1
|
Kumari A, Roy RS, Gautam UK, Sengupta S. Naphthalene Monoanhydride and Perylene Composites for Efficient Photocatalytic Hydrogen Evolution and Metal-Free Heterogeneous Oxidative Amidation. ACS APPLIED MATERIALS & INTERFACES 2024; 16:59234-59244. [PMID: 39405577 DOI: 10.1021/acsami.4c11795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2024]
Abstract
This study explores the synthesis of two visible light active organic chromophore-based composites using naphthalene monoanhydride (Np) and 1,7-dibromoperylene monoanhydride diester (PMDE). These chromophores feature favorable optical and electronic properties and polyaromatic skeletons with anhydride functionalities that facilitate π-π interactions between the chromophore and polymeric carbon nitride (CN) or covalent connections of chromophores with NH2 groups of CN. Accordingly, heterogeneous chromophore-CN composite photocatalysts namely, Np/CN(c) and PMDE/CN(c) were prepared by adopting in situ calcination (c) and composites Np/CN(a) and PMDE/CN(a) were prepared by ex situ physical adsorption (a) methods. In situ prepared Np/CN(c) and PMDE/CN(c) composites exhibited H2 evolution rates (HER) of 1069 and 705 μmol h-1 g-1, respectively, which are significantly higher than ex situ Np/CN(a) and PMDE/CN(a) composites with HER of 465 and 252 μmol h-1 g-1, respectively. These rates are 10, 7, 4.8, and 2.5 times higher than the bulk-CN, indicating the potential of these composites for efficient photocatalytic H2 evolution. Surface area normalized HER enhancements were 3.8, 5.3, 6.6, and 4.2 times higher for Np/CN(c), PMDE/CN(c), Np/CN(a), and PMDE/CN(a) respectively compared to bulk-CN. These composite photocatalysts exhibited excellent stabilities under prolonged photoirradiation, with H2 evolution consistently increasing with the light exposure time. Additionally, these metal-free heterogeneous composites demonstrated efficient photocatalytic activities towards oxidative amidation of aromatic aldehydes, with up to 80% product yields, establishing the prospects of combining homogeneous and heterogeneous entities in a metal-free active material in solar energy harvesting.
Collapse
Affiliation(s)
- Anita Kumari
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India
| | - Raj Sekhar Roy
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Knowledge City, Sector 81, P.O. Manauli, Mohali, Punjab 140306, India
| |
Collapse
|
2
|
Kumari A, Sharma S, Sengupta S. Molecular rotors of naphthalimide and benzodithiophene as effective solvent polarity probes, temperature sensors, and for g-C 3N 4 sensitization. Photochem Photobiol 2024; 100:1055-1067. [PMID: 38459693 DOI: 10.1111/php.13931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/07/2024] [Accepted: 02/22/2024] [Indexed: 03/10/2024]
Abstract
Acceptor-donor-acceptor (A-D-A) molecular rotors have drawn substantial attention for their applications in monitoring temperature variations within cellular microenvironments, biomimetic photocatalysis, and bioimaging. In this study, we have synthesized two novel rotor molecules, NBN1 and NBN2, by incorporating benzodithiophene (BDT) as the donor core and naphthalic anhydride/naphthalimide (NA/NI) moieties as acceptors using Pd-catalyzed Stille coupling reactions. These molecules exhibited distinct charge transfer (CT) behavior in both their absorption and emission spectra and displayed prominent emission solvatochromism. Notably, NBN1 exhibited better CT properties among the two molecules. Moreover, these A-D-A molecular rotors demonstrated remarkable sensitivities of their emission spectra toward solvent polarities and temperatures. Rotors NBN1 and NBN2 showed positive temperature coefficients with internal temperature sensitivities of 0.34% °C-1 and 0.13% °C-1 in chloroform, respectively, and thus hold significant promise for detecting temperature variations in cellular microenvironment. Furthermore, we have modeled these molecules with graphitic carbon nitride (g-C3N4) to form composite systems and performed theoretical calculations to obtain valuable insights into their charge transfer behavior. Theoretical results suggested that these molecules have the potential to efficiently sensitize and modulate the band gap of g-C3N4 and show potential for diverse photocatalytic applications.
Collapse
Affiliation(s)
- Anita Kumari
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Sushil Sharma
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| | - Sanchita Sengupta
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Mohali, India
| |
Collapse
|
3
|
Gon M, Yaegashi M, Tanaka K, Chujo Y. Near-Infrared Emissive Hypervalent Compounds with Germanium(IV)-Fused Azobenzene π-Conjugated Systems. Chemistry 2023; 29:e202203423. [PMID: 36441133 DOI: 10.1002/chem.202203423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/28/2022] [Accepted: 11/28/2022] [Indexed: 11/30/2022]
Abstract
A novel molecular design for showing near-infrared (NIR) emission is still required for satisfying growing demands for NIR-light technology. In this research, hypervalent compounds with germanium (Ge)-fused azobenzene (GAz) scaffolds were discovered that can exhibit NIR emission (λPL =690∼721 nm, ΦPL =0.03∼0.04) despite compact π-conjugated systems. The unique optical properties are derived from the trigonal bipyramidal geometry of the hypervalent compounds constructed by combination of Ge and azobenzene-based tridentate ligands. Experimental and theoretical calculation results disclosed that the germanium-nitrogen (Ge-N) coordination at the equatorial position strongly reduces the energy level of the LUMO (lowest unoccupied molecular orbital), and the three-center four-electron (3 c-4 e) bond in the apical position effectively rises the energy level of the HOMO (highest occupied molecular orbital). It is emphasized that large narrowing of the HOMO-LUMO energy gap is achieved just by forming the hypervalent bond. In addition, the narrow-energy-gap property can be enhanced by extension of π-conjugation. The obtained π-conjugated polymer shows efficient NIR emission both in solution (λPL =770 nm and ΦPL =0.10) and film (λPL =807 nm and ΦPL =0.04). These results suggest that collaboration of a hypervalent bond and a π-conjugated system is a novel and effective strategy for tuning electronic properties even in the NIR region.
Collapse
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Misao Yaegashi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
4
|
Watanabe H, Tanaka K, Chujo Y. Position Dependent Effects of the Aza‐Substitution on the Electronic Properties and Crystal Structures Based on Hexaazaphenalene Isomers. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Hiroyuki Watanabe
- Kyoto University: Kyoto Daigaku Department of Polymer Chemistry, Graduate School of Engineering JAPAN
| | - Kazuo Tanaka
- Kyoto University Graduate School of Engineering, Department of Polymer Chemistry Katsura, Nishikyo-ku 615-8510 Kyoto JAPAN
| | - Yoshiki Chujo
- Kyoto University: Kyoto Daigaku Department of Polymer Chemistry, Graduate School of Engineering JAPAN
| |
Collapse
|
5
|
Wang X, Wang G, Li J, Li X, Zhang K. A simple and straightforward polymer post-modification method for wearable difluoroboron β-diketonate luminescent sensors. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124449] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
6
|
Ośmiałowski B, Dziuk B, Ejsmont K, Chęcińska L, Dobrzańska L. Effect of conjugated system extension on structural features and electron-density distribution in charge-transfer difluoroborates. Acta Crystallogr C 2021; 77:807-813. [PMID: 34864724 DOI: 10.1107/s2053229621012249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/18/2021] [Indexed: 11/10/2022] Open
Abstract
A comparative structural study of two related donor-acceptor pyridine-based BF2 complexes, namely, 3-(dimethylamino)-1,1-difluoro-1H-pyrido[1,2-c][1,3,5,2]oxadiazaborinin-9-ium-1-uide, C8H10BF2N3O (1), and 3-{(1E,3E)-4-[4-(dimethylamino)phenyl]buta-1,3-dien-1-yl}-1,1-difluoro-1H-pyrido[1,2-c][1,3,5,2]oxadiazaborinin-9-ium-1-uide, C18H18BF2N3O (2), containing a dimethylamino group and either the shortest (in 1) or the longest (in 2) charge-transfer path known until now in this family of compounds, is presented. Single-crystal X-ray diffraction analysis supported by computational investigations shed more light on these systems, indicating, among other aspects, the predominance of C-H...F contacts in 1, the formation of antiparallel dimers held together by π-π interactions in both compounds, and the involvement of fused BF2-bearing rings in the charge-transfer process.
Collapse
Affiliation(s)
- Borys Ośmiałowski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, Toruń 87-100, Poland
| | - Błażej Dziuk
- Faculty of Chemistry, Wrocław University of Science and Technology, Norwida 4/6, Wrocław 50-373, Poland
| | - Krzysztof Ejsmont
- Faculty of Chemistry, University of Opole, Oleska 48, Opole 45-052, Poland
| | - Lilianna Chęcińska
- Faculty of Chemistry, University of Łódź, Pomorska 163/165, Łódź 90-236, Poland
| | - Liliana Dobrzańska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarina 7, Toruń 87-100, Poland
| |
Collapse
|
7
|
Li X, Guo X, Chen Y, Cui T, Xing L. Double 3-Ethyl-2,4-dimethylpyrrole Configured Fluorescent Dye with Fluorine-Boron as the Bridge. J Fluoresc 2021; 31:1797-1803. [PMID: 34519935 DOI: 10.1007/s10895-021-02819-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 08/27/2021] [Indexed: 11/28/2022]
Abstract
Dipyrrolydiketones BF2 complex was synthesized and characterized by NMR, HRMS, and single crystal diffraction. In non-polar environment, this BF2 containing dye emitted bright blue-green fluorescence. No significant spectra shift was observed both in absorption and emission spectra, which indicates the insensitivity of absorption/emission toward environment. The alkyl substituted pyrrole rings lead to its highly emission character in solid state by enhancing the distance between dye molecules. Absolute quantum yields were determined to be 0.51-0.78/0.36 in selected organic medium and solid state, respectively. The emission dynamics was investigated by fluorescence lifetime and both monoexponential and bi-exponential decay was observed.
Collapse
Affiliation(s)
- Xiaochuan Li
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China.
| | - Xinyu Guo
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Yunfeng Chen
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Ting Cui
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| | - Lina Xing
- NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
8
|
Gon M, Ito S, Tanaka K, Chujo Y. Design Strategies and Recent Results for Near-Infrared-Emissive Materials Based on Element-Block π-Conjugated Polymers. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20210235] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Shunichiro Ito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
9
|
Electron Transport in Naphthalene Diimide Derivatives. MATERIALS 2021; 14:ma14144026. [PMID: 34300943 PMCID: PMC8307528 DOI: 10.3390/ma14144026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/09/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023]
Abstract
Two naphthalene diimides derivatives containing two different (alkyl and alkoxyphenyl) N-substituents were studied, namely, N,N′-bis(sec-butyl)-1,4,5,8-naphthalenetetracarboxylic acid diimide (NDI-s-Bu) and N,N′-bis(4-n-hexyloxyphenyl)-1,4,5,8-naphthalenetetracarboxylic acid diimide (NDI-4-n-OHePh). These compounds are known to exhibit electron transport due to their electron-deficient character evidenced by high electron affinity (EA) values, determined by electrochemical methods and a low-lying lowest unoccupied molecular orbital (LUMO) level, predicted by density functional theory (DFT) calculations. These parameters make the studied organic semiconductors stable in operating conditions and resistant to electron trapping, facilitating, in this manner, electron transport in thin solid layers. Current–voltage characteristics, obtained for the manufactured electron-only devices operating in the low voltage range, yielded mobilities of 4.3 × 10−4 cm2V−1s−1 and 4.6 × 10−6 cm2V−1s−1 for (NDI-s-Bu) and (NDI-4-n-OHePh), respectively. Their electron transport characteristics were described using the drift–diffusion model. The studied organic semiconductors can be considered as excellent candidates for the electron transporting layers in organic photovoltaic cells and light-emitting diodes
Collapse
|
10
|
Tanaka K, Chujo Y. New Idea for Narrowing an Energy Gap by Selective Perturbation of One Frontier Molecular Orbital. CHEM LETT 2021. [DOI: 10.1246/cl.200756] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
11
|
Xu Y, Wang S, Chen Z, Hu R, Li S, Zhao Y, Liu L, Qu J. Highly stable organic photothermal agent based on near-infrared-II fluorophores for tumor treatment. J Nanobiotechnology 2021; 19:37. [PMID: 33541369 PMCID: PMC7863535 DOI: 10.1186/s12951-021-00782-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 01/22/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The aim to develop a highly stable near-infrared (NIR) photoinduced tumor therapy agent stems from its considerable potential for biological application. Due to its long wavelength, biological imaging exhibits a high signal-to-background ratio, deep tissue penetration and maximum permissible light power, which can minimize damage to an organism during photoinduced tumor therapy. RESULTS A class of stable NIR-II fluorophores (NIR998, NIR1028, NIR980, NIR1030, and NIR1028-S) based on aza-boron-dipyrromethene (aza-BODIPY) dyes with donor-acceptor-donor structures have been rationally designed and synthesized by harnessing the steric relaxation effect and intramolecular photoinduced electron transfer (IPET). These fluorophores exhibit an intense range of NIR-II emission, large Stokes shift (≥ 100 nm), excellent photothermal conversion performance, and superior stability against photobleaching. Among the NIR-II fluorophores, NIR998 possesses better NIR-II emission and photothermal conversion performance. NIR998 nanoparticles (NIR998 NPs) can be encapsulated by liposomes. NIR998 NPs show superior stability in the presence of light, heat, and reactive oxygen nitrogen species than that of indocyanine green NPs, as well as a higher photothermal conversion ability (η = 50.5%) compared to other photothermal agents. Finally, under the guidance of photothermal imaging, NIR998 NPs have been proven to effectively eliminate tumors via their excellent photothermal conversion performance while presenting negligible cytotoxicity. CONCLUSIONS Utilizing IPET and the steric relaxation effect can effectively induce NIR-II emission of aza-BODIPY dyes. Stable NIR998 NPs have excellent photothermal conversion performance and negligible dark cytotoxicity, so they have the potential to act as photothermal agents in biological applications.
Collapse
Affiliation(s)
- Yunjian Xu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Shiqi Wang
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Zhenjiang Chen
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Rui Hu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Shaoqiang Li
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Yihua Zhao
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| | - Liwei Liu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China.
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Guangdong Province & Ministry of Education, College of Physics and Optoelectronic Engineering Shenzhen University, Shenzhen, 518060, Guangdong Province, People's Republic of China
| |
Collapse
|
12
|
Lu P, Chung KY, Stafford A, Kiker M, Kafle K, Page ZA. Boron dipyrromethene (BODIPY) in polymer chemistry. Polym Chem 2021. [DOI: 10.1039/d0py01513j] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The present review provides both a summary and outlook on the exciting field of BODIPYs in polymer chemistry.
Collapse
Affiliation(s)
- Pengtao Lu
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Kun-You Chung
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Alex Stafford
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Meghan Kiker
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | - Kristina Kafle
- Department of Chemistry
- The University of Texas at Austin
- Austin
- USA
| | | |
Collapse
|
13
|
Architectures and Applications of BODIPY-Based Conjugated Polymers. Polymers (Basel) 2020; 13:polym13010075. [PMID: 33375479 PMCID: PMC7795016 DOI: 10.3390/polym13010075] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/01/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022] Open
Abstract
Conjugated polymers generally contain conjugated backbone structures with benzene, heterocycle, double bond, or triple bond, so that they have properties similar to semiconductors and even conductors. Their energy band gap is very small and can be adjusted via chemical doping, allowing for excellent photoelectric properties. To obtain prominent conjugated materials, numerous well-designed polymer backbones have been reported, such as polyphenylenevinylene, polyphenylene acetylene, polycarbazole, and polyfluorene. 4,4'-Difluoro-4-bora-3a,4a-diaza-s-indacene (BODIPY)-based conjugated polymers have also been prepared owing to its conjugated structure and intriguing optical properties, including high absorption coefficients, excellent thermal/photochemical stability, and high quantum yield. Most importantly, the properties of BODIPYs can be easily tuned by chemical modification on the dipyrromethene core, which endows the conjugated polymers with multiple functionalities. In this paper, BODIPY-based conjugated polymers are reviewed, focusing on their structures and applications. The forms of BODIPY-based conjugated polymers include linear, coiled, and porous structures, and their structure-property relationship is explored. Also, typical applications in optoelectronic materials, sensors, gas/energy storage, biotherapy, and bioimaging are presented and discussed in detail. Finally, the review provides an insight into the challenges in the development of BODIPY-based conjugated polymers.
Collapse
|
14
|
Atilgan A, Cetin MM, Yu J, Beldjoudi Y, Liu J, Stern CL, Cetin FM, Islamoglu T, Farha OK, Deria P, Stoddart JF, Hupp JT. Post-Synthetically Elaborated BODIPY-Based Porous Organic Polymers (POPs) for the Photochemical Detoxification of a Sulfur Mustard Simulant. J Am Chem Soc 2020; 142:18554-18564. [PMID: 32981316 DOI: 10.1021/jacs.0c07784] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Ahmet Atilgan
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - M. Mustafa Cetin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Science, Kadir Has University, 34083 Cibali Campus Fatih, Istanbul, Turkey
| | - Jierui Yu
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - Yassine Beldjoudi
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Jian Liu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Charlotte L. Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Furkan M. Cetin
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Pravas Deria
- Department of Chemistry and Biochemistry, Southern Illinois University, 1245 Lincoln Drive, Carbondale, Illinois 62901, United States
| | - J. Fraser Stoddart
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
- Institute of Molecular Design and Synthesis, Tianjin University, 92 Weijin Road, Nankai District, Tianjin 300072, P. R. China
- School of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Joseph T. Hupp
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| |
Collapse
|
15
|
Synthesis, characterization, and tunable semiconducting properties of aza-BODIPY derived polycyclic aromatic dyes. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9807-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Wakabayashi J, Gon M, Tanaka K, Chujo Y. Near-Infrared Absorptive and Emissive Poly(p-phenylene vinylene) Derivative Containing Azobenzene–Boron Complexes. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c00745] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Junko Wakabayashi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
17
|
Zhang Z, Yuan D, Liu X, Kim MJ, Nashchadin A, Sharapov V, Yu L. BODIPY-Containing Polymers with Ultralow Band Gaps and Ambipolar Charge Mobilities. Macromolecules 2020. [DOI: 10.1021/acs.macromol.9b02653] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zhen Zhang
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Dafei Yuan
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Xunshan Liu
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Mi-Jeong Kim
- Material Research Center, Samsung Advanced Institute of Technology (SAIT), Samsung Electronics Limited, Seoul, South Korea
| | - Andriy Nashchadin
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Valerii Sharapov
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| | - Luping Yu
- Department of Chemistry and James Franck Institute, The University of Chicago, 929 East 57th Street, Chicago, Illinois 60637, United States
| |
Collapse
|
18
|
Li C, Sun Q, Zhao Q, Cheng X. Highly selective ratiometric fluorescent probes for the detection of Fe 3+ and its application in living cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117720. [PMID: 31718969 DOI: 10.1016/j.saa.2019.117720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/01/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
It's of vital importance to detect heavy metals in environment and living cells. In this work, four near-infrared regions boron dipyrromethene (BODIPY) probes (QBPH, PBPH, QBP and PBP) are constructed based on two BODIPY precursors (QB, PB) for sensing of Fe3+. As expected, these four probes exhibit obvious colorimetric and ratiometric response to Fe3+. In addition, QBP and PBP display highly sensitive and selective performance for detection of Fe3+. More importantly, QBP and PBP are successfully applied to near infrared imaging and detection of Fe3+ in living A549 cells; it indicates that these novel designed probes could be a useful tool for the studies of Fe3+ in living cells.
Collapse
Affiliation(s)
- Chunqing Li
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China
| | - Qi Sun
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China.
| | - Qiang Zhao
- College of Life Science, Nankai University, Tianjin, 300071, China
| | - Xinjian Cheng
- School of Chemistry and Environmental Engineering, Wuhan Institute of Technology, Wuhan, 430073, China.
| |
Collapse
|
19
|
Modulation of the solid-state luminescent properties of conjugated polymers by changing the connecting points of flexible boron element blocks. Polym J 2020. [DOI: 10.1038/s41428-020-0316-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
20
|
|
21
|
Obłoza M, Łapok Ł, Pędziński T, Stadnicka KM, Nowakowska M. Synthesis, Photophysics and Redox Properties of Aza‐BODIPY Dyes with Electron‐Donating Groups. Chemphyschem 2019; 20:2482-2497. [DOI: 10.1002/cphc.201900689] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/06/2019] [Indexed: 12/20/2022]
Affiliation(s)
- Magdalena Obłoza
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Łukasz Łapok
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| | - Tomasz Pędziński
- Faculty of Chemistry Adam Mickiewicz University in Poznań 89b Umultowska 61-614 Poznań Poland
| | | | - Maria Nowakowska
- Faculty of Chemistry Jagiellonian University Gronostajowa 2 30-387 Kraków Poland
| |
Collapse
|
22
|
Gon M, Wakabayashi J, Tanaka K, Chujo Y. Unique Substitution Effect at 5,5'-Positions of Fused Azobenzene-Boron Complexes with a N=N π-Conjugated System. Chem Asian J 2019; 14:1837-1843. [PMID: 30600910 DOI: 10.1002/asia.201801659] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Revised: 12/23/2018] [Indexed: 11/10/2022]
Abstract
A recent report illustrated superior optical properties, such as near-infrared emission, of polymers connected at the 4,4'-positions to a fused azobenzene-boron complex (BAz). In this study, it is initially demonstrated that further narrowing of the band gap can be realized through the substituent effect with bromine groups at the 5,5'-positions of BAz compared with those at the 4,4'-positions. From a series of mechanistic studies, perturbation of the energy levels was rationally explained by the difference in contributions of the inductive effect and the variable resonance effect, which was correlated with the degree of electron distribution of molecular orbitals at the substituent positions. Moreover, it was found that unique electronic states, such as delocalized HOMOs and LUMOs, should appear on the main chains of the BAz-containing copolymers with fluorene and bithiophene units, according to the optical and electrochemical data and theoretical calculations. By taking advantage of property tunability and the dramatically low LUMO energy level (near -4.0 eV) of the BAz unit, it can be said that BAz should be a conjugated building block favorable for building advanced optoelectronic devices.
Collapse
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Junko Wakabayashi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku, Kyoto, 615-8510, Japan
| |
Collapse
|
23
|
Ohtani S, Gon M, Tanaka K, Chujo Y. Construction of the Luminescent Donor–Acceptor Conjugated Systems Based on Boron-Fused Azomethine Acceptor. Macromolecules 2019. [DOI: 10.1021/acs.macromol.9b00259] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Shunsuke Ohtani
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
24
|
Gon M, Tanaka K, Chujo Y. Concept of Excitation-Driven Boron Complexes and Their Applications for Functional Luminescent Materials. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2019. [DOI: 10.1246/bcsj.20180245] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
25
|
Affiliation(s)
- Teresa L. Mako
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Joan M. Racicot
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| | - Mindy Levine
- Department of Chemistry, University of Rhode Island, 140 Flagg Road, Kingston, Rhode Island 02881, United States
| |
Collapse
|
26
|
Zhang Y, Feng L, Wang J, Tao D, Liang C, Cheng L, Hao E, Liu Z. Surfactant-Stripped Micelles of Near Infrared Dye and Paclitaxel for Photoacoustic Imaging Guided Photothermal-Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802991. [PMID: 30286285 DOI: 10.1002/smll.201802991] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Revised: 09/01/2018] [Indexed: 05/20/2023]
Abstract
Development of nanoagents with strong near-infrared (NIR) absorbance and high photothermal conversion capacity is highly desired for efficient photoacoustic (PA) imaging and photothermal therapy of cancers. Herein, surfactant-stripped micelles with photostable near-infrared dye, β-thiophene-fused BF2 -azadipyrromethene (aza-BDTP), are prepared in the presence of paclitaxel (PTX) with Pluronic F127 as the surfactant. Distinct from hydrophobic aza-BDTP and PTX, the obtained surfactant-stripped micelles aza-BDTP/PTX show excellent solubility, physiological stability, and high loading efficiencies for corresponding aza-BDTP and PTX. Intriguingly, these aza-BDTP/PTX micelles exhibit high photothermal conversion efficiency at 33.9%, significantly higher than 16.9% for bare aza-BDTP molecules, owing to aggregation-induced quenching of aza-BDTP fluorescence. With excellent photostability, aza-BDTP/PTX micelles appear to be a highly stable photoacoustic imaging probe and show efficient tumor accumulation as visualized under photoacoustic imaging upon intravenous injection. After being irradiated with a 785 nm laser, 4T1 tumors on the mice with systemic administration of aza-BDTP/PTX micelles are fully eradiated without any recurrences within 60 d. This work presents a general method for efficient encapsulation of hydrophobic aza-BDTP and PTX, obtaining hybrid aza-BDTP/PTX micelles as promising nanotheranostics for imaging guided cancer combination therapy.
Collapse
Affiliation(s)
- Yicheng Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), College of Nano Science & Technology (CNST), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| | - Liangzhu Feng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), College of Nano Science & Technology (CNST), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| | - Jun Wang
- Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Danlei Tao
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), College of Nano Science & Technology (CNST), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| | - Chao Liang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), College of Nano Science & Technology (CNST), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| | - Liang Cheng
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), College of Nano Science & Technology (CNST), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| | - Erhong Hao
- Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials, School of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241000, Anhui, China
| | - Zhuang Liu
- Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Institute of Functional Nano and Soft Materials (FUNSOM), College of Nano Science & Technology (CNST), Soochow University, 199 Ren'ai Road, Suzhou, 215123, Jiangsu, P. R. China
| |
Collapse
|
27
|
Control of solution and solid-state emission with conjugated polymers based on the boron pyridinoiminate structure by ring fusion. POLYMER 2018. [DOI: 10.1016/j.polymer.2018.03.040] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
|
29
|
Chansaenpak K, Tanjindaprateep S, Chaicharoenaudomrung N, Weeranantanapan O, Noisa P, Kamkaew A. Aza-BODIPY based polymeric nanoparticles for cancer cell imaging. RSC Adv 2018; 8:39248-39255. [PMID: 35558043 PMCID: PMC9090774 DOI: 10.1039/c8ra08145j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 11/19/2018] [Indexed: 12/14/2022] Open
Abstract
Near infrared (NIR) fluorescent dyes that are widely used for cancer imaging usually suffer from their hydrophobicity. To overcome this problem, a water-suspendable and biodegradable NIR-light-activating aza-BODIPY (AZB-NO2) encapsulated in polymeric nanoparticles was prepared as a new class of deep-tissue imaging agent. AZB-NO2 possesses an intense, broad NIR absorption band (600–800 nm) with a remarkably high fluorescent quantum yield. After being encapsulated with a biodegradable polycaprolactone (PCL) and a Kolliphor P188 surfactant by emulsification-solvent evaporation method, the AZB-NO2 formed a spherical shape as observed in scanning electron micrographs (SEM) with a hydrodynamic average size of 201 nm (average PDI = 0.185). The results from transmission electron micrographs (TEM) and energy dispersive X-ray spectroscopy (EDS) elemental mapping indicated that the AZB-NO2 homogeneously distributed in the polymeric shell. UV-visible-NIR and fluorescence spectra of the obtained nanoparticles, AZB-NO2@PCL, revealed that the nanoparticles prepared by using 0.8 mg dye loading exhibited the highest fluorescence quantum yield. These nanoparticles were then applied for fluorescence imaging in human glioblastoma cell line (U-251). After the cells were exposed to AZB-NO2@PCL, the materials appeared to be localized inside U-251 cells within 3 h and the fluorescence signal enhanced along with the increased incubation times. Moreover, 3D cell culture was used in this study to mimic in vivo tumor environments. The AZB-NO2@PCL exhibited bright fluorescence from U-251 cells inside 3D Ca-alginate scaffolds after 24 h incubation. Our study successfully demonstrated that the encapsulation of hydrophobic aza-BODIPY dye could enhance the water-suspendability of the dye yielding biocompatible nanoparticles efficiently used in cancer cell imaging applications. Encapsulation of hydrophobic aza-BODIPY dye could enhance its hydrophilicity yielding biocompatible nanoparticles which can be efficiently used in cancer cell imaging applications.![]()
Collapse
Affiliation(s)
- Kantapat Chansaenpak
- National Nanotechnology Center
- National Science and Technology Development Agency
- Thailand
| | - Similan Tanjindaprateep
- School of Chemistry
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Nipha Chaicharoenaudomrung
- Laboratory of Cell-Based Assays and Innovations
- School of Biotechnology
- Institute of Agricultural Technology
- Suranaree University of Technology
- Nakhon Ratchasima 30000
| | - Oratai Weeranantanapan
- School of Preclinical Sciences
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| | - Parinya Noisa
- Laboratory of Cell-Based Assays and Innovations
- School of Biotechnology
- Institute of Agricultural Technology
- Suranaree University of Technology
- Nakhon Ratchasima 30000
| | - Anyanee Kamkaew
- School of Chemistry
- Institute of Science
- Suranaree University of Technology
- Nakhon Ratchasima 30000
- Thailand
| |
Collapse
|
30
|
Yamane H, Tanaka K, Chujo Y. Pure-color and dual-color emission from BODIPY homopolymers containing the cardo boron structure. Polym Chem 2018. [DOI: 10.1039/c8py00619a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Pure-color and dual-color emission were accomplished with homopolymers composed of modified boron dipyrromethene involving cardo boron.
Collapse
Affiliation(s)
- Honami Yamane
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
31
|
Raffy G, Bofinger R, Tron A, Guerzo AD, McClenaghan ND, Vincent JM. 2D and 3D surface photopatterning via laser-promoted homopolymerization of a perfluorophenyl azide-substituted BODIPY. NANOSCALE 2017; 9:16908-16914. [PMID: 29077113 DOI: 10.1039/c7nr06848d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
An innovative photopatterning process is described that allows, in a single laser-promoted operation, the covalent attachment of a molecule on a surface (2D patterning - xy dimensions) and its photopolymerization to grow micro-/nanostructures with spatial control in a third z-dimension. The surface patterning process, based on nitrene reactivity, was harnessed using the highly fluorescent azide-substituted boron difluoride dipyrromethene (BODIPY) 1 that was prepared in a single synthetic step from the parent pentafluorophenyl BODIPY on reacting with NaN3. Using the laser of a fluorescence microscope (375 nm or 532 nm) 1 could be grafted on adapted surfaces and then homopolymerised. In this study we show that using glass coverslips coated with PEG/high density alkyne groups (density of ∼1 × 1014 per cm2), the patterning process was much more spatially confined than when using PEG only coating. Varying the irradiation time (1 to 15 s) or laser power (0.14-3.53 μW) allowed variation of the amount of deposited BODIPY to afford, in the extreme case, pillars of a height up to 800 nm. AFM and MS studies revealed that the nano/microstructures were formed of particles of photopolymerized 1 having a mean diameter of ca. 30 nm. The emission spectra and fluorescence lifetimes for the patterned structures were measured, revealing a red-shift (from ∼560 nm up to 620 nm) of the maximum emission and a shortening (from ∼6 ns to 0.8 ns) of the fluorescence lifetimes in areas where the density of BODIPY is high. As an application of the patterning process, a figure formed of 136 dots/pillars was prepared. The confocal hyperspectral fluorescence image revealed that the figure is clearly resolved and constituted by highly photoluminescent red dots whose fluorescence intensities and emission color proved to be highly reproducible. SEM and AFM studies showed that the luminescent dots were pillars with a conical shape, an average height of 710 ± 28 nm and a FWHM of 400 ± 20 nm.
Collapse
Affiliation(s)
- Guillaume Raffy
- Univ. Bordeaux - CNRS UMR 5255, 351 Crs de la Libération, Talence, France.
| | | | | | | | | | | |
Collapse
|
32
|
Gon M, Tanaka K, Chujo Y. Recent progress in the development of advanced element-block materials. Polym J 2017. [DOI: 10.1038/pj.2017.56] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
33
|
|
34
|
Wang J, Jin B, Wang N, Peng T, Li X, Luo Y, Wang S. Organoboron-Based Photochromic Copolymers for Erasable Writing and Patterning. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b00632] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
| | | | | | | | | | | | - Suning Wang
- Department
of Chemistry, Queen’s University, 90 Bader Lane, Kingston, Ontario K7L
3N6, Canada
| |
Collapse
|
35
|
Sheng W, Zheng YQ, Wu Q, Wu Y, Yu C, Jiao L, Hao E, Wang JY, Pei J. Synthesis, Properties, and Semiconducting Characteristics of BF2 Complexes of β,β-Bisphenanthrene-Fused Azadipyrromethenes. Org Lett 2017; 19:2893-2896. [DOI: 10.1021/acs.orglett.7b01133] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Wanle Sheng
- Laboratory
of Functional Molecular Solids, Ministry of Education, School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yu-Qing Zheng
- Beijing
National Laboratory for Molecular Sciences, College of Chemistry and
Molecular Engineering, Peking University, Peking 100080, China
| | - Qinghua Wu
- Laboratory
of Functional Molecular Solids, Ministry of Education, School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Yayang Wu
- Laboratory
of Functional Molecular Solids, Ministry of Education, School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Changjiang Yu
- Laboratory
of Functional Molecular Solids, Ministry of Education, School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Lijuan Jiao
- Laboratory
of Functional Molecular Solids, Ministry of Education, School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Erhong Hao
- Laboratory
of Functional Molecular Solids, Ministry of Education, School of Chemistry
and Materials Science, Anhui Normal University, Wuhu 241000, China
| | - Jie-Yu Wang
- Beijing
National Laboratory for Molecular Sciences, College of Chemistry and
Molecular Engineering, Peking University, Peking 100080, China
| | - Jian Pei
- Beijing
National Laboratory for Molecular Sciences, College of Chemistry and
Molecular Engineering, Peking University, Peking 100080, China
| |
Collapse
|
36
|
Gon M, Tanaka K, Chujo Y. Creative Synthesis of Organic–Inorganic Molecular Hybrid Materials. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2017. [DOI: 10.1246/bcsj.20170005] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Masayuki Gon
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510
| |
Collapse
|
37
|
Ito S, Hirose A, Yamaguchi M, Tanaka K, Chujo Y. Synthesis of Aggregation-Induced Emission-Active Conjugated Polymers Composed of Group 13 Diiminate Complexes with Tunable Energy Levels via Alteration of Central Element. Polymers (Basel) 2017; 9:E68. [PMID: 30970746 PMCID: PMC6432313 DOI: 10.3390/polym9020068] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 02/13/2017] [Indexed: 01/16/2023] Open
Abstract
Conjugated polymers containing boron and gallium diiminate complexes were prepared with various electron-donating comonomers via pre- and post-complexation methods, respectively. From a comparison of emission quantum yields between solution and film states, it was seen that all polymers containing group 13 elements possessed an aggregation-induced emission property. Additionally, the frontier orbital energies and the optical and electrochemical properties of the polymers can be tuned by altering a central element at the complex moieties as well as by changing a comonomer unit. In particular, it was demonstrated that the gallium atom can contribute to stabilizing the energy levels of the lowest unoccupied molecular orbitals, resulting in narrow band gaps of the conjugated polymers. This study presents the potential of gallium not only for preparing solid-state emissive conjugated polymers but also for fabricating low-band gap materials by employing the conjugated ligand.
Collapse
Affiliation(s)
- Shunichiro Ito
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Amane Hirose
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Madoka Yamaguchi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
38
|
Gut A, Łapok Ł, Jamróz D, Gorski A, Solarski J, Nowakowska M. Photophysics and redox properties of aza-BODIPY dyes with electron-withdrawing groups. NEW J CHEM 2017. [DOI: 10.1039/c7nj02757e] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
The optical and electrochemical properties are compared for aza-BODIPY dyes that differ by virtue of the substituents at 1,7- and 3,5-positions of the aza-BODIPY backbone.
Collapse
Affiliation(s)
- Arkadiusz Gut
- Faculty of Chemistry
- Jagiellonian University
- 30-060 Kraków
- Poland
| | - Łukasz Łapok
- Faculty of Chemistry
- Jagiellonian University
- 30-060 Kraków
- Poland
| | - Dorota Jamróz
- Faculty of Chemistry
- Jagiellonian University
- 30-060 Kraków
- Poland
| | - Alexandr Gorski
- Institute of Physical Chemistry
- Polish Academy of Science
- 01-224 Warsaw
- Poland
| | - Jędrzej Solarski
- Institute of Physical Chemistry
- Polish Academy of Science
- 01-224 Warsaw
- Poland
| | | |
Collapse
|
39
|
Yeo H, Tanaka K, Chujo Y. Construction and properties of a light-harvesting antenna system for phosphorescent materials based on oligofluorene-tethered Pt–porphyrins. RSC Adv 2017. [DOI: 10.1039/c6ra28735b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tetramerous molecular assemblies composed of four oligofluorenes as a light-harvesting antenna (LHA) and a Pt–porphyrin core as a phosphorescent chromophore were designed and synthesized for obtaining efficient phosphorescent materials.
Collapse
Affiliation(s)
- Hyeonuk Yeo
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
40
|
Tanaka K, Nishino K, Ito S, Yamane H, Suenaga K, Hashimoto K, Chujo Y. Development of solid-state emissive o-carboranes and theoretical investigation of the mechanism of the aggregation-induced emission behaviors of organoboron “element-blocks”. Faraday Discuss 2017; 196:31-42. [DOI: 10.1039/c6fd00155f] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This paper presents the aggregation-induced emission (AIE) properties of o-carborane derivatives and proposes a potential strategy for constructing AIE-active organoboron complexes via the enhancement of freedom of intramolecular mobility. Initially, the optical properties of o-carborane derivatives with or without the fused ring structure at the C–C bond in o-carborane in which elongation should be induced by photo-excitation according to theoretical calculations were compared. Accordingly, it was shown that large mobility at the C–C bond in o-carborane should be responsible for the annihilation of emission in solution, leading to the AIE property. From this result, it was presumed that by enhancing the freedom of intramolecular mobility in conventional luminescent organoboron complexes, the deactivation of the excited state in solution and emission recovery in the aggregate can be induced. Based on this idea, we have performed several studies and introduce two representative results. Firstly, the decrease in luminescent properties of boron dipyrromethene (BODIPY) in solution by introducing a movable functional group is explained. Next, the AIE behaviors of boron ketoiminates and the potential mechanism concerning conformational changes for the deactivation of the excited state in the solution state are illustrated. It is proposed that enhancement of the freedom of mobility in the excited state of luminescent organoboron complexes could be a potential strategy for realizing AIE behaviors.
Collapse
Affiliation(s)
- Kazuo Tanaka
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kenta Nishino
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Shunichiro Ito
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Honami Yamane
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kazumasa Suenaga
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kazushi Hashimoto
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
41
|
Remarkably high miscibility of octa-substituted POSS with commodity conjugated polymers and molecular fillers for the improvement of homogeneities of polymer matrices. Polym J 2016. [DOI: 10.1038/pj.2016.84] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
42
|
Wang Y, Li Y, Liu S, Li F, Zhu C, Li S, Cheng Y. Regulating Circularly Polarized Luminescence Signals of Chiral Binaphthyl-Based Conjugated Polymers by Tuning Dihedral Angles of Binaphthyl Moieties. Macromolecules 2016. [DOI: 10.1021/acs.macromol.6b00883] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Yuxiang Wang
- Key Lab of Mesoscopic Chemistry
of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China
| | - Yunzhi Li
- Key Lab of Mesoscopic Chemistry
of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China
| | - Shuai Liu
- Key Lab of Mesoscopic Chemistry
of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China
| | - Fei Li
- Key Lab of Mesoscopic Chemistry
of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China
| | - Chengjian Zhu
- Key Lab of Mesoscopic Chemistry
of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China
| | - Shuhua Li
- Key Lab of Mesoscopic Chemistry
of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China
| | - Yixiang Cheng
- Key Lab of Mesoscopic Chemistry
of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210046, P. R. China
| |
Collapse
|
43
|
Yamane H, Ito S, Tanaka K, Chujo Y. Preservation of main-chain conjugation through BODIPY-containing alternating polymers from electronic interactions with side-chain substituents by cardo boron structures. Polym Chem 2016. [DOI: 10.1039/c6py00377j] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This manuscript describes the synthesis and electronic structures of the modified boron dipyrromethene derivatives containing cardo boron.
Collapse
Affiliation(s)
- Honami Yamane
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Shunichiro Ito
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Kazuo Tanaka
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry
- Graduate School of Engineering
- Kyoto University
- Kyoto 615-8510
- Japan
| |
Collapse
|
44
|
Ge Y, O'Shea DF. Azadipyrromethenes: from traditional dye chemistry to leading edge applications. Chem Soc Rev 2016; 45:3846-64. [DOI: 10.1039/c6cs00200e] [Citation(s) in RCA: 230] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The journey of azadipyrromethenes from accidental dye chemistry to a compound class with widely applicable near infrared photophysical properties is documented.
Collapse
Affiliation(s)
- Yuan Ge
- Department of Medicinal and Pharmaceutical Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| | - Donal F. O'Shea
- Department of Medicinal and Pharmaceutical Chemistry
- Royal College of Surgeons in Ireland
- Dublin 2
- Ireland
| |
Collapse
|
45
|
Yamane H, Tanaka K, Chujo Y. Simple and valid strategy for the enhancement of the solid-emissive property of boron dipyrromethenes. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.10.072] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
46
|
Divinyl BODIPY derivative: Synthesis, photophysical properties, crystal structure, photostability and bioimaging. Bioorg Med Chem Lett 2015; 25:5716-9. [DOI: 10.1016/j.bmcl.2015.10.091] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/14/2015] [Accepted: 10/30/2015] [Indexed: 11/21/2022]
|
47
|
Gu L, Liu R, Shi H, Wang Q, Song G, Zhu X, Yuan S, Zhu H. Synthesis, Luminescent Properties of aza-Boron-Diquinomethene Difluoride Complexes and Their Application for Fluorescent Security Inks. J Fluoresc 2015; 26:407-12. [PMID: 26596734 DOI: 10.1007/s10895-015-1727-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2015] [Accepted: 11/16/2015] [Indexed: 11/25/2022]
Abstract
Two aza-boron-diquinomethene (aza-BODIQU) complexes bearing phenyl and carbazyl substituents were synthesized and characterized. Their photophysical properties were investigated systematically via spectroscopic and theoretical methods. Both complexes exhibit strong (1)π-π* transition absorptions (λ(abs) = 400-540 nm) and intense fluorescent emissions (λ(em) = 440-600 nm, Φ(PL) = 0.93 and 0.78) in CH2Cl2 solution and in solid state at room temperature. Compared to the complex with phenyl groups, the complex bearing carbazyl groups shows significant bathochromic shift in both absorption and emission. This could be attributed to the larger π-electron conjugation of the carbazole unit and intramolecular charge transfer feature from carbazole to aza-BODIQU component. In addition, the complexes exhibit intense photoluminescence and good stability on antacid, anti-alkali and stability in printing ink samples, which makes them potential dopants for the application of fluorescent security inks.
Collapse
Affiliation(s)
- Long Gu
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Rui Liu
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 210009, China.
| | - Hong Shi
- Jiangsu Vocational College of Information Technology, Wuxi, 214153, China
| | - Qiang Wang
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Guangliang Song
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Xiaolin Zhu
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 210009, China
| | - Shidong Yuan
- Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Hongjun Zhu
- Department of Applied Chemistry, College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing, 210009, China.
| |
Collapse
|
48
|
Tanaka K, Yanagida T, Yamane H, Hirose A, Yoshii R, Chujo Y. Liquid scintillators with near infrared emission based on organoboron conjugated polymers. Bioorg Med Chem Lett 2015; 25:5331-4. [PMID: 26403927 DOI: 10.1016/j.bmcl.2015.09.037] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2015] [Revised: 09/12/2015] [Accepted: 09/15/2015] [Indexed: 11/24/2022]
Abstract
The organic liquid scintillators based on the emissive polymers are reported. A series of conjugated polymers containing organoboron complexes which show the luminescence in the near infrared (NIR) region were synthesized. The polymers showed good solubility in common organic solvents. From the comparison of the luminescent properties of the synthesized polymers between optical and radiation excitation, similar emission bands were detected. In addition, less significant degradation was observed. These data propose that the organoboron conjugated polymers are attractive platforms to work as an organic liquid scintillator with the emission in the NIR region.
Collapse
Affiliation(s)
- Kazuo Tanaka
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| | - Takayuki Yanagida
- Graduate School of Materials Science, Nara Institute of Science and Technology, 8916-5 Takayama-Cho, Ikoma, Nara 630-0192, Japan
| | - Honami Yamane
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Amane Hirose
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryousuke Yoshii
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Yoshiki Chujo
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan.
| |
Collapse
|
49
|
Abstract
A survey of the state-of-the-art in the development of synthetic methods to incorporate p-block elements into polymers is given. The incorporation of main group elements (groups 13-16) into long chains provides access to materials with fascinating chemical and physical properties imparted by the presence of inorganic groups. Perhaps the greatest impedance to the widespread academic and commercial use of p-block element-containing macromolecules is the synthetic challenge associated with linking inorganic elements into long chains. In recent years, creative methodologies have been developed to incorporate heteroatoms into polymeric structures, with perhaps the greatest advances occurring with hybrid organic-inorganic polymers composed of boron, silicon, phosphorus and sulfur. With these developments, materials are currently being realized that possess exciting chemical, photophysical and thermal properties that are not possible for conventional organic polymers. This review focuses on highlighting the most significant recent advances whilst giving an appropriate background for the general reader. Of particular focus will be advances made over the last two decades, with emphasis on the novel synthetic methodologies employed.
Collapse
Affiliation(s)
- Andrew M Priegert
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouer, British Columbia, CanadaV6T 1Z1.
| | | | | | | |
Collapse
|
50
|
|