1
|
Perdrier C, Doineau E, Leroyer L, Subileau M, Angellier-Coussy H, Preziosi-Belloy L, Grousseau E. Impact of overflow vs. limitation of propionic acid on poly(3-hydroxybutyrate-co-3-hydroxyvalerate) biosynthesis. Process Biochem 2023. [DOI: 10.1016/j.procbio.2023.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
|
2
|
Turco R, Santagata G, Corrado I, Pezzella C, Di Serio M. In vivo and Post-synthesis Strategies to Enhance the Properties of PHB-Based Materials: A Review. Front Bioeng Biotechnol 2021; 8:619266. [PMID: 33585417 PMCID: PMC7874203 DOI: 10.3389/fbioe.2020.619266] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/30/2020] [Indexed: 12/13/2022] Open
Abstract
The transition toward "green" alternatives to petroleum-based plastics is driven by the need for "drop-in" replacement materials able to combine characteristics of existing plastics with biodegradability and renewability features. Promising alternatives are the polyhydroxyalkanoates (PHAs), microbial biodegradable polyesters produced by a wide range of microorganisms as carbon, energy, and redox storage material, displaying properties very close to fossil-fuel-derived polyolefins. Among PHAs, polyhydroxybutyrate (PHB) is by far the most well-studied polymer. PHB is a thermoplastic polyester, with very narrow processability window, due to very low resistance to thermal degradation. Since the melting temperature of PHB is around 170-180°C, the processing temperature should be at least 180-190°C. The thermal degradation of PHB at these temperatures proceeds very quickly, causing a rapid decrease in its molecular weight. Moreover, due to its high crystallinity, PHB is stiff and brittle resulting in very poor mechanical properties with low extension at break, which limits its range of application. A further limit to the effective exploitation of these polymers is related to their production costs, which is mostly affected by the costs of the starting feedstocks. Since the first identification of PHB, researchers have faced these issues, and several strategies to improve the processability and reduce brittleness of this polymer have been developed. These approaches range from the in vivo synthesis of PHA copolymers, to the enhancement of post-synthesis PHB-based material performances, thus the addition of additives and plasticizers, acting on the crystallization process as well as on polymer glass transition temperature. In addition, reactive polymer blending with other bio-based polymers represents a versatile approach to modulate polymer properties while preserving its biodegradability. This review examines the state of the art of PHA processing, shedding light on the green and cost-effective tailored strategies aimed at modulating and optimizing polymer performances. Pioneering examples in this field will be examined, and prospects and challenges for their exploitation will be presented. Furthermore, since the establishment of a PHA-based industry passes through the designing of cost-competitive production processes, this review will inspect reported examples assessing this economic aspect, examining the most recent progresses toward process sustainability.
Collapse
Affiliation(s)
- Rosa Turco
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Gabriella Santagata
- Institute for Polymers, Composites and Biomaterials, National Council of Research, Pozzuoli, Italy
| | - Iolanda Corrado
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| | - Cinzia Pezzella
- Department of Agricultural Sciences, University of Naples Federico II, Portici, Italy
| | - Martino Di Serio
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Naples, Italy
| |
Collapse
|
3
|
Polyhydroxyalkanoates based copolymers. Int J Biol Macromol 2019; 140:522-537. [PMID: 31437500 DOI: 10.1016/j.ijbiomac.2019.08.147] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/09/2019] [Accepted: 08/17/2019] [Indexed: 11/23/2022]
Abstract
Polyhydroxyalkanoates (PHAs) belong to a family of natural polyesters and are produced under unbalanced growth conditions as intracellular carbon and energy reserves by a wide variety of microorganisms. Being biodegradable, biocompatible and environmental friendly thermoplastics, the PHAs are considered as future polymers to replace petrochemicals based plastics. In this review, the introduction section deals with the brief discussion on PHA nature, availability, raw materials for production, processing etc. This is followed by the discussions on modifications. The copolymer syntheses by bacterial and chemical methods have been discussed. Under chemical methods, unsaturated side chains and their derivatives, oligomer, coupling, macro-initiating, trans-esterification, radiation grafting, click chemistry, ring opening and several miscellaneous polymerization methods have been elaborated. A brief discussion on applications has been incorporated. The last section includes conclusion and future perspectives.
Collapse
|
4
|
Volova TG, Prudnikova SV, Vinogradova ON, Syrvacheva DA, Shishatskaya EI. Microbial Degradation of Polyhydroxyalkanoates with Different Chemical Compositions and Their Biodegradability. MICROBIAL ECOLOGY 2017; 73:353-367. [PMID: 27623963 DOI: 10.1007/s00248-016-0852-3] [Citation(s) in RCA: 59] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/29/2016] [Indexed: 06/06/2023]
Abstract
The study addresses degradation of polyhydroxyalkanoates (PHA) with different chemical compositions-the polymer of 3-hydroxybutyric acid [P(3HB)] and copolymers of P(3HB) with 3-hydroxyvalerate [P(3HB/3HV)], 4-hydroxybutyrate [P(3HB/4HB)], and 3-hydroxyhexanoate [P(3HB/3HHx)] (10-12 mol%)-in the agro-transformed field soil of the temperate zone. Based on their degradation rates at 21 and 28 °C, polymers can be ranked as follows: P(3HB/4HB) > P(3HB/3HHx) > P(3HB/3HV) > P(3HB). The microbial community on the surface of the polymers differs from the microbial community of the soil with PHA specimens in the composition and percentages of species. Thirty-five isolates of bacteria of 16 genera were identified as PHA degraders by the clear zone technique, and each of the PHA had both specific and common degraders. P(3HB) was degraded by bacteria of the genera Mitsuaria, Chitinophaga, and Acidovorax, which were not among the degraders of the three other PHA types. Roseateles depolymerans, Streptomyces gardneri, and Cupriavidus sp. were specific degraders of P(3HB/4HB). Roseomonas massiliae and Delftia acidovorans degraded P(3HB/3HV), and Pseudoxanthomonas sp., Pseudomonas fluorescens, Ensifer adhaerens, and Bacillus pumilus were specific P(3HB/3HHx) degraders. All four PHA types were degraded by Streptomyces.
Collapse
Affiliation(s)
- Tatiana G Volova
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok 50/50, Krasnoyarsk, Russia.
| | - Svetlana V Prudnikova
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok 50/50, Krasnoyarsk, Russia
| | - Olga N Vinogradova
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok 50/50, Krasnoyarsk, Russia
| | - Darya A Syrvacheva
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok 50/50, Krasnoyarsk, Russia
| | - Ekaterina I Shishatskaya
- Institute of Biophysics of Siberian Branch of Russian Academy of Sciences, Akademgorodok 50/50, Krasnoyarsk, Russia
| |
Collapse
|
5
|
Martínez-Sanz M, Lopez-Rubio A, Villano M, Oliveira CSS, Majone M, Reis M, Lagarón JM. Production of bacterial nanobiocomposites of polyhydroxyalkanoates derived from waste and bacterial nanocellulose by the electrospinning enabling melt compounding method. J Appl Polym Sci 2015. [DOI: 10.1002/app.42486] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Marta Martínez-Sanz
- Novel Materials and Nanotechnology Group; IATA, CSIC; Avda. Agustín Escardino, 7 46980 Paterna, Valencia Spain
| | - Amparo Lopez-Rubio
- Novel Materials and Nanotechnology Group; IATA, CSIC; Avda. Agustín Escardino, 7 46980 Paterna, Valencia Spain
| | - Marianna Villano
- Department of Chemistry; Sapienza University of Rome; P.le Aldo Moro 5 00185 Rome Italy
| | - Catarina S. S. Oliveira
- REQUIMTE/CQFB; FCT/Universidade Nova de Lisboa, Campus de Caparica; 2829-516 Caparica Portugal
| | - Mauro Majone
- Department of Chemistry; Sapienza University of Rome; P.le Aldo Moro 5 00185 Rome Italy
| | - Maria Reis
- REQUIMTE/CQFB; FCT/Universidade Nova de Lisboa, Campus de Caparica; 2829-516 Caparica Portugal
| | - Jose M. Lagarón
- Novel Materials and Nanotechnology Group; IATA, CSIC; Avda. Agustín Escardino, 7 46980 Paterna, Valencia Spain
| |
Collapse
|
6
|
Influence of Feeding and Controlled Dissolved Oxygen Level on the Production of Poly(3-Hydroxybutyrate-co-3-Hydroxyvalerate) Copolymer by Cupriavidus sp. USMAA2-4 and Its Characterization. Appl Biochem Biotechnol 2015; 176:1315-34. [DOI: 10.1007/s12010-015-1648-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Accepted: 04/21/2015] [Indexed: 10/23/2022]
|
7
|
Production of poly(3-hydroxybutyrate-co-4-hydroxybutyrate) by Burkholderia sacchari using wheat straw hydrolysates and gamma-butyrolactone. Int J Biol Macromol 2014; 71:59-67. [DOI: 10.1016/j.ijbiomac.2014.04.054] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Revised: 04/11/2014] [Accepted: 04/25/2014] [Indexed: 11/23/2022]
|
8
|
Laycock B, Halley P, Pratt S, Werker A, Lant P. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 2014. [DOI: 10.1016/j.progpolymsci.2013.06.008] [Citation(s) in RCA: 137] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Cavalheiro JMBT, Pollet E, Diogo HP, Cesário MT, Avérous L, de Almeida MCMD, da Fonseca MMR. On the heterogeneous composition of bacterial polyhydroxyalkanoate terpolymers. BIORESOURCE TECHNOLOGY 2013; 147:434-441. [PMID: 24007722 DOI: 10.1016/j.biortech.2013.08.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 07/31/2013] [Accepted: 08/02/2013] [Indexed: 06/02/2023]
Abstract
Poly(3-hydroxybutyrate-4-hydroxybutyrate-3-hydroxyvalerate) (P(3HB-4HB-3HV)) terpolymers of low 3-hydroxyvalerate (3HV) content (1.7-6.4%) with 4-hydroxybutyrate (4HB) molar fractions from 1.8% to 35.6% were produced by fed-batch cultivation of Cupriavidus necator DSM545. Waste glycerol, γ-butyrolactone and propionic acid were used as main carbon source, 4HB and 3HV precursors, respectively. Uniaxial tensile tests were performed on the corresponding biopolymers. The Young's modulus and tensile strength of P(3HB-4HB-3HV) decreased, whereas the elongation at break increased with the 4HB molar%, following the general trend described for poly(3-hydroxybutyrate-4-hydroxybutyrate) (P(3HB-4HB)) but with pronounced lower elasticity. Differential scanning calorimetry results indicate that the temperature of crystallization and enthalpy of melting decreased as the 4HB% increased. No crystallization was observed in terpolymers containing more than 30% of heteromonomers (4HB and 3HV) even though multiple melting events were detected. Terpolymer fractions of different composition were obtained by solvent-fractionation of the original bacterial terpolymers.
Collapse
Affiliation(s)
- João M B T Cavalheiro
- ICTPOL - Instituto de Ciência e Tecnologia de Polímeros, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; IBB - Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Eric Pollet
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France
| | - Hermínio P Diogo
- CQE - Centro de Química Estrutural, Instituto Superior Técnico, Universidade Técnica de Lisboa, 1049-001 Lisboa, Portugal
| | - M Teresa Cesário
- ICTPOL - Instituto de Ciência e Tecnologia de Polímeros, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; IBB - Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Luc Avérous
- BioTeam/ICPEES-ECPM, UMR CNRS 7515, Université de Strasbourg, 25 rue Becquerel, 67087 Strasbourg, Cedex 2, France
| | - M Catarina M D de Almeida
- IBB - Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; CIIEM - Centro de Investigação Interdisciplinar Egas Moniz, ISCSEM, Campus Universitário, Quinta da Granja, 2829-511 Monte de Caparica, Portugal
| | - M M R da Fonseca
- IBB - Institute for Biotechnology and Bioengineering, Instituto Superior Técnico, Universidade Técnica de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
10
|
Laycock B, Halley P, Pratt S, Werker A, Lant P. The chemomechanical properties of microbial polyhydroxyalkanoates. Prog Polym Sci 2013. [DOI: 10.1016/j.progpolymsci.2012.06.003] [Citation(s) in RCA: 197] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
11
|
Development of a bioprocess to convert PET derived terephthalic acid and biodiesel derived glycerol to medium chain length polyhydroxyalkanoate. Appl Microbiol Biotechnol 2012; 95:623-33. [DOI: 10.1007/s00253-012-4058-4] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2011] [Revised: 03/23/2012] [Accepted: 03/27/2012] [Indexed: 10/28/2022]
|
12
|
Brigham CJ, Zhila N, Shishatskaya E, Volova TG, Sinskey AJ. Manipulation of Ralstonia eutropha carbon storage pathways to produce useful bio-based products. Subcell Biochem 2012; 64:343-366. [PMID: 23080259 DOI: 10.1007/978-94-007-5055-5_17] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Ralstonia eutrophais a Gram-negative betaproteobacterium found natively in soils that can utilize a wide array of carbon sources for growth, and can store carbon intracellularly in the form of polyhydroxyalkanoate. Many aspects of R. eutrophamake it a good candidate for use in biotechnological production of polyhydroxyalkanoate and other bio-based, value added compounds. Manipulation of the organism's carbon flux is a cornerstone to success in developing it as a biotechnologically relevant organism. Here, we examine the methods of controlling and adapting the flow of carbon in R. eutrophametabolism and the wide range of compounds that can be synthesized as a result. The presence of many different carbon utilization pathways and the custom genetic toolkit for manipulation of those pathways gives R. eutrophaa versatility that allows it to be a biotechnologically important organism.
Collapse
Affiliation(s)
- Christopher J Brigham
- Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | | | | | | | | |
Collapse
|
13
|
3D tissue culture and fermentation of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) from Burkholderia cepacia D1. J Taiwan Inst Chem Eng 2011. [DOI: 10.1016/j.jtice.2011.04.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
14
|
Biosynthesis and biodegradation of 3-hydroxypropionate-containing polyesters. Appl Environ Microbiol 2010; 76:4919-25. [PMID: 20543057 DOI: 10.1128/aem.01015-10] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
3-Hydroxypropionate (3HP) is an important compound in the chemical industry, and the polymerized 3HP can be used as a bioplastic. In this review, we focus on polyesters consisting of 3HP monomers, including the homopolyester poly(3-hydroxypropionate) and copolyesters poly(3-hydroxybutyrate-co-3-hydroxypropionate), poly(3-hydroxypropionate-co-3-hydroxybutyrate-co-3-hydroxyhexanoate-co-3-hydroxyoctanoate), poly(4-hydroxybutyrate-co-3-hydroxypropionate-co-lactate), and poly(3-hydroxybutyrate-co-3-hydroxypropionate-co-4-hydroxybutyrate-co-lactate). Homopolyesters like poly(3-hydroxybutyrate) are often highly crystalline and brittle, which limits some of their applications. The incorporation of 3HP monomers reduces the glass transition temperature, the crystallinity, and also, at up to 60 to 70 mol% 3HP, the melting point of the copolymer. This review provides a survey of the synthesis and physical properties of different polyesters containing 3HP.
Collapse
|
15
|
Molecular weight and thermal properties of polyhydroxyalkanoates produced from fermented sugar molasses by open mixed cultures. J Biotechnol 2010; 147:172-9. [DOI: 10.1016/j.jbiotec.2010.03.022] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2010] [Revised: 03/26/2010] [Accepted: 03/31/2010] [Indexed: 11/21/2022]
|
16
|
Pereira SM, Sánchez RJ, Rieumont J, Cabrera JG. Synthesis of biodegradable polyhydroxyalcanoate copolymer from a renewable source by alternate feeding. POLYM ENG SCI 2008. [DOI: 10.1002/pen.21178] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Serafim LS, Lemos PC, Torres C, Reis MAM, Ramos AM. The Influence of Process Parameters on the Characteristics of Polyhydroxyalkanoates Produced by Mixed Cultures. Macromol Biosci 2008; 8:355-66. [DOI: 10.1002/mabi.200700200] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
18
|
Mothes G, Ackermann JU. Synthesis of Poly(3-hydroxybutyrate-co-4-hydrobutyrate) with a Target Mole Fraction of 4-Hydroxybutyric Acid Units by Two-Stage Continuous Cultivation ofDelftia acidovorans P4a. Eng Life Sci 2005. [DOI: 10.1002/elsc.200420056] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
19
|
Alkaline hydrolysis of modified poly(l-lactide) monolayers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2004. [DOI: 10.1016/j.msec.2003.09.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Weihua K, He Y, Asakawa N, Inoue Y. Effect of lignin particles as a nucleating agent on crystallization of poly(3-hydroxybutyrate). J Appl Polym Sci 2004. [DOI: 10.1002/app.21204] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
study on hydrolytic kinetics of Langmuir monolayers of biodegradable polylactide derivatives. Macromol Res 2003. [DOI: 10.1007/bf03218979] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
22
|
Peng S, An Y, Chen C, Fei B, Zhuang Y, Dong L. Miscibility and crystallization behavior of poly(3-hydroxyvalerate-co-3-hydroxyvalerate)/ poly(propylene carbonate) blends. J Appl Polym Sci 2003. [DOI: 10.1002/app.12970] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
23
|
Marangoni C, Furigo A, de Aragão GM. Production of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) by Ralstonia eutropha in whey and inverted sugar with propionic acid feeding. Process Biochem 2002. [DOI: 10.1016/s0032-9592(01)00313-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
24
|
Wang Y, Inoue Y. Effect of dissolved oxygen concentration in the fermentation medium on transformation of the carbon sources during the biosynthesis of poly(3-hydroxybutyrate-co-3-hydroxypropionate) by Alcaligenes latus. Int J Biol Macromol 2001; 28:235-43. [PMID: 11251231 DOI: 10.1016/s0141-8130(01)00119-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Effects of fermentation conditions on the comonomer composition and its distribution of poly(3-hydroxybutyrate-co-3-hydroxypropionate) [P(3HB-co-3HP)] have been investigated for bacterial synthesis of P(3HB-co-3HP)s by Alcaligenes latus from sucrose and 3-hydroxypropionate (3HPA) mixed carbon sources. Comparison of the microstructures of these samples drew a conclusion that when the concentration of oxygen dissolved (DO) in the fermentation medium was controlled between 5 and 20% (based on the concentration at saturation), the 3HP content and the comonomer compositional distribution (CCD) of the copolymer would not be influenced by the DO values. The concentration of the carbon sources was monitored during the fermentation. The results indicated that the comonomer composition and its distribution of P(3HB-co-3HP)s were interrelated to the amounts of carbon sources transported into the bacterial cells. When the bacteria consumed more sucrose, the more 3HPA they would utilize, and the broader the CCD of the copolymer would be. Furthermore, the efficiencies of the transformation of the two carbon sources to the copolymer constituents were found to be similar.
Collapse
Affiliation(s)
- Y Wang
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Nagatsuta 4259, Midori-ku, 226-8501, Yokohama, Japan
| | | |
Collapse
|
25
|
Madden L, Anderson A, Asrar J, Berger P, Garrett P. Production and characterization of poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) synthesized by Ralstonia eutropha in fed-batch cultures. POLYMER 2000. [DOI: 10.1016/s0032-3861(99)00611-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
26
|
Madden LA, Anderson AJ, Shah DT, Asrar J. Chain termination in polyhydroxyalkanoate synthesis: involvement of exogenous hydroxy-compounds as chain transfer agents. Int J Biol Macromol 1999; 25:43-53. [PMID: 10416649 DOI: 10.1016/s0141-8130(99)00014-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have identified a range of compounds which, when present during poly(3-hydroxybutyrate) [P(3HB)] accumulation by Ralstonia eutropha (reclassified from Alcaligenes eutrophus), can act as chain transfer agents in the chain termination step of polymerization. End-group analysis by 31P NMR of polymer derivatized with 2-chloro-4,4,5,5-tetramethyl-1,3,2-dioxaphospholane revealed that all these compounds were covalently linked to P(3HB) at the carboxyl terminus. All chain transfer agents possessed one or more hydroxyl groups, and glycerol was selected for further investigation. The number-average molecular mass (Mn) of P(3HB) produced by R. eutropha from glycerol was substantially lower than for polymer produced from glucose, and we identified two new end-group structures. These were attributed to a glycerol molecule bound to the P(3HB) chain via the primary or secondary hydroxyl groups. When a primary hydroxyl group of glycerol is involved in chain transfer, the end-group structure is in both [R] and [S] configurations, implying that chain transfer to glycerol is a random transesterification and that PHA synthase does not catalyse chain transfer. 3-Hydroxybutyric acid is the most probable chain transfer agent in vivo, with propagation and termination reactions involving transfer of the P(3HB) chain to enzyme-bound and free 3-hydroxybutyrate, respectively. Only carboxyl end-groups were detected in P(3HB) extracted from exponentially growing bacteria. It is proposed that a compound other than 3-hydroxybutyryl-CoA acts as a primer in the initiation of polymer synthesis.
Collapse
Affiliation(s)
- L A Madden
- Department of Biological Sciences, The University of Hull, UK
| | | | | | | |
Collapse
|