1
|
Wang H, Zhang G, Lin M, Hartinger CG, Sun J. Zwitterionic Polyelectrolyte Complex Vesicles Assembled from Homopoly(2-Oxazoline)s as Enzyme Catalytic Nanoreactors for Potent Anti-Tumor Efficiency. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:19423-19429. [PMID: 39083025 DOI: 10.1021/acs.langmuir.4c01729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
Enzymes are known for their remarkable catalytic efficiency across a wide range of applications. Here, we present a novel and convenient nanoreactor platform based on zwitterionic polyelectrolyte complex vesicles (PCVs), assembled from oppositely charged homopoly(2-oxazoline)s, facilitating enzyme immobilization. We show remarkable enhancements in catalytic activity and stability by encapsulation of lipase as a model enzyme. Even as the temperature rises, the performance of the lipase remains robust. Further, the structural characteristics of PCVs, including hollow architecture and semipermeable membranes, endow them with unique advantages for enzyme cascade reactions involving glucose oxidase (GOx) and horseradish peroxidase (HRP). A decline in catalytic efficiency is shown when the enzymes are individually loaded and subsequently mixed, in contrast to the coloaded GOx-HRP-PCV group. We demonstrate that the vesicle structures establish confined environments where precise enzyme-substrate interactions facilitate enhanced catalytic efficiency. In addition, the nanoreactors exhibit excellent biocompatibility and efficient anti-tumor activity, which hold significant promise for biomedical applications within enzyme-based technologies.
Collapse
Affiliation(s)
- Hepeng Wang
- China-Japan Union Hospital of Jilin University, Changchun, Jilin 130033, P. R. China
| | - Guojing Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Min Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| | - Christian G Hartinger
- School of Chemical Sciences, University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Jing Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, Jilin 130012, China
| |
Collapse
|
2
|
Terracciano R, Liu Y, Varanaraja Z, Godzina M, Yilmaz G, van Hest JCM, Becer CR. Poly(2-oxazoline)-Based Thermoresponsive Stomatocytes. Biomacromolecules 2024; 25:6050-6059. [PMID: 39146037 PMCID: PMC11388456 DOI: 10.1021/acs.biomac.4c00726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/01/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
The design of biocompatible and biodegradable nanostructures with controlled morphological features remains a predominant challenge in medical research. Stimuli-responsive vesicles offer significant advantages in drug delivery, biomedical applications, and diagnostic techniques. The combination of poly(2-oxazoline)s with biodegradable polymers could provide exceptional biocompatibility properties and be proposed as a versatile platform for the development of new medicines. Therefore, poly(2-ethyl-2-oxazoline) (PEtOx) and poly(2-isopropyl-2-oxazoline) (PiPrOx) possessing a hydroxy terminal group that acts as an initiator for the ring-opening polymerization of d,l-lactide (DLLA) have been utilized in this study. The resulting amphiphilic block polymers were used to create polymersomes, which undergo solvent-dependent reorganization into bowl-shaped vesicles or stomatocytes. By blending PEtOx-b-PDLLA and PiPrOx-b-PDLLA copolymers, a thermoresponsive stomatocyte was generated, where the opening narrowed and irreversibly closed with a slight increase in the temperature. Detailed transmission electron microscopy analysis reveals the formation of both closed and fused stomatocytes upon heating the sample above the critical solution temperature of PiPrOx.
Collapse
Affiliation(s)
| | - Yuechi Liu
- Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - Zivani Varanaraja
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Magdalena Godzina
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Gokhan Yilmaz
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| | - Jan C. M. van Hest
- Eindhoven
University of Technology, P.O. Box 513, Eindhoven 5600MB, The Netherlands
| | - C. Remzi Becer
- Department
of Chemistry, University of Warwick, Coventry CV4 7AL, U.K.
| |
Collapse
|
3
|
Behroozi Kohlan T, Atespare AE, Yildiz M, Menceloglu YZ, Unal S, Dizman B. Amphiphilic Polyoxazoline Copolymer-Imidazole Complexes as Tailorable Thermal Latent Curing Agents for One-Component Epoxy Resins. ACS OMEGA 2023; 8:47173-47186. [PMID: 38107921 PMCID: PMC10720278 DOI: 10.1021/acsomega.3c07177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/29/2023] [Accepted: 11/16/2023] [Indexed: 12/19/2023]
Abstract
One-component epoxy resins (OCERs) are proposed to overcome the energy inefficiency and processing difficulties of conventional two-component epoxy resins by employing latent curing agents, specifically thermal latent curing agents (TLCs). Despite recent progress, the need for TLCs with a simple preparation method for different curing agents, epoxy resins, and process conditions remains. Here, tailorable TLCs were prepared by forming complexes between imidazole (Im) and amphiphilic polyoxazoline copolymers with tunable structures and properties by a solvent evaporation method. The obtained TLCs were manually mixed with DGEBA to prepare OCERs. The miscibility of the complexes with DGEBA was studied, considering the functionalities of copolymers. The curing behaviors of TLCs were compared using dynamic Differential Scanning Calorimetry (DSC) studies considering the side chain and composition of the copolymers, copolymer:Im ratio, and concentration of Im in DGEBA. The curing behavior of the promising OCERs was studied by isothermal DSC studies to investigate their stability at different temperatures and curing rate at elevated temperatures revealing the stability of these OCERs.
Collapse
Affiliation(s)
- Taha Behroozi Kohlan
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Asu Ece Atespare
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Mehmet Yildiz
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Yusuf Ziya Menceloglu
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Serkan Unal
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Bekir Dizman
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
4
|
Kohlan TB, Atespare AE, Yildiz M, Menceloglu YZ, Unal S, Dizman B. Synthesis and Structure-Property Relationship of Amphiphilic Poly(2-ethyl- co-2-(alkyl/aryl)-2-oxazoline) Copolymers. ACS OMEGA 2022; 7:40067-40077. [PMID: 36385860 PMCID: PMC9648074 DOI: 10.1021/acsomega.2c04809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 10/13/2022] [Indexed: 06/16/2023]
Abstract
Poly(2-oxazoline)s (POZs) are widely investigated for their applications in various fields due to their unique properties. To exploit and combine different characteristics of the POZ family, 2-oxazoline monomers can be copolymerized to prepare tailor-made copolymers with the desired glass transition temperature (T g), melting temperature (T m), amphiphilicity, and functionality. Here, we report the synthesis and characterization of 2-oxazoline monomers and a range of POZ copolymers produced, thereof. 2-Propyl-2-oxazoline (PrOZ) and 2-pentyl-2-oxazoline (PeOZ) monomers were synthesized by two different methods starting from nitriles or carboxylic acids. A number of POZ copolymers were synthesized by copolymerization of 2-ethyl-2-oxazoline (EOZ) with either one of PrOZ, PeOZ, or 2-phenyl-2-oxazoline (PhOZ) at three different compositions (25:75, 50:50, and 75:25) and three molecular weights (1000, 2000, and 5000 Da). The successful synthesis of the monomers and copolymers was demonstrated through their structural analysis by 1H NMR and FTIR. SEC results confirmed the targeted molar masses of the copolymers and living nature of the polymerization by showing low dispersity values. Thermal properties of the copolymers were studied using DSC and TGA. DSC studies revealed the amorph and random state of the copolymers with obtained T g values for the copolymers in the range of -3 to 84 °C depending on their molecular weight and type of the side chain. While the presence of longer aliphatic side chains resulted in lower T g values, the presence of 2-phenyl substituents on the polymer led to higher T g values. The decomposition temperatures determined by TGA were in the range of 328 to 383 °C depending on the molecular weight, composition, and side chain of the copolymers. It was observed that higher molecular weights led to higher T g values and decomposition temperatures. While copolymers with aliphatic side chains exhibited a single-step decomposition profile, the decomposition of copolymers having aromatic side chains occurred in multiple steps. The variations in the molecular weight, composition, and side chains of the copolymers resulted in a library of tailorable amphiphilic copolymers suitable for multiple applications ranging from biomedical applications to composite manufacturing.
Collapse
Affiliation(s)
- Taha Behroozi Kohlan
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Asu Ece Atespare
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Mehmet Yildiz
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Yusuf Ziya Menceloglu
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Serkan Unal
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Bekir Dizman
- Integrated
Manufacturing Technologies Research and Application Center & Composite
Technologies Center of Excellence, Sabanci
University, Istanbul 34956, Turkey
- Faculty
of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| |
Collapse
|
5
|
Finnegan JR, Davis TP, Kempe K. Heat-Induced Living Crystallization-Driven Self-Assembly: The Effect of Temperature and Polymer Composition on the Assembly and Disassembly of Poly(2-oxazoline) Nanorods. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00298] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- John R. Finnegan
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Thomas P. Davis
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Kristian Kempe
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
- Materials Science and Engineering, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
6
|
Determination of the Degree of Crystallinity of Poly(2-methyl-2-oxazoline). Polymers (Basel) 2021; 13:polym13244356. [PMID: 34960906 PMCID: PMC8704864 DOI: 10.3390/polym13244356] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/09/2021] [Accepted: 12/10/2021] [Indexed: 11/17/2022] Open
Abstract
A new method for purification of 2-methyl-2-oxazoline using citric acid was developed and living cationic ring-opening polymerization of 2-methyl-2-oxazoline was carried out. Polymerization was conducted in acetonitrile using benzyl chloride—boron trifluoride etherate initiating system. According to DSC data, the temperature range of melting of the crystalline phase of the resulting polymer was 95–180 °C. According to small-angle X-ray scattering and wide-angle X-ray diffraction data, the degree of crystallinity of the polymer was 12%. Upon cooling of the polymer melt, the polymer became amorphous. Using thermogravimetric analysis, it was found that the thermal destruction of poly(2-methyl-2-oxazoline) started above 209 °C.
Collapse
|
7
|
Oleszko-Torbus N. Recent Advances in Modifications, Properties and Applications of 2-Isopropyl-2-Oxazoline (Co)Polymers. POLYM REV 2021. [DOI: 10.1080/15583724.2021.1993252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Oleszko-Torbus N, Mendrek B, Kowalczuk A, Wałach W, Trzebicka B, Utrata-Wesołek A. The Role of Polymer Structure in Formation of Various Nano- and Microstructural Materials: 30 Years of Research in the Laboratory of Nano- and Microstructural Materials at the Centre of Polymer and Carbon Materials PAS. Polymers (Basel) 2021; 13:2892. [PMID: 34502932 PMCID: PMC8434041 DOI: 10.3390/polym13172892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 11/16/2022] Open
Abstract
The review summarizes the research carried out in the Laboratory of Nano- and Microstructural Materials at the Centre of Polymer and Carbon Materials, Polish Academy of Sciences (CMPW PAS). Studies carried out for many years under the guidance of Professor Andrzej Dworak led to the development and exploration of the mechanisms of oxirane and cyclic imine polymerization and controlled radical polymerization of methacrylate monomers. Based on that knowledge, within the last three decades, macromolecules with the desired composition, molar mass and topology were obtained and investigated. The ability to control the structure of the synthesized polymers turned out to be important, as it provided a way to tailor the physiochemical properties of the materials to their specific uses. Many linear polymers and copolymers as well as macromolecules with branched, star, dendritic and hyperbranched architectures were synthesized. Thanks to the applied controlled polymerization techniques, it was possible to obtain hydrophilic, hydrophobic, amphiphilic and stimulus-sensitive polymers. These tailor-made polymers with controlled properties were used for the construction of various types of materials, primarily on the micro- and nanoscales, with a wide range of possible applications, mainly in biomedicine. The diverse topology of polymers, and thus their properties, made it possible to obtain various types of polymeric nanostructures and use them as nanocarriers by encapsulation of biologically active substances. Additionally, polymer layers were obtained with features useful in medicine, particularly regenerative medicine and tissue engineering.
Collapse
Affiliation(s)
| | | | | | | | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (N.O.-T.); (B.M.); (A.K.); (W.W.)
| | - Alicja Utrata-Wesołek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 41-819 Zabrze, Poland; (N.O.-T.); (B.M.); (A.K.); (W.W.)
| |
Collapse
|
9
|
Alternative to Poly(2-isopropyl-2-oxazoline) with a Reduced Ability to Crystallize and Physiological LCST. Int J Mol Sci 2021; 22:ijms22042221. [PMID: 33672348 PMCID: PMC7926427 DOI: 10.3390/ijms22042221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/13/2022] Open
Abstract
In this work, we sought to examine whether the presence of alkyl substituents randomly distributed within the main chain of a 2-isopropyl-2-oxazoline-based copolymer will decrease its ability to crystallize when compared to its homopolymer. At the same time, we aimed to ensure an appropriate hydrophilic/lipophilic balance in the copolymer and maintain the phase transition in the vicinity of the human body temperature. For this reason, copolymers of 2-ethyl-4-methyl-2-oxazoline and 2-isopropyl-2-oxazoline were synthesized. The thermoresponsive behavior of the copolymers in water, the influence of salt on the cloud point, the presence of hysteresis of the phase transition and the crystallization ability in a water solution under long-term heating conditions were studied by turbidimetry. The ability of the copolymers to crystallize in the solid state, and their thermal properties, were analyzed by differential scanning calorimetry and X-ray diffractometry. A cytotoxicity assay was used to estimate the viability of human fibroblasts in the presence of the obtained polymers. The results allowed us to demonstrate a nontoxic alternative to poly(2-isopropyl-2-oxazoline) (PiPrOx) with a physiological phase transition temperature (LCST) and a greatly reduced tendency to crystallize. The synthesis of 2-oxazoline polymers with such well-defined properties is important for future biomedical applications.
Collapse
|
10
|
Polymer structure and property effects on solid dispersions with haloperidol: Poly(N-vinyl pyrrolidone) and poly(2-oxazolines) studies. Int J Pharm 2020; 590:119884. [DOI: 10.1016/j.ijpharm.2020.119884] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 02/08/2023]
|
11
|
Oleszko-Torbus N, Mendrek B, Kowalczuk A, Utrata-Wesołek A, Dworak A, Wałach W. Selective Partial Hydrolysis of 2-isopropyl-2-oxazoline Copolymers towards Decreasing the Ability to Crystallize. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3403. [PMID: 32752250 PMCID: PMC7435452 DOI: 10.3390/ma13153403] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 07/28/2020] [Accepted: 07/30/2020] [Indexed: 02/07/2023]
Abstract
Poly(2-isopropyl-2-oxazoline) (PiPrOx) is readily prone to crystallization both in solid and from solutions. This feature is detrimental for certain applications. Here, we examine whether the presence of unsubstituted ethyleneimine (EI) units, a gradient distributed within a polymer chain composed of 2-isopropyl-2-oxazoline (iPrOx) and 2-methyl-2-oxazoline (MOx) units, decreases the ability to crystallize the copolymer and affects thermal properties compared to the homopolymer of iPrOx. We assumed that the separation of stiff iPrOx units by the more flexible EI will affect the spatial arrangements of the ordered chains, slightly plasticize and, as a result, decrease their ability to crystallize. The selective hydrolysis of gradient iPrOx and 2-methyl-2-oxazoline (MOx) copolymers, carried out under mild conditions, led to iPrOx/MOx/EI copolymers. To the best of our knowledge, the selective hydrolysis of these copolymers has never been carried out before. Their thermal properties and crystallization abilities, both in a solid state and from an aqueous solution, were analyzed. Based on the analysis of polymer charge and cytotoxicity studies, the potential use of the copolymers obtained was indicated in some biological systems.
Collapse
Affiliation(s)
- Natalia Oleszko-Torbus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowskiej St., 41-819 Zabrze, Poland; (B.M.); (A.K.); (A.U.-W.); (A.D.); (W.W.)
| | | | | | | | | | | |
Collapse
|
12
|
Wałach W, Oleszko-Torbus N, Utrata-Wesołek A, Bochenek M, Kijeńska-Gawrońska E, Górecka Ż, Święszkowski W, Dworak A. Processing of (Co)Poly(2-oxazoline)s by Electrospinning and Extrusion from Melt and the Postprocessing Properties of the (Co)Polymers. Polymers (Basel) 2020; 12:E295. [PMID: 32024273 PMCID: PMC7077476 DOI: 10.3390/polym12020295] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/24/2020] [Accepted: 01/30/2020] [Indexed: 01/31/2023] Open
Abstract
Poly(2-oxazoline) (POx) matrices in the form of non-woven fibrous mats and three-dimensional moulds were obtained by electrospinning and fused deposition modelling (FDM), respectively. To obtain these materials, poly(2-isopropyl-2-oxazoline) (PiPrOx) and gradient copolymers of 2-isopropyl- with 2-n-propyl-2-oxazoline (P(iPrOx-nPrOx)), with relatively low molar masses and low dispersity values, were processed. The conditions for the electrospinning of POx were optimised for both water and the organic solvent. Also, the FDM conditions for the fabrication of POx multi-layer moulds of cylindrical or cubical shape were optimised. The properties of the POx after electrospinning and extrusion from melt were determined. The molar mass of all (co)poly(2-oxazoline)s did not change after electrospinning. Also, FDM did not influence the molar masses of the (co)polymers; however, the long processing of the material caused degradation and an increase in molar mass dispersity. The thermal properties changed significantly after processing of POx what was monitored by increase in enthalpy of exo- and endothermic peaks in differential scanning calorimetry (DSC) curve. The influence of the processing conditions on the structure and properties of the final material were evaluated having in a mind their potential application as scaffolds.
Collapse
Affiliation(s)
- Wojciech Wałach
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowskiej St., 41-819 Zabrze, Poland; (N.O.-T.); (A.U.-W.); (M.B.); (A.D.)
| | - Natalia Oleszko-Torbus
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowskiej St., 41-819 Zabrze, Poland; (N.O.-T.); (A.U.-W.); (M.B.); (A.D.)
| | - Alicja Utrata-Wesołek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowskiej St., 41-819 Zabrze, Poland; (N.O.-T.); (A.U.-W.); (M.B.); (A.D.)
| | - Marcelina Bochenek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowskiej St., 41-819 Zabrze, Poland; (N.O.-T.); (A.U.-W.); (M.B.); (A.D.)
| | - Ewa Kijeńska-Gawrońska
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St., 02-507 Warsaw, Poland; (E.K.-G.); (Ż.G.); (W.Ś.)
| | - Żaneta Górecka
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St., 02-507 Warsaw, Poland; (E.K.-G.); (Ż.G.); (W.Ś.)
| | - Wojciech Święszkowski
- Faculty of Materials Science and Engineering, Warsaw University of Technology, 141 Woloska St., 02-507 Warsaw, Poland; (E.K.-G.); (Ż.G.); (W.Ś.)
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences, 34 M. Curie-Skłodowskiej St., 41-819 Zabrze, Poland; (N.O.-T.); (A.U.-W.); (M.B.); (A.D.)
| |
Collapse
|
13
|
Oleszko-Torbus N, Utrata-Wesołek A, Bochenek M, Lipowska-Kur D, Dworak A, Wałach W. Thermal and crystalline properties of poly(2-oxazoline)s. Polym Chem 2020. [DOI: 10.1039/c9py01316d] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The review gathers together data concerning the influence of poly(2-substituted-2-oxazoline)s structure on their thermal and crystalline properties, and how this relationship can be adjusted in controlled manner.
Collapse
Affiliation(s)
| | | | - Marcelina Bochenek
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| | - Daria Lipowska-Kur
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| | - Wojciech Wałach
- Centre of Polymer and Carbon Materials
- Polish Academy of Sciences
- 41-819 Zabrze
- Poland
| |
Collapse
|
14
|
Monnery BD, Hoogenboom R. Thermoresponsive hydrogels formed by poly(2-oxazoline) triblock copolymers. Polym Chem 2019. [DOI: 10.1039/c9py00300b] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogels are useful materials for drug delivery and tissue engineering. Here, we report the importance of controlling block lengths for making thermoresponsive hydrogels based on ABA triblock copolymers with thermoresponsive outer blocks.
Collapse
Affiliation(s)
- Bryn D. Monnery
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
| | - Richard Hoogenboom
- Supramolecular Chemistry Group
- Centre of Macromolecular Chemistry (CMaC)
- Department of Organic and Macromolecular Chemistry
- Ghent University
- 9000 Gent
| |
Collapse
|
15
|
Oleszko-Torbus N, Wałach W, Utrata-Wesołek A, Dworak A. Control of the Crystalline Properties of 2-Isopropyl-2-oxazoline Copolymers in Condensed State and in Solution Depending on the Composition. Macromolecules 2017. [DOI: 10.1021/acs.macromol.7b01639] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Natalia Oleszko-Torbus
- Centre of Polymer and Carbon
Materials, Polish Academy of Sciences, ul. M. Curie - Skłodowskiej
34, 41-819 Zabrze, Poland
| | - Wojciech Wałach
- Centre of Polymer and Carbon
Materials, Polish Academy of Sciences, ul. M. Curie - Skłodowskiej
34, 41-819 Zabrze, Poland
| | - Alicja Utrata-Wesołek
- Centre of Polymer and Carbon
Materials, Polish Academy of Sciences, ul. M. Curie - Skłodowskiej
34, 41-819 Zabrze, Poland
| | - Andrzej Dworak
- Centre of Polymer and Carbon
Materials, Polish Academy of Sciences, ul. M. Curie - Skłodowskiej
34, 41-819 Zabrze, Poland
| |
Collapse
|
16
|
Oleszko-Torbus N, Utrata-Wesołek A, Wałach W, Dworak A. Solution behavior of thermoresponsive random and gradient copolymers of 2-n-propyl-2-oxazoline. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
17
|
Furuncuoğlu Özaltın T, Aviyente V, Atılgan C, Demirel L. Multiscale modeling of poly(2-isopropyl-2-oxazoline) chains in aqueous solution. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.10.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
18
|
Toncheva-Moncheva N, Veleva-Kostadinova E, Tsvetanov C, Momekova D, Rangelov S. Preparation and properties of positively charged mesoglobules based on poly(2-isopropyl-2-oxazoline) and evaluation of their potential as carriers of polynucleotides. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.01.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
19
|
Sun S, Wu P. Conformational changes in the heat-induced crystallization of poly(2-isopropyl-2-oxazoline) in the solid state. Phys Chem Chem Phys 2016; 17:31084-92. [PMID: 26535781 DOI: 10.1039/c5cp05719a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Poly(2-isopropyl-2-oxazoline) (PIPOZ) with an isomeric structure of poly(N-isopropylacrylamide) (PNIPAM) represents an important class of stimuli-responsive synthetic polymers. Unlike PNIPAM, PIPOZ exhibits an unusual heat-induced crystallization behaviour at around 120 °C in the solid state, whose dynamic mechanism involving all group motions and conformational changes is still poorly understood. In this paper, IR spectroscopy in combination with two-dimensional analysis methods - the perturbation correlation moving window (PCMW) and two-dimensional correlation spectroscopy (2DCOS) - was used to monitor and study the conformational changes in the crystallization of PIPOZ in the solid state. The incorporated water molecules are found to be not necessary to assist the solid-state crystallization of the PIPOZ film. PCMW and 2DCOS analyses reveal that following the breaking of minor CH3O[double bond, length as m-dash]C hydrogen bonds, all the group moieties exhibit highly synergetic motions during crystallization, and methylene groups on the backbone do not show significant changes throughout the crystallization process. Raman spectroscopic and molecular dynamics simulation results further support this conclusion. The chain alignment of PIPOZ chains is shown to be mainly achieved by the lateral distortion of coplanar side chains or the ordered chain arrangement of amide dipoles together with the torsion of the backbone through C-N linkages. Upon heating, gauche conformations of methylene groups on the backbone are always dominating, resulting in an ordered PIPOZ chain with alternate side chains and a slightly distorted backbone.
Collapse
Affiliation(s)
- Shengtong Sun
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University, Shanghai 200433, China. and State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Meilong Road 130, Shanghai 200237, China.
| | - Peiyi Wu
- State Key Laboratory of Molecular Engineering of Polymers, Collaborative Innovation Center of Polymers and Polymer Composite Materials, Department of Macromolecular Science and Laboratory for Advanced Materials, Fudan University, Shanghai 200433, China.
| |
Collapse
|
20
|
Demirel AL, Tatar Güner P, Verbraeken B, Schlaad H, Schubert US, Hoogenboom R. Revisiting the crystallization of poly(2-alkyl-2-oxazoline)s. ACTA ACUST UNITED AC 2015. [DOI: 10.1002/polb.23967] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Bart Verbraeken
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281-S4 Ghent 9000 Belgium
| | - Helmut Schlaad
- University of Potsdam, Institute of Chemistry; Karl-Liebknecht-Str. 24-25 Potsdam 14476 Germany
| | - Ulrich S. Schubert
- Laboratory of Macromolecular Chemistry and Nanoscience; Eindhoven University of Technology; Den Dolech 2 Eindhoven 5612AZ Netherlands
- Laboratory of Organic and Macromolecular Chemistry (IOMC); Friedrich Schiller University Jena and Jena Center for Soft Matter (JCSM); Humboldtstr. 10 Jena 07743 Germany
| | - Richard Hoogenboom
- Supramolecular Chemistry Group, Department of Organic and Macromolecular Chemistry; Ghent University; Krijgslaan 281-S4 Ghent 9000 Belgium
- Laboratory of Macromolecular Chemistry and Nanoscience; Eindhoven University of Technology; Den Dolech 2 Eindhoven 5612AZ Netherlands
| |
Collapse
|
21
|
Rudolph T, von der Lühe M, Hartlieb M, Norsic S, Schubert US, Boisson C, D'Agosto F, Schacher FH. Toward Anisotropic Hybrid Materials: Directional Crystallization of Amphiphilic Polyoxazoline-Based Triblock Terpolymers. ACS NANO 2015; 9:10085-10098. [PMID: 26372093 DOI: 10.1021/acsnano.5b03660] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
We present the design and synthesis of a linear ABC triblock terpolymer for the bottom-up synthesis of anisotropic organic/inorganic hybrid materials: polyethylene-block-poly(2-(4-(tert-butoxycarbonyl)amino)butyl-2-oxazoline)-block-poly(2-iso-propyl-2-oxazoline) (PE-b-PBocAmOx-b-PiPrOx). The synthesis was realized via the covalent linkage of azide-functionalized polyethylene and alkyne functionalized poly(2-alkyl-2-oxazoline) (POx)-based diblock copolymers exploiting copper-catalyzed azide-alkyne cycloaddition (CuAAC) chemistry. After purification of the resulting triblock terpolymer, the middle block was deprotected, resulting in a primary amine in the side chain. In the next step, solution self-assembly into core-shell-corona micelles in aqueous solution was investigated by dynamic light scattering (DLS) and transmission electron microscopy (TEM). Subsequent directional crystallization of the corona-forming block, poly(2-iso-propyl-2-oxazoline), led to the formation of anisotropic superstructures as demonstrated by electron microscopy (SEM and TEM). We present hypotheses concerning the aggregation mechanism as well as first promising results regarding the selective loading of individual domains within such anisotropic nanostructures with metal nanoparticles (Au, Fe3O4).
Collapse
Affiliation(s)
- Tobias Rudolph
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena , Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena , Philosophenweg 7, D-07743 Jena, Germany
| | - Moritz von der Lühe
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena , Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena , Philosophenweg 7, D-07743 Jena, Germany
| | - Matthias Hartlieb
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena , Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena , Philosophenweg 7, D-07743 Jena, Germany
| | - Sebastien Norsic
- Université de Lyon , CPE Lyon, CNRS UMR 5265 Laboratoire de Chimie, Catalyse, Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F, 43 Bd du 11 novembre 1918, F-69616 Villeurbanne, France
| | - Ulrich S Schubert
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena , Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena , Philosophenweg 7, D-07743 Jena, Germany
| | - Christophe Boisson
- Université de Lyon , CPE Lyon, CNRS UMR 5265 Laboratoire de Chimie, Catalyse, Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F, 43 Bd du 11 novembre 1918, F-69616 Villeurbanne, France
| | - Franck D'Agosto
- Université de Lyon , CPE Lyon, CNRS UMR 5265 Laboratoire de Chimie, Catalyse, Polymères et Procédés (C2P2), Equipe LCPP, Bat 308F, 43 Bd du 11 novembre 1918, F-69616 Villeurbanne, France
| | - Felix H Schacher
- Laboratory of Organic and Macromolecular Chemistry (IOMC), Friedrich Schiller University Jena , Humboldtstraße 10, D-07743 Jena, Germany
- Jena Center for Soft Matter (JCSM), Friedrich Schiller University Jena , Philosophenweg 7, D-07743 Jena, Germany
| |
Collapse
|
22
|
Buchholz V, Agarwal S, Greiner A. Synthesis and Enzymatic Degradation of Soft Aliphatic Polyesters. Macromol Biosci 2015; 16:207-13. [DOI: 10.1002/mabi.201500279] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Revised: 09/06/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Viola Buchholz
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces; University of Bayreuth; D-95440 Bayreuth Germany
| | - Seema Agarwal
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces; University of Bayreuth; D-95440 Bayreuth Germany
| | - Andreas Greiner
- Macromolecular Chemistry II and Bayreuth Center for Colloids and Interfaces; University of Bayreuth; D-95440 Bayreuth Germany
| |
Collapse
|
23
|
Oleszko N, Wałach W, Utrata-Wesołek A, Kowalczuk A, Trzebicka B, Klama-Baryła A, Hoff-Lenczewska D, Kawecki M, Lesiak M, Sieroń AL, Dworak A. Controlling the Crystallinity of Thermoresponsive Poly(2-oxazoline)-Based Nanolayers to Cell Adhesion and Detachment. Biomacromolecules 2015; 16:2805-13. [PMID: 26226320 DOI: 10.1021/acs.biomac.5b00745] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Semicrystalline, thermoresponsive poly(2-isopropyl-2-oxazoline) (PIPOx) layers covalently bonded to glass or silica wafers were obtained via the surface-termination of the living polymer chains. Polymer solutions in acetonitrile were exposed to 50 °C for various time periods and were poured onto the functionalized solid wafers. Fibrillar crystallites formed in polymerization solutions settled down onto the wafers next to the amorphous polymer. The amount of crystallites adsorbed on thermoresponsive polymer layers depended on the annealing time of the PIPOx solution. The wettability of PIPOx layers decreased with the increasing amount of crystallites. The higher content of crystallites weakened the temperature response of the layer, as evidenced by the philicity and thickness measurements. Semicrystalline thermoresponsive PIPOx layers were used as biomaterials for human dermal fibroblasts (HDFs) culture and detachment. The presence of crystallites on the PIPOx layers promoted the proliferation of HDFs. Changes in the physicochemical properties of the layer, caused by the temperature response of the polymer, led to the change in the cells shape from a spindle-like to an ellipsoidal shape, which resulted in their detachment. A supporting membrane was used to assist the detachment of the cells from PIPOx biosurfaces and to prevent the rolling of the sheet.
Collapse
Affiliation(s)
- Natalia Oleszko
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , M. Curie -Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Wojciech Wałach
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , M. Curie -Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Alicja Utrata-Wesołek
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , M. Curie -Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Agnieszka Kowalczuk
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , M. Curie -Sklodowskiej 34, 41-819 Zabrze, Poland
| | - Barbara Trzebicka
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , M. Curie -Sklodowskiej 34, 41-819 Zabrze, Poland
| | | | | | - Marek Kawecki
- Center for Burn Treatment, Jana Pawla II, 41-100 Siemianowice Slaskie, Poland
| | - Marta Lesiak
- Department of General, Molecular Biology and Genetics, Medical University of Silesia , Medykow 18, 40-752 Katowice, Poland
| | - Aleksander L Sieroń
- Department of General, Molecular Biology and Genetics, Medical University of Silesia , Medykow 18, 40-752 Katowice, Poland
| | - Andrzej Dworak
- Centre of Polymer and Carbon Materials, Polish Academy of Sciences , M. Curie -Sklodowskiej 34, 41-819 Zabrze, Poland
| |
Collapse
|
24
|
Rudolph T, Nunns A, Stumpf S, Pietsch C, Schacher FH. Hierarchical Self-Assembly of Double-Crystalline Poly(ferrocenyldimethylsilane)-block
-poly(2-iso
-propyl-2-oxazoline) (PFDMS-b
-Pi
PrOx) Block Copolymers. Macromol Rapid Commun 2015; 36:1651-7. [DOI: 10.1002/marc.201500245] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2015] [Revised: 05/29/2015] [Indexed: 11/12/2022]
Affiliation(s)
- Tobias Rudolph
- Laboratory of Organic and Macromolecular Chemistry; Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Adam Nunns
- School of Chemistry; University of Bristol; Bristol BS8 1TS UK
| | - Steffi Stumpf
- Laboratory of Organic and Macromolecular Chemistry; Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Christian Pietsch
- Laboratory of Organic and Macromolecular Chemistry; Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| | - Felix H. Schacher
- Laboratory of Organic and Macromolecular Chemistry; Friedrich Schiller University Jena; Humboldtstr. 10 07743 Jena Germany
- Jena Center for Soft Matter (JCSM); Friedrich Schiller University Jena; Philosophenweg 7 07743 Jena Germany
| |
Collapse
|
25
|
Monnery BD, Shaunak S, Thanou M, Steinke JHG. Improved Synthesis of Linear Poly(ethylenimine) via Low-Temperature Polymerization of 2-Isopropyl-2-oxazoline in Chlorobenzene. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b00437] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Bryn D. Monnery
- Chemical
Biology Section, Department of Chemistry, Imperial College London, London SW7 2AZ, U.K
| | - Sunil Shaunak
- Faculty
of Medicine, Imperial College London, Hammersmith Campus, London W12 ONN, U.K
| | - Maya Thanou
- Pharmacy
Department, Division of Pharmaceutical Sciences, King’s College London, Franklin-Wilkins
Building, London SE1 9NH, U.K
| | | |
Collapse
|