. Feller
- Department of Mechanical Engineering
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | | | - Christopher B. Williams
- Department of Mechanical Engineering
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| | - Timothy E. Long
- Department of Chemistry
- Macromolecules Innovation Institute
- Virginia Tech
- Blacksburg
- USA
| |
Collapse
|
17
|
Lin X, Zhao J, Huang W, Liu H, Feng P, Yang F, Chen T. Simple Aggregation-Induced Emission-Based Multifunctional Fluorescent Dots for Cancer Therapy In Vitro. Chem Asian J 2019; 14:4160-4163. [PMID: 31657112 DOI: 10.1002/asia.201901315] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 10/21/2019] [Indexed: 12/15/2022]
Abstract
Multifunctional nanoparticles were simply synthesized by mixing a TICT+AIE featured molecule (TPAPP-CHO) with PBS solution. The fluorescent (FL) dots entered the cells via energy-related endocytosis and were located in lysosome emitting green FL. This indicated that the nanoparticles were dissociated in the lysosome. Moreover, the synthesized nanoparticles (NPs) demonstrate potent cytotoxicity against human U87 glioblastoma cells by inducing cell apoptosis via triggering intracellular ROS overproduction.
Collapse
Affiliation(s)
- Xueran Lin
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Junhao Zhao
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Wei Huang
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Hongxing Liu
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Pengju Feng
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Fang Yang
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
18
|
Stimuli-chromism of photoswitches in smart polymers: Recent advances and applications as chemosensors. Prog Polym Sci 2019. [DOI: 10.1016/j.progpolymsci.2019.101149] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
19
|
Controlled photoisomerization in acrylic copolymer nanoparticles based on spironaphthoxazine for reduced thermal reversion. Eur Polym J 2019. [DOI: 10.1016/j.eurpolymj.2019.07.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
20
|
Ji J, Wu T, Zhang Y, Feng F. Light-Controlled in Vitro Gene Delivery Using Polymer-Tethered Spiropyran as a Photoswitchable Photosensitizer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:15222-15232. [PMID: 30950602 DOI: 10.1021/acsami.8b22505] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
A gene delivery system using spiropyran as a photoswitchable photosensitizer for the controlled photochemical internalization effect was developed by engineering the outer coating of a polyethylenimine/DNA complex with a small amount of spiropyran-containing cationic copolymers. The successful binding of cationic polymers by the polyethylenimine coating was detected by the distance-sensitive fluorescence resonance energy-transfer technique that evidenced the occurrence of energy transfer between fluorescein-labeled cationic copolymers and polyethylenimine-condensed rhodamine-labeled DNA. The ternary polyplexes feature reversible controllability of singlet oxygen generation based on the dual effect of spiropyrans in photochromism and aggregation-induced enhanced photosensitization, allowing significant light-induced amplification of bPEI-mediated in vitro transgene efficiency (from original 15% to final 91%) at a low DNA dose, with the integrity of supercoiled DNA structure unaffected. The use of spiropyran without the need of other photosensitizers circumvents the issue of uncontrolled long-lasting photocytotoxicity in gene delivery.
Collapse
Affiliation(s)
- Jinkai Ji
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Tiantian Wu
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| | - Yajie Zhang
- College of Life Science and Chemistry, Jiangsu Key Laboratory of Biological Functional Molecules , Jiangsu Second Normal University , Nanjing 210013 , P. R. China
| | - Fude Feng
- Department of Polymer Science & Engineering, School of Chemistry & Chemical Engineering , Nanjing University , Nanjing 210023 , P. R. China
| |
Collapse
|
21
|
|
22
|
Li P, Yang D, Zhong Q, Zhang Y, Chen M, Jiang S, Chen J, Cao M, Zhang Q, Yin Y. Photoreversible luminescence switching of CsPbI 3 nanocrystals sensitized by photochromic AgI nanocrystals. NANOSCALE 2019; 11:3193-3199. [PMID: 30724301 DOI: 10.1039/c8nr09783f] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Smart fluorescent materials have attracted much attention due to their promising applications in various fields. Here, we demonstrate a reversible fluorescence switching of CsPbI3 nanocrystals (NCs) using photochromic AgI NCs as the photosensitizer. Upon light irradiation, AgI NCs are decomposed into metallic Ag and elemental I2, leading to the formation of Ag-CsPbI3 heterostructures. Because Ag has a lower Fermi level than that of CsPbI3, excited electrons will transfer from CsPbI3 to Ag, resulting in the quenching of photoluminescence emission. When the composite is stored in the dark, metallic Ag is oxidized into AgI, and the PL emission of CsPbI3 NCs can be recovered. The application of the AgI/CsPbI3 system has been demonstrated as a rewritable platform. This work may shed light on the exploration of CsPbX3 NCs for applications in smart fluorescent materials.
Collapse
Affiliation(s)
- Pengli Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, People's Republic of China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Kortekaas L, Browne WR. The evolution of spiropyran: fundamentals and progress of an extraordinarily versatile photochrome. Chem Soc Rev 2019; 48:3406-3424. [DOI: 10.1039/c9cs00203k] [Citation(s) in RCA: 250] [Impact Index Per Article: 50.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Spiropyrans have played a pivotal role in the emergence of the field of chromism following their discovery in the early 20th century, with almost ubiquitous use in materials applications especially since their photochromism was discovered in 1952.
Collapse
Affiliation(s)
- Luuk Kortekaas
- Molecular Inorganic Chemistry
- Stratingh institute for Chemistry
- University of Groningen
- 9747AG Groningen
- The Netherlands
| | - Wesley R. Browne
- Molecular Inorganic Chemistry
- Stratingh institute for Chemistry
- University of Groningen
- 9747AG Groningen
- The Netherlands
| |
Collapse
|
24
|
Abstract
The past decade has witnessed an explosion in the use of super-resolution fluorescence microscopy methods in biology and other fields. Single-molecule localization microscopy (SMLM) is one of the most widespread of these methods and owes its success in large part to the ability to control the on-off state of fluorophores through various chemical, photochemical, or binding-unbinding mechanisms. We provide here a comprehensive overview of switchable fluorophores in SMLM including a detailed review of all major classes of SMLM fluorophores, and we also address strategies for labeling specimens, considerations for multichannel and live-cell imaging, potential pitfalls, and areas for future development.
Collapse
Affiliation(s)
- Honglin Li
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
| | - Joshua C. Vaughan
- Department of Chemistry, University of Washington, Seattle, Washington, USA, 98195
- Department of Physiology and Biophysics, University of Washington, Seattle, Washington, USA, 98195
| |
Collapse
|
25
|
Keyvan Rad J, Mahdavian AR, Khoei S, Shirvalilou S. Enhanced Photogeneration of Reactive Oxygen Species and Targeted Photothermal Therapy of C6 Glioma Brain Cancer Cells by Folate-Conjugated Gold-Photoactive Polymer Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2018; 10:19483-19493. [PMID: 29787247 DOI: 10.1021/acsami.8b05252] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Tumor-selective photodynamic therapy is a successful method for ablation of malignant and cancerous cells. Herein, we introduce the design and preparation of functionalized acrylic copolymer nanoparticles with spiropyran (SP) and imidazole groups through a facile semicontinuous emulsion polymerization. Then, Au3+ ions were immobilized and reduced on their surface to obtain photoresponsive gold-decorated polymer nanoparticles (PGPNPs). The prepared PGPNPs were surface-modified with folic acid as a site-specific tumor cell targeting agent and improve intracellular uptake via endocytosis. Fourier transform infrared spectroscopy and energy dispersive X-ray spectroscopy analyses, UV-vis spectroscopy, scanning electron microscopy, and high-resolution transmission electron microscopy images were employed to characterize their spectral and morphological properties. Fluorescence microscopy images and inductively coupled plasma analysis demonstrated the cell line labeling capability and improved targeting efficiency of folate-conjugated PGPNPs (FA-PGPNPs) toward rat brain cancer cells (C6 glioma) with 71.8% cell uptake in comparison with 28.8% for the nonconjugated ones. Nonpolar SP groups are converted to zwitterionic merocyanine isomers under UV irradiation at 365 nm and their conjugation with Au nanoparticles exhibited enhanced photogeneration of reactive oxygen species (ROS). These were confirmed by intracellular ROS analysis and cytotoxicity evaluation on malignant C6 glioma cells. Owing to the strong surface plasmon resonance absorption of gold nanoparticles, FA-PGPNPs provided elevated local photothermal efficiency under near-IR irradiation at 808 nm. The prepared multifunctional FA-PGPNPs with a comprehensive integration of prospective materials introduced promising nanoprobes with targeting ability, enhanced tumor photodynamic therapy, cell tracking, and photothermal therapy.
Collapse
Affiliation(s)
- Jaber Keyvan Rad
- Polymer Science Department , Iran Polymer & Petrochemical Institute , P.O. Box 14965/115, Tehran 1497713115 , Iran
| | - Ali Reza Mahdavian
- Polymer Science Department , Iran Polymer & Petrochemical Institute , P.O. Box 14965/115, Tehran 1497713115 , Iran
| | - Samideh Khoei
- Medical Physics Department, School of Medicine , Iran University of Medical Sciences , Tehran 1449614525 , Iran
| | - Sakine Shirvalilou
- Medical Physics Department, School of Medicine , Iran University of Medical Sciences , Tehran 1449614525 , Iran
| |
Collapse
|
26
|
Zou X, Xiao X, Zhang S, Zhong J, Hou Y, Liao L. A photo-switchable and thermal-enhanced fluorescent hydrogel prepared from N-isopropylacrylamide with water-soluble spiropyran derivative. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2018; 29:1579-1594. [PMID: 29792381 DOI: 10.1080/09205063.2018.1475942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Abstract
Herein, a photo-switchable and thermal-enhanced fluorescent hydrogel has been fabricated from N-isopropylacrylamide (NIPAAm) with a mixture of water-soluble acryloyl-α-cyclodextrin/acryloyl-α-cyclodextrin-spiropyran (acryloyl-α-CD/ acryloyl-α-CD-SP) as cross-linkers. The physical properties, photochromic properties, and fluorescent behavior of the hydrogel were characterized. The fluorescence emission of the hydrogel can be reversibly switched 'on/off' by UV/visible light irradiation, and meanwhile the fluorescence intensity can be enhanced by increasing the temperature above the volume phase transition temperature (VPTT) of the hydrogel. The hydrogel also shows spatiotemporal fluorescent behavior, excellent cytocompatibility, and fatigue resistance in photochromic and photo-switchable fluorescent behaviors.
Collapse
Affiliation(s)
- Xueqing Zou
- a College of Chemistry and Molecular Science , Wuhan University , Wuhan , P. R. China
| | - Xiaozhen Xiao
- b School of Biomedical Engineering , Southern Medical University , Guangzhou , P. R. China
| | - Shixiong Zhang
- c School of Engineering , Sun Yat-Sen University , Guangzhou , P. R. China
| | - Jiajun Zhong
- c School of Engineering , Sun Yat-Sen University , Guangzhou , P. R. China
| | - Yulin Hou
- c School of Engineering , Sun Yat-Sen University , Guangzhou , P. R. China
| | - Liqiong Liao
- a College of Chemistry and Molecular Science , Wuhan University , Wuhan , P. R. China.,b School of Biomedical Engineering , Southern Medical University , Guangzhou , P. R. China
| |
Collapse
|
27
|
Samanta D, Galaktionova D, Gemen J, Shimon LJW, Diskin-Posner Y, Avram L, Král P, Klajn R. Reversible chromism of spiropyran in the cavity of a flexible coordination cage. Nat Commun 2018; 9:641. [PMID: 29440687 PMCID: PMC5811438 DOI: 10.1038/s41467-017-02715-6] [Citation(s) in RCA: 115] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/20/2017] [Indexed: 11/08/2022] Open
Abstract
Confining molecules to volumes only slightly larger than the molecules themselves can profoundly alter their properties. Molecular switches-entities that can be toggled between two or more forms upon exposure to an external stimulus-often require conformational freedom to isomerize. Therefore, placing these switches in confined spaces can render them non-operational. To preserve the switchability of these species under confinement, we work with a water-soluble coordination cage that is flexible enough to adapt its shape to the conformation of the encapsulated guest. We show that owing to its flexibility, the cage is not only capable of accommodating-and solubilizing in water-several light-responsive spiropyran-based molecular switches, but, more importantly, it also provides an environment suitable for the efficient, reversible photoisomerization of the bound guests. Our findings pave the way towards studying various molecular switching processes in confined environments.
Collapse
Affiliation(s)
- Dipak Samanta
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Daria Galaktionova
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Julius Gemen
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Linda J W Shimon
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Yael Diskin-Posner
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Liat Avram
- Department of Chemical Research Support, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Petr Král
- Department of Chemistry, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Department of Physics, University of Illinois at Chicago, Chicago, IL, 60607, USA
- Department of Biopharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60607, USA
| | - Rafal Klajn
- Department of Organic Chemistry, Weizmann Institute of Science, Rehovot, 76100, Israel.
| |
Collapse
|
28
|
Gu X, Kwok RT, Lam JW, Tang BZ. AIEgens for biological process monitoring and disease theranostics. Biomaterials 2017; 146:115-135. [DOI: 10.1016/j.biomaterials.2017.09.004] [Citation(s) in RCA: 183] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 08/29/2017] [Accepted: 09/02/2017] [Indexed: 02/06/2023]
|
29
|
Wang M, Hartmann G, Wu Z, Scarabelli L, Rajeeva BB, Jarrett JW, Perillo EP, Dunn AK, Liz-Marzán LM, Hwang GS, Zheng Y. Controlling Plasmon-Enhanced Fluorescence via Intersystem Crossing in Photoswitchable Molecules. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:10.1002/smll.201701763. [PMID: 28834225 PMCID: PMC5866054 DOI: 10.1002/smll.201701763] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/10/2017] [Indexed: 05/19/2023]
Abstract
By harnessing photoswitchable intersystem crossing (ISC) in spiropyran (SP) molecules, active control of plasmon-enhanced fluorescence in the hybrid systems of SP molecules and plasmonic nanostructures is achieved. Specifically, SP-derived merocyanine (MC) molecules formed by photochemical ring-opening reaction display efficient ISC due to their zwitterionic character. In contrast, ISC in quinoidal MC molecules formed by thermal ring-opening reaction is negligible. The high ISC rate can improve fluorescence quantum yield of the plasmon-modified spontaneous emission, only when the plasmonic electromagnetic field enhancement is sufficiently high. Along this line, extensive photomodulation of fluorescence is demonstrated by switching the ISC in MC molecules at Au nanoparticle aggregates, where strongly enhanced plasmonic hot spots exist. The ISC-mediated plasmon-enhanced fluorescence represents a new approach toward controlling the spontaneous emission of fluorophores near plasmonic nanostructures, which expands the applications of active molecular plasmonics in information processing, biosensing, and bioimaging.
Collapse
Affiliation(s)
- Mingsong Wang
- Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Gregory Hartmann
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Zilong Wu
- Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Leonardo Scarabelli
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain
- Department of Chemistry and Biochemistry, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bharath Bangalore Rajeeva
- Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Jeremy W Jarrett
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Evan P Perillo
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Andrew K Dunn
- Department of Biomedical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Luis M Liz-Marzán
- Bionanoplasmonics Laboratory, CIC biomaGUNE, Paseo de Miramón 182, 20014, Donostia-San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013, Bilbao, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials, and Nanomedicine, CIBER-BBN, 20014, Donostia- San Sebastián, Spain
| | - Gyeong S Hwang
- Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuebing Zheng
- Department of Mechanical Engineering, Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
30
|
Zhao Z, Tian J. Ultraviolet-visible/fluorescence behaviors of a spiropyran/polydimethylsiloxane composite film under acid vapors. J Appl Polym Sci 2017. [DOI: 10.1002/app.45199] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zhixun Zhao
- Institute of Materials Science and Engineering; Ocean University of China; Songling Road 238 Qingdao 266100 People's Republic of China
| | - Jintao Tian
- Institute of Materials Science and Engineering; Ocean University of China; Songling Road 238 Qingdao 266100 People's Republic of China
| |
Collapse
|
31
|
Kang EB, Cho H, Islamy MZA, In I, Park SY. Photo-switchable spiropyran immobilized polystyrene beads using catechol chemistry. SURF INTERFACE ANAL 2017. [DOI: 10.1002/sia.6220] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Eun Bi Kang
- Department of Chemical & Biological Engineering; Korea National University of Transportation; Chungju-Si 380-702 South Korea
| | - Hyeonhun Cho
- Department of Green Bio Engineering; Korea National University of Transportation; Chungju-Si 380-702 South Korea
| | - Mazrad Zihnil Adha Islamy
- Department of IT Convergence; Korea National University of Transportation; Chungju 380-702 South Korea
| | - Insik In
- Department of IT Convergence; Korea National University of Transportation; Chungju 380-702 South Korea
- Department of Polymer Science and Engineering; Korea National University of Transportation; Chungju-Si 380-702 South Korea
| | - Sung Young Park
- Department of Chemical & Biological Engineering; Korea National University of Transportation; Chungju-Si 380-702 South Korea
| |
Collapse
|
32
|
Photoswitchable dual-color fluorescent particles from seeded emulsion polymerization and role of some affecting parameters on FRET process. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2017.01.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Ni M, Zhuo S, So PTC, Yu H. Fluorescent probes for nanoscopy: four categories and multiple possibilities. JOURNAL OF BIOPHOTONICS 2017; 10:11-23. [PMID: 27221311 PMCID: PMC5775479 DOI: 10.1002/jbio.201600042] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 04/08/2016] [Accepted: 05/03/2016] [Indexed: 05/08/2023]
Abstract
Nanoscopy enables breaking down the light diffraction limit and reveals the nanostructures of objects being studied using light. In 2014, three scientists pioneered the development of nanoscopy and won the Nobel Prize in Chemistry. This recognized the achievement of the past twenty years in the field of nanoscopy. However, fluorescent probes used in the field of nanoscopy are still numbered. Here, we review the currently available four categories of probes and existing methods to improve the performance of probes.
Collapse
Affiliation(s)
- Ming Ni
- Fujian Provincial Key Laboratory for Photonics Technology & Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- Corresponding authors: ; ;
| | - Shuangmu Zhuo
- Fujian Provincial Key Laboratory for Photonics Technology & Key Laboratory of OptoElectronic Science and Technology for Medicine of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602, Singapore
- Corresponding authors: ; ;
| | - Peter T. C. So
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602, Singapore
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Hanry Yu
- Institute of Bioengineering and Nanotechnology, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
- Singapore-MIT Alliance for Research and Technology, 1 CREATE Way, #10-01 CREATE Tower, Singapore 138602, Singapore
- Department of Physiology, Yong Loo Lin School of Medicine, MD9-04-11, 2 Medical Drive, Singapore 117597, Singapore
- Mechanobiology Institute, National University of Singapore, T-Lab, #05-01, 5A Engineering Drive 1, Singapore 117411, Singapore
- Corresponding authors: ; ;
| |
Collapse
|
34
|
Su T, Cheng FR, Cao J, Yan JQ, Peng XY, He B. Dynamic intracellular tracking nanoparticles via pH-evoked “off–on” fluorescence. J Mater Chem B 2017; 5:3107-3110. [DOI: 10.1039/c7tb00713b] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Strong fluorescence induced by spiropyran isomerized into merocyanine in low pH was utilized as a probe for efficient dynamic intracellular tracking.
Collapse
Affiliation(s)
- T. Su
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - F. R. Cheng
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - J. Cao
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - J. Q. Yan
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - X. Y. Peng
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| | - B. He
- National Engineering Research Center for Biomaterials
- Sichuan University
- Chengdu 610064
- China
| |
Collapse
|
35
|
Li J, Zong S, Wang Z, Cui Y. “Blinking” silica nanoparticles for optical super resolution imaging of cancer cells. RSC Adv 2017. [DOI: 10.1039/c7ra08156a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A strategy to fabricate blinking silica nanoparticles is presented, which can be used in single molecule localization imaging.
Collapse
Affiliation(s)
- Jia Li
- Department of Ultrasonography
- Zhongda Hospital
- Medical School Southeast University
- Nanjing 210009
- China
| | - Shenfei Zong
- Advanced Photonics Center
- Southeast University
- Nanjing 210096
- China
| | - Zhuyuan Wang
- Advanced Photonics Center
- Southeast University
- Nanjing 210096
- China
| | - Yiping Cui
- Advanced Photonics Center
- Southeast University
- Nanjing 210096
- China
| |
Collapse
|
36
|
Chen J, Zhong W, Xue M, Wang H, Yu M, Zhang P, Yi P. Photochromic RAFT reagent helps construct superior photoswitchable fluorescent polymer nanoparticles for rewritable fluorescence patterning and intracellular dual-color imaging. Polym Chem 2017. [DOI: 10.1039/c7py01408b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photoswitchable fluorescent polymeric nanoparticles with photochromic RAFT chain transfer reagent were synthesized for rewritable fluorescence patterning and intracellular dual color imaging.
Collapse
Affiliation(s)
- Jian Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Weibang Zhong
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Mingju Xue
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Hong Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Maolin Yu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Peisheng Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| | - Pinggui Yi
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education
- Hunan Provincial Key Laboratory of Controllable Preparation and Functional Application of Fine Polymers
- Hunan Province College Key Laboratory of QSAR/QSPR
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
| |
Collapse
|
37
|
Theoretical modeling of electrocyclic 2H-pyran and 2H-1,4-oxazine ring opening reactions in photo- and thermochromic spiropyrans and spirooxazines. Chem Heterocycl Compd (N Y) 2016. [DOI: 10.1007/s10593-016-1956-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
38
|
Gao H, Guo T, Chen Y, Kong Y, Peng Z. Reversible negative photochromic sulfo-substituted spiropyrans. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2016.07.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
39
|
Keyvan Rad J, Mahdavian AR, Khoei S, Janati Esfahani A. FRET-based acrylic nanoparticles with dual-color photoswitchable properties in DU145 human prostate cancer cell line labeling. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.06.042] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
40
|
Huang P, Liu J, Wang W, Zhang Y, Zhao F, Kong D, Liu J, Dong A. Zwitterionic nanoparticles constructed from bioreducible RAFT-ROP double head agent for shell shedding triggered intracellular drug delivery. Acta Biomater 2016; 40:263-272. [PMID: 26607767 DOI: 10.1016/j.actbio.2015.11.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2015] [Revised: 11/11/2015] [Accepted: 11/18/2015] [Indexed: 01/01/2023]
Abstract
UNLABELLED Nanomedicines have emerged as indispensable platforms for cancer theranostics, however, the therapeutic outcomes were often compromised not only by the multiple biological barriers during the itinerary from the initial injection site to the intracellular action site but also the insufficient drug release at the pathological site. Herein, novel bioreducible double head agent, combining reversible addition-fragmentation chain transfer agent and ring opening polymerization initiator through disulfide linkage, was firstly prepared. Well-defined cRGDfK-polycarboxybetaine methacrylate-SS-polycaprolactone block copolymers (termed as cRGD-PCSSL) were facilely synthesized using this initiator. Subsequently, shell sheddable and drug-encapsulated zwitterionic nanoparticles were constructed by one-step self-assembly with doxorubicin (DOX) (termed as cRGD-PCSSL/DOX NPs). The reduction-responsive shedding of PCB shells resulted in the rapid loss of cRGD-PCSSL/DOX NPs stability in the presence of glutathione, facilitating the rapid DOX release. Results of flow cytometry and fluorescence microscopy demonstrated that cRGD-PCSSL/DOX NPs could be internalized by HepG2 cells via receptor-mediated endocytosis with fast intracellular drug release, leading to considerable cytotoxicity in comparison with free DOX. Importantly, the low protein adsorption and excellent serum stability properties of cRGD-PCSSL/DOX NPs translated into prolonged systemic circulation and enhanced tumor accumulation. Furthermore, intravenous injection of cRGD-PCSSL/DOX NPs in tumor-bearing mice exhibited significantly higher antitumor efficiency and lower systemic toxicity compared to free DOX. Consequently, the novel zwitterionic NPs, which facilely overcome the dilemma between multifunctionality and complexity by programmatically circumventing the multiple biological barriers, would represent a promising platform for enhanced anticancer drug delivery. STATEMENT OF SIGNIFICANCE Herein, novel bioreducible RAFT and ROP double-head agent was first reported for the synthesis of cRGDfK-polycarboxybetaine methacrylate-SS-polycaprolactone zwitterionic block copolymers (cRGD-PCB-SS-PCL, termed as cRGD-PCSSL) through controllable polymerization methods. Firstly, this synthetic route surmounted the major disadvantage of most current used methods, which required thiol exchange reaction between active disulfide bond and free thiol groups at the chain ends. Secondly, the prepared cRGD-PCSSL/DOX NPs reasonably integrated cRGD for active tumor targeting and receptor-mediated endocytosis, zwitterionic PCB with nonfouling property for prolonged systemic circulation, disulfide linkage for reduction-responsive drug release, biodegradable PCL for hydrophobic anticancer drug loading. Finally, the systematic evaluation fully verified that the in vitro optimized cRGD-PCSSL/DOX NPs translated into significantly better therapeutic efficiency with reduced side effects in vivo.
Collapse
|
41
|
New spiropyrans based on 1,3-benzoxazine-2-one: acid catalyzed synthesis and theoretical insight into the photochromic activity. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
42
|
Gong WL, Yan J, Zhao LX, Li C, Huang ZL, Tang BZ, Zhu MQ. Single-wavelength-controlled in situ dynamic super-resolution fluorescence imaging for block copolymer nanostructures via blue-light-switchable FRAP. Photochem Photobiol Sci 2016; 15:1433-1441. [DOI: 10.1039/c6pp00293e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A blue-light-switchable fluorophore enables single-wavelength controlledin situdynamic super-resolution imaging of block copolymers.
Collapse
Affiliation(s)
- Wen-Liang Gong
- Wuhan National Laboratory for Optoelectronics
- College of Optical and Electronic Information
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Jie Yan
- Wuhan National Laboratory for Optoelectronics
- College of Optical and Electronic Information
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Ling-Xi Zhao
- Wuhan National Laboratory for Optoelectronics
- College of Optical and Electronic Information
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics
- College of Optical and Electronic Information
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Zhen-Li Huang
- Wuhan National Laboratory for Optoelectronics
- College of Optical and Electronic Information
- Huazhong University of Science and Technology
- Wuhan
- China
| | - Ben Zhong Tang
- Department of Chemistry
- The Hong Kong University of Science and Technology
- China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics
- College of Optical and Electronic Information
- Huazhong University of Science and Technology
- Wuhan
- China
| |
Collapse
|
43
|
Keyvan Rad J, Mahdavian AR, Salehi-Mobarakeh H, Abdollahi A. FRET Phenomenon in Photoreversible Dual-Color Fluorescent Polymeric Nanoparticles Based on Azocarbazole/Spiropyran Derivatives. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b02401] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Jaber Keyvan Rad
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box 14965/115, 14977-13115 Tehran, Iran
| | - Ali Reza Mahdavian
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box 14965/115, 14977-13115 Tehran, Iran
| | - Hamid Salehi-Mobarakeh
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box 14965/115, 14977-13115 Tehran, Iran
| | - Amin Abdollahi
- Polymer Science Department, Iran Polymer & Petrochemical Institute, P.O. Box 14965/115, 14977-13115 Tehran, Iran
| |
Collapse
|
44
|
Zhang Y, Zhang K, Wang J, Tian Z, Li ADQ. Photoswitchable fluorescent nanoparticles and their emerging applications. NANOSCALE 2015; 7:19342-19357. [PMID: 26445313 DOI: 10.1039/c5nr05436b] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Although fluorescence offers ultrasensitivity, real-world applications of fluorescence techniques encounter many practical problems. As a noninvasive means to investigate biomolecular mechanisms, pathways, and regulations in living cells, the intrinsic heterogeneity and inherent complexity of biological samples always generates optical interferences such as autofluorescence. Therefore, innovative fluorescence technologies are needed to enhance measurement reliability while not compromising sensitivity. In this review, we present current strategies that use photoswitchable nanoparticles to address these real-world challenges. The unique feature in these photoswitchable nanoparticles is that fundamental molecular photoswitches are playing the critical role of fluorescence modulation rather than traditional methods like modulating the light source. As a result, new innovative technologies that have recently emerged include super-resolution imaging, frequency-domain imaging, antiphase dual-color correlation, etc. Some of these methods improve imaging resolution down to the nanometer level, while others boost the detection sensitivity by orders of magnitude and confirm the nanoparticle probes unambiguously. These enhancements, which are not possible with non-photoswitching molecular probes, are the central topics of this review.
Collapse
Affiliation(s)
- Yuanlin Zhang
- School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences (UCAS), Beijing 100049, P. R. China.
| | | | | | | | | |
Collapse
|
45
|
Papadimitriou SA, Salinas Y, Resmini M. Smart Polymeric Nanoparticles as Emerging Tools for Imaging--The Parallel Evolution of Materials. Chemistry 2015; 22:3612-20. [PMID: 26563829 DOI: 10.1002/chem.201502610] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Indexed: 12/11/2022]
Abstract
The field of imaging has developed considerably over the past decade and recent advances in the area of nanotechnology, in particular nanomaterials, have opened new opportunities. Polymeric nanoparticles are particularly interesting and a number of novel materials, characterized by stimuli-responsive characteristics and fluorescent tagging, have allowed visualization, intracellular labeling and real-time tracking. In some of the latest applications the nanoparticles have been used for imagining of tumor cells, both in vivo and ex vivo.
Collapse
Affiliation(s)
- Sofia A Papadimitriou
- Queen Mary University of London, Department of Chemistry, SBCS, Mile End Road, London, E1 4NS, UK
| | - Yolanda Salinas
- Queen Mary University of London, Department of Chemistry, SBCS, Mile End Road, London, E1 4NS, UK
| | - Marina Resmini
- Queen Mary University of London, Department of Chemistry, SBCS, Mile End Road, London, E1 4NS, UK.
| |
Collapse
|
46
|
Abdollahi A, Mahdavian AR, Salehi-Mobarakeh H. Preparation of stimuli-responsive functionalized latex nanoparticles: the effect of spiropyran concentration on size and photochromic properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2015; 31:10672-10682. [PMID: 26375595 DOI: 10.1021/acs.langmuir.5b02612] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Incorporation of photochromic compounds to polymer matrix through chemical bonding results in an enhancement of photoactivity and stabilization of optical properties. Here, spiropyran ethyl acrylate monomer (SPEA) was synthesized, and then photochromic particles bearing epoxy functional groups were prepared through semicontinuous emulsion copolymerization. Dynamic light scattering (DLS) and scanning electron microscopy (SEM) results depicted an increase in particle size and particle size distribution with the increase in SPEA monomer-surfactants ratio. Studies on photochromic properties by UV-vis analysis demonstrated a decrease in the absorption intensity despite the increase in SPEA content due to the enhancement in particle size. The prepared acrylic copolymer particles showed reasonable photostability, photoreversibility, and fast photoresponsivness according to the convenient test methods under UV/vis irradiation. DSC and DMTA analyses indicate an increase in Tg of the obtained copolymers with the increase in SPEA content. Finally, stimuli-responsive cellulosic papers were prepared by impregnation, and their photochromic behavior was investigated in dry and wet forms in various media under UV radiation. Morphology studies, due to stabilization of the photochromic copolymer on cellulose fibers, were conducted by SEM micrographs and showed good adhesion and compatibility between the two phases.
Collapse
Affiliation(s)
- Amin Abdollahi
- Polymer Science Department, Iran Polymer & Petrochemical Institute , P.O. Box 14965/115, Tehran 1497713115, Iran
| | - Ali Reza Mahdavian
- Polymer Science Department, Iran Polymer & Petrochemical Institute , P.O. Box 14965/115, Tehran 1497713115, Iran
| | - Hamid Salehi-Mobarakeh
- Polymer Science Department, Iran Polymer & Petrochemical Institute , P.O. Box 14965/115, Tehran 1497713115, Iran
| |
Collapse
|
47
|
Cheng FR, Chen Y, Su T, Cao H, Li S, Cao J, He B, Gu ZW, Luo XL. Intracellular pH-induced fluorescence used to track nanoparticles in cells. J Mater Chem B 2015; 3:5411-5414. [PMID: 32262512 DOI: 10.1039/c5tb00756a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A nanoparticle with pH-induced fluorescence was reported for intracellular tracking. The fluorescence was evoked by the isomerization of the ring-closed form spiropyran (SP) to the ring-open form merocyanine (MC) in the weak acidic environment of cells. The SP-MC switch accelerated the dissociation of nanoparticles to trigger the release of trapped paclitaxel.
Collapse
Affiliation(s)
- F R Cheng
- National Engineering Research Center for Biomaterials, Sichuan University, 29# Wangjiang Road, Chengdu 610064, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Mirabello V, Calatayud DG, Arrowsmith RL, Ge H, Pascu SI. Metallic nanoparticles as synthetic building blocks for cancer diagnostics: from materials design to molecular imaging applications. J Mater Chem B 2015; 3:5657-5672. [PMID: 32262561 DOI: 10.1039/c5tb00841g] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Metallic nanoparticles have been a matter of intense exploration within the last decade due to their potential to change the face of the medical world through their role as 'nanotheranostics'. Their envisaged capacity to act as synthetic platforms for a multimodal imaging approach to diagnosis and treatment of degenerative diseases, including cancer, remains a matter of lively debate. Certain synthetic metal-based nanomaterials, e.g. gold and iron oxide nanoparticles, are already in clinical use or under advanced preclinical investigations following in vitro and in vivo preclinical imaging success. We surveyed the recent publications landscape including those reported metallic nanoparticles having established applications in vivo, as well as some of the new metallic nanoparticles which, despite their potential as cancer nanodiagnostics, are currently awaiting in vivo evaluation. The objective of this review is to highlight the current metallic nanoparticles and/or alloys as well as their derivatives with multimodal imaging potential, focusing on their chemistry as a springboard to discussing their role in the future of nanomedicines design. We also highlight here some of the fundamentals of molecular and nano-imaging techniques of relevance to the metal-based colloids, alloys and metallic nanoparticles discerning their future prospects as cancer nanodiagnostics. The current approaches for metallic and alloy surface derivatisation, aiming to achieve functional and biocompatible materials for multimodal bioimaging applications, are discussed in order to bring about some new perspectives on the efficiency of metallic nanoparticles as synthetic scaffolds for imaging probe design and forecast their future use in medical imaging techniques (optical, CT, PET, SPECT and MRI).
Collapse
|
49
|
Yan J, Zhao LX, Li C, Hu Z, Zhang GF, Chen ZQ, Chen T, Huang ZL, Zhu J, Zhu MQ. Optical Nanoimaging for Block Copolymer Self-Assembly. J Am Chem Soc 2015; 137:2436-9. [DOI: 10.1021/ja512189a] [Citation(s) in RCA: 67] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Jie Yan
- Wuhan National Laboratory for Optoelectronics and ‡College of Chemistry and Chemical
Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ling-Xi Zhao
- Wuhan National Laboratory for Optoelectronics and ‡College of Chemistry and Chemical
Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Chong Li
- Wuhan National Laboratory for Optoelectronics and ‡College of Chemistry and Chemical
Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhe Hu
- Wuhan National Laboratory for Optoelectronics and ‡College of Chemistry and Chemical
Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Guo-Feng Zhang
- Wuhan National Laboratory for Optoelectronics and ‡College of Chemistry and Chemical
Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ze-Qiang Chen
- Wuhan National Laboratory for Optoelectronics and ‡College of Chemistry and Chemical
Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Tao Chen
- Wuhan National Laboratory for Optoelectronics and ‡College of Chemistry and Chemical
Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Zhen-Li Huang
- Wuhan National Laboratory for Optoelectronics and ‡College of Chemistry and Chemical
Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jintao Zhu
- Wuhan National Laboratory for Optoelectronics and ‡College of Chemistry and Chemical
Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ming-Qiang Zhu
- Wuhan National Laboratory for Optoelectronics and ‡College of Chemistry and Chemical
Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
50
|
Li C, Hu Z, Aldred MP, Zhao LX, Yan H, Zhang GF, Huang ZL, Li ADQ, Zhu MQ. Water-Soluble Polymeric Photoswitching Dyads Impart Super-Resolution Lysosome Highlighters. Macromolecules 2014. [DOI: 10.1021/ma501505w] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Chong Li
- Wuhan
National Laboratory for Optoelectronics, School of Optical and Electronic
Information, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhe Hu
- Wuhan
National Laboratory for Optoelectronics, School of Optical and Electronic
Information, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Matthew P. Aldred
- Wuhan
National Laboratory for Optoelectronics, School of Optical and Electronic
Information, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Ling-Xi Zhao
- Wuhan
National Laboratory for Optoelectronics, School of Optical and Electronic
Information, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Hui Yan
- Wuhan
National Laboratory for Optoelectronics, School of Optical and Electronic
Information, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Guo-Feng Zhang
- Wuhan
National Laboratory for Optoelectronics, School of Optical and Electronic
Information, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Zhen-Li Huang
- Wuhan
National Laboratory for Optoelectronics, School of Optical and Electronic
Information, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Alexander D. Q. Li
- Department
of Chemistry, Washington State University, Pullman, Washington 99163, United States
| | - Ming-Qiang Zhu
- Wuhan
National Laboratory for Optoelectronics, School of Optical and Electronic
Information, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|