1
|
Conzatti G, Nadal C, Berthelot J, Vachoud L, Labour MN, Tourrette A, Belamie E. Chitosan-PNIPAM Thermogel Associated with Hydrogel Microspheres as a Smart Formulation for MSC Injection. ACS APPLIED BIO MATERIALS 2024; 7:3033-3040. [PMID: 38587908 DOI: 10.1021/acsabm.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Regenerative medicine based on cell therapy has emerged as a promising approach for the treatment of various medical conditions. However, the success of cell therapy heavily relies on the development of suitable injectable hydrogels that can encapsulate cells and provide a conducive environment for their survival, proliferation, and tissue regeneration. Herein, we address the medical need for cyto- and biocompatible injectable hydrogels by reporting on the synthesis of a hydrogel-forming thermosensitive copolymer. The copolymer was synthesized by grafting poly(N-isopropylacrylamide-co-carboxymethyl acrylate) (PNIPAM-COOH) onto chitosan through amide coupling. This chemical modification resulted in the formation of hydrogels that exhibit a sol-gel transition with an onset at approximately 27 °C, making them ideal for use in injectable applications. The hydrogels supported the survival and proliferation of cells for several days, which is critical for cell encapsulation. Furthermore, the study evaluates the addition of collagen/chitosan hybrid microspheres to support the adhesion of mesenchymal stem cells within the hydrogels. Altogether, these results demonstrate the potential of the PNIPAM-chitosan thermogel for cell encapsulation and its possible applications in regenerative medicine.
Collapse
Affiliation(s)
- Guillaume Conzatti
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34293, France
- CIRIMAT, Université Toulouse 3 Paul Sabatier, CNRS, INP Toulouse, Toulouse 31062, France
- INSERM/University of Strasbourg (Faculty of Pharmacy), UMR 1260, Regenerative Nanomedicine (RNM), 1 Rue Eugène Boeckel, 67000 Strasbourg, France
| | - Clémence Nadal
- CIRIMAT, Université Toulouse 3 Paul Sabatier, CNRS, INP Toulouse, Toulouse 31062, France
| | - Jade Berthelot
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34293, France
- Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France
| | - Laurent Vachoud
- UMR QualiSud, UMR Cirad 95, UFR des Sciences Pharmaceutiques et Biologiques, Université de Montpellier, 15 Avenue Charles Flahault, B.P. 14 491, 34093 Montpellier Cedex 5, France
| | - Marie-Noëlle Labour
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34293, France
- Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France
| | - Audrey Tourrette
- CIRIMAT, Université Toulouse 3 Paul Sabatier, CNRS, INP Toulouse, Toulouse 31062, France
| | - Emmanuel Belamie
- ICGM, Univ. Montpellier, CNRS, ENSCM, Montpellier 34293, France
- Ecole Pratique des Hautes Etudes, PSL Research University, 75014 Paris, France
| |
Collapse
|
2
|
Consoli GML, Maugeri L, Forte G, Buscarino G, Gulino A, Lanzanò L, Bonacci P, Musso N, Petralia S. Red light-triggerable nanohybrids of graphene oxide, gold nanoparticles and thermo-responsive polymers for combined photothermia and drug release effects. J Mater Chem B 2024; 12:952-961. [PMID: 37975827 DOI: 10.1039/d3tb01863f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The development of multifunctional nanohybrid systems for combined photo-induced hyperthermia and drug release is a challenging topic in the research of advanced materials for application in the biomedical field. Here, we report the first example of a three-component red-light-responsive nanosystem consisting of graphene oxide, gold nanoparticles and poly-N-isopropylacrylamide (GO-Au-PNM). The GO-Au-PNM nanostructures were characterized by spectroscopic techniques and atomic force microscopy. They exhibited photothermal conversion effects at various wavelengths, lower critical solution temperature (LCST) behaviour, and curcumin (Curc) loading capacity. The formation of GO-Au-PNM/Curc adducts and photothermally controlled drug release, triggered by red-light excitation (680 nm), were demonstrated using spectroscopic techniques. Drug-polymer interaction and drug-release mechanism were well supported by modelling simulation calculations. The cellular uptake of GO-Au-PNM/Curc was imaged by confocal laser scanning microscopy. In vitro experiments revealed the excellent biocompatibility of the GO-Au-PNM that did not affect the viability of human cells.
Collapse
Affiliation(s)
- Grazia M L Consoli
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy.
- CIB-Interuniversity Consortium for Biotechnologies U.O. of Catania, Via Flavia, 23/1, 34148 Trieste, Italy
| | - Ludovica Maugeri
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Giuseppe Forte
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Gianpiero Buscarino
- Department of Physics and Chemistry, University of Palermo, Via Archirafi 36, Palermo, Italy
| | - Antonino Gulino
- Department of Chemical Science, University of Catania, and I.N.S.T.M. UdR of Catania, Via Santa Sofia 64, 95125 Catania, Italy
| | - Luca Lanzanò
- Department of Physics and Astronomy "Ettore Majorana", University of Catania, Via S. Sofia 64, 95123 Catania, Italy
| | - Paolo Bonacci
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, Catania, Italy
| | - Nicolò Musso
- Department of Biomedical and Biotechnological Sciences, University of Catania, Via S. Sofia 97, Catania, Italy
| | - Salvatore Petralia
- CNR-Institute of Biomolecular Chemistry, Via Paolo Gaifami 18, 95126 Catania, Italy.
- CIB-Interuniversity Consortium for Biotechnologies U.O. of Catania, Via Flavia, 23/1, 34148 Trieste, Italy
- Department of Drug and Health Sciences, University of Catania, Via Santa Sofia 64, 95125 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
| |
Collapse
|
3
|
Polymeric DNA Hydrogels and Their Applications in Drug Delivery for Cancer Therapy. Gels 2023; 9:gels9030239. [PMID: 36975688 PMCID: PMC10048489 DOI: 10.3390/gels9030239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/22/2023] Open
Abstract
The biomolecule deoxyribonucleic acid (DNA), which acts as the carrier of genetic information, is also regarded as a block copolymer for the construction of biomaterials. DNA hydrogels, composed of three-dimensional networks of DNA chains, have received considerable attention as a promising biomaterial due to their good biocompatibility and biodegradability. DNA hydrogels with specific functions can be prepared via assembly of various functional sequences containing DNA modules. In recent years, DNA hydrogels have been widely used for drug delivery, particularly in cancer therapy. Benefiting from the sequence programmability and molecular recognition ability of DNA molecules, DNA hydrogels prepared using functional DNA modules can achieve efficient loading of anti-cancer drugs and integration of specific DNA sequences with cancer therapeutic effects, thus achieving targeted drug delivery and controlled drug release, which are conducive to cancer therapy. In this review, we summarized the assembly strategies for the preparation of DNA hydrogels on the basis of branched DNA modules, hybrid chain reaction (HCR)-synthesized DNA networks and rolling circle amplification (RCA)-produced DNA chains, respectively. The application of DNA hydrogels as drug delivery carriers in cancer therapy has been discussed. Finally, the future development directions of DNA hydrogels in cancer therapy are prospected.
Collapse
|
4
|
Huysecom AS, Thielemans W, Moldenaers P, Cardinaels R. A Generalized Mechano-statistical Transient Network Model for Unravelling the Network Topology and Elasticity of Hydrophobically Associating Multiblock Copolymers in Aqueous Solutions. Macromolecules 2023. [DOI: 10.1021/acs.macromol.2c01500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- An-Sofie Huysecom
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001Leuven, Belgium
| | - Wim Thielemans
- Sustainable Materials Lab, Department of Chemical Engineering, KU Leuven, campus Kulak Kortrijk, Etienne Sabbelaan 53, 8500Kortrijk, Belgium
| | - Paula Moldenaers
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001Leuven, Belgium
| | - Ruth Cardinaels
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J, 3001Leuven, Belgium
- Processing and Performance of Materials, Department of Mechanical Engineering, TU Eindhoven, Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
5
|
Cho E, Qiao Y, Chen C, Xu J, Cai J, Li Y, Zhao J. Injectable FHE+BP composites hydrogel with enhanced regenerative capacity of tendon-bone interface for anterior cruciate ligament reconstruction. Front Bioeng Biotechnol 2023; 11:1117090. [PMID: 36911205 PMCID: PMC9996450 DOI: 10.3389/fbioe.2023.1117090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/14/2023] [Indexed: 02/25/2023] Open
Abstract
Features of black phosphorous (BP) nano sheets such as enhancing mineralization and reducing cytotoxicity in bone regeneration field have been reported. Thermo-responsive FHE hydrogel (mainly composed of oxidized hyaluronic acid (OHA), poly-ε-L-lysine (ε-EPL) and F127) also showed a desired outcome in skin regeneration due to its stability and antibacterial benefits. This study investigated the application of BP-FHE hydrogel in anterior cruciate ligament reconstruction (ACLR) both in in vitro and in vivo, and addressed its effects on tendon and bone healing. This BP-FHE hydrogel is expected to bring the benefits of both components (thermo-sensitivity, induced osteogenesis and easy delivery) to optimize the clinical application of ACLR and enhance the recovery. Our in vitro results confirmed the potential role of BP-FHE via significantly increased rBMSC attachment, proliferation and osteogenic differentiation with ARS and PCR analysis. Moreover, In vivo results indicated that BP-FHE hydrogels can successfully optimize the recovery of ACLR through enhancing osteogenesis and improving the integration of tendon and bone interface. Further results of Biomechanical testing and Micro-CT analysis [bone tunnel area (mm2) and bone volume/total volume (%)] demonstrated that BP can indeed accelerate bone ingrowth. Additionally, histological staining (H&E, Masson and Safranin O/fast green) and immunohistochemical analysis (COL I, COL III and BMP-2) strongly supported the ability of BP to promote tendon-bone healing after ACLR in murine animal models.
Collapse
Affiliation(s)
- Eunshinae Cho
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yi Qiao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Changan Chen
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Junjie Xu
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jiangyu Cai
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Yamin Li
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| | - Jinzhong Zhao
- Department of Sports Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School Of Medicine, Shanghai, China
| |
Collapse
|
6
|
Yasmeen N, Karpinska A, Kalecki J, Kutner W, Kwapiszewska K, Sharma PS. Electrochemically Synthesized Polyacrylamide Gel and Core-Shell Nanoparticles for 3D Cell Culture Formation. ACS APPLIED MATERIALS & INTERFACES 2022; 14:32836-32844. [PMID: 35848208 PMCID: PMC9335524 DOI: 10.1021/acsami.2c04904] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Biocompatible polyacrylamide gel and core-shell nanoparticles (NPs) were synthesized using a one-step electrochemically initiated gelation. Constant-potential electrochemical decomposing of ammonium persulfate initiated the copolymerization of N-isopropyl acrylamide, methacrylic acid, and N,N'-methylenebisacrylamide monomers. This decomposing potential and monomers' concentrations were optimized to prepare gel NPs and thin gel film-grafted core-shell NPs. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) imaging confirmed the gel NP formation. The lyophilized gel NPs and core-shell NPs were applied to support the three-dimensional (3D) cell culture. In all, core-shell NPs provided superior support for complex 3D tissue structures.
Collapse
Affiliation(s)
- Nabila Yasmeen
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Aneta Karpinska
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jakub Kalecki
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Wlodzimierz Kutner
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Faculty
of Mathematics and Natural Sciences. School of Sciences, Cardinal Stefan Wyszynski University in Warsaw, Wóycickiego 1/3, 01-938 Warsaw, Poland
| | - Karina Kwapiszewska
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piyush S. Sharma
- Institute
of Physical Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
7
|
Rana MM, De la Hoz Siegler H. Tuning the Properties of PNIPAm-Based Hydrogel Scaffolds for Cartilage Tissue Engineering. Polymers (Basel) 2021; 13:3154. [PMID: 34578055 PMCID: PMC8467289 DOI: 10.3390/polym13183154] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 01/15/2023] Open
Abstract
Poly(N-isopropylacrylamide) (PNIPAm) is a three-dimensional (3D) crosslinked polymer that can interact with human cells and play an important role in the development of tissue morphogenesis in both in vitro and in vivo conditions. PNIPAm-based scaffolds possess many desirable structural and physical properties required for tissue regeneration, but insufficient mechanical strength, biocompatibility, and biomimicry for tissue development remain obstacles for their application in tissue engineering. The structural integrity and physical properties of the hydrogels depend on the crosslinks formed between polymer chains during synthesis. A variety of design variables including crosslinker content, the combination of natural and synthetic polymers, and solvent type have been explored over the past decade to develop PNIPAm-based scaffolds with optimized properties suitable for tissue engineering applications. These design parameters have been implemented to provide hydrogel scaffolds with dynamic and spatially patterned cues that mimic the biological environment and guide the required cellular functions for cartilage tissue regeneration. The current advances on tuning the properties of PNIPAm-based scaffolds were searched for on Google Scholar, PubMed, and Web of Science. This review provides a comprehensive overview of the scaffolding properties of PNIPAm-based hydrogels and the effects of synthesis-solvent and crosslinking density on tuning these properties. Finally, the challenges and perspectives of considering these two design variables for developing PNIPAm-based scaffolds are outlined.
Collapse
Affiliation(s)
- Md Mohosin Rana
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Hector De la Hoz Siegler
- Biomedical Engineering Graduate Program, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada;
- Department of Chemical and Petroleum Engineering, Schulich School of Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
8
|
Polyelectrolyte Gels: A Unique Class of Soft Materials. Gels 2021; 7:gels7030102. [PMID: 34449600 PMCID: PMC8395725 DOI: 10.3390/gels7030102] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/06/2021] [Accepted: 07/21/2021] [Indexed: 11/17/2022] Open
Abstract
The objective of this article is to introduce the readers to the field of polyelectrolyte gels. These materials are common in living systems and have great importance in many biomedical and industrial applications. In the first part of this paper, we briefly review some characteristic properties of polymer gels with an emphasis on the unique features of this type of soft material. Unsolved problems and possible future research directions are highlighted. In the second part, we focus on the typical behavior of polyelectrolyte gels. Many biological materials (e.g., tissues) are charged (mainly anionic) polyelectrolyte gels. Examples are shown to illustrate the effect of counter-ions on the osmotic swelling behavior and the kinetics of the swelling of model polyelectrolyte gels. These systems exhibit a volume transition as the concentration of higher valence counter-ions is gradually increased in the equilibrium bath. A hierarchy is established in the interaction strength between the cations and charged polymer molecules according to the chemical group to which the ions belong. The swelling kinetics of sodium polyacrylate hydrogels is investigated in NaCl solutions and in solutions containing both NaCl and CaCl2. In the presence of higher valence counter-ions, the swelling/shrinking behavior of these gels is governed by the diffusion of free ions in the swollen network, the ion exchange process and the coexistence of swollen and collapsed states.
Collapse
|
9
|
Zhao D, Li D, Quan F, Zhou Y, Zhang Z, Chen X, He C. Rapidly Thermoreversible and Biodegradable Polypeptide Hydrogels with Sol-Gel-Sol Transition Dependent on Subtle Manipulation of Side Groups. Biomacromolecules 2021; 22:3522-3533. [PMID: 34297548 DOI: 10.1021/acs.biomac.1c00583] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Thermoreversible hydrogels are attractive materials for biomedical applications, but their applications are still limited by nonbiodegradability and/or slow temperature-dependent gel-to-sol transition rates. In this research, we prepared a range of amphiphilic diblock, triblock, and four-armed star block copolymers composed of poly(ethylene glycol) (PEG) and poly(γ-(2-(2-ethoxyethoxy)ethyl)-l-glutamate) (P(EEO2LG)) segments, which can form rapidly thermoreversible hydrogels at physiological temperature. Intriguingly, the obtained hydrogels can transform from gel to sol within 10-70 s in response to the temperature decrease from 37 to 0 °C. The thermosensitive sol-gel-sol transitions are markedly faster than previously reported thermoreversible PEG-poly(l-glutamate) derivative hydrogels with subtle differences in the side groups and a widely studied poly(d,l-lactide-co-glycolide)-b-PEG-b-poly(d,l-lactide-co-glycolide) (PLGA-PEG-PLGA) hydrogel that required a much longer time of 40∼150 min. Further investigation of the relationship between the hydrogel property and polymer structure is performed, and the self-assembly mechanisms of different copolymers are proposed. Cytotoxicity assays and subcutaneous degradation experiments reveal that the PEG/P(EEO2LG) block copolymers are biocompatible and biodegradable. The polypeptide hydrogel can therefore be used as a three-dimensional platform for facile cell culture and collection by regulating the temperature.
Collapse
Affiliation(s)
- Dan Zhao
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Dong Li
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Fenli Quan
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China
| | - Yuhao Zhou
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhen Zhang
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xuesi Chen
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Chaoliang He
- CAS Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China.,University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
10
|
Shi K, Yang X, Xu J, Sha D, Wang B, Liu X, Liu Z, Ji X. Preparation of polyvinyl alcohol formaldehyde-g-poly(2-(dimethylamino)ethyl methacrylate) macroporous hydrogels and their dual thermo/pH-responsive behavior and antibacterial performance. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
11
|
Haider MS, Ahmad T, Yang M, Hu C, Hahn L, Stahlhut P, Groll J, Luxenhofer R. Tuning the Thermogelation and Rheology of Poly(2-Oxazoline)/Poly(2-Oxazine)s Based Thermosensitive Hydrogels for 3D Bioprinting. Gels 2021; 7:78. [PMID: 34202652 PMCID: PMC8293086 DOI: 10.3390/gels7030078] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 06/09/2021] [Accepted: 06/15/2021] [Indexed: 12/28/2022] Open
Abstract
As one kind of "smart" material, thermogelling polymers find applications in biofabrication, drug delivery and regenerative medicine. In this work, we report a thermosensitive poly(2-oxazoline)/poly(2-oxazine) based diblock copolymer comprising thermosensitive/moderately hydrophobic poly(2-N-propyl-2-oxazine) (pPrOzi) and thermosensitive/moderately hydrophilic poly(2-ethyl-2-oxazoline) (pEtOx). Hydrogels were only formed when block length exceeded certain length (≈100 repeat units). The tube inversion and rheological tests showed that the material has then a reversible sol-gel transition above 25 wt.% concentration. Rheological tests further revealed a gel strength around 3 kPa, high shear thinning property and rapid shear recovery after stress, which are highly desirable properties for extrusion based three-dimensional (3D) (bio) printing. Attributed to the rheology profile, well resolved printability and high stackability (with added laponite) was also possible. (Cryo) scanning electron microscopy exhibited a highly porous, interconnected, 3D network. The sol-state at lower temperatures (in ice bath) facilitated the homogeneous distribution of (fluorescently labelled) human adipose derived stem cells (hADSCs) in the hydrogel matrix. Post-printing live/dead assays revealed that the hADSCs encapsulated within the hydrogel remained viable (≈97%). This thermoreversible and (bio) printable hydrogel demonstrated promising properties for use in tissue engineering applications.
Collapse
Affiliation(s)
- Malik Salman Haider
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Taufiq Ahmad
- Department of Functional Materials in Medicine and Dentistry, Institute for Functional Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (T.A.); (P.S.); (J.G.)
| | - Mengshi Yang
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Chen Hu
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Lukas Hahn
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
| | - Philipp Stahlhut
- Department of Functional Materials in Medicine and Dentistry, Institute for Functional Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (T.A.); (P.S.); (J.G.)
| | - Jürgen Groll
- Department of Functional Materials in Medicine and Dentistry, Institute for Functional Materials and Biofabrication and Bavarian Polymer Institute, Julius-Maximilians-University Würzburg, Pleicherwall 2, 97070 Würzburg, Germany; (T.A.); (P.S.); (J.G.)
| | - Robert Luxenhofer
- Functional Polymer Materials, Chair for Advanced Materials Synthesis, Institute for Functional Materials and Biofabrication, Department of Chemistry and Pharmacy, Julius-Maximilians-University Würzburg, Röntgenring 11, 97070 Würzburg, Germany; (M.Y.); (C.H.); (L.H.)
- Soft Matter Chemistry, Department of Chemistry and Helsinki Institute of Sustainability Science, Faculty of Science, University of Helsinki, PB 55, 00014 Helsinki, Finland
| |
Collapse
|
12
|
Injectable thermosensitive hydrogel-based drug delivery system for local cancer therapy. Colloids Surf B Biointerfaces 2021; 200:111581. [DOI: 10.1016/j.colsurfb.2021.111581] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 12/17/2020] [Accepted: 01/11/2021] [Indexed: 12/16/2022]
|
13
|
The Influence of Initiator Concentration on Selected Properties of Thermosensitive Poly(Acrylamide-co-2-Acrylamido-2-Methyl-1-Propanesulfonic Acid) Microparticles. Polymers (Basel) 2021; 13:polym13070996. [PMID: 33805049 PMCID: PMC8036774 DOI: 10.3390/polym13070996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 03/21/2021] [Accepted: 03/21/2021] [Indexed: 11/17/2022] Open
Abstract
Thermosensitive polymers PS1-PS5 were synthesized via the surfactant free precipitation polymerization (SFPP) using 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPSA), and potassium persulfate (KPS) at 70 °C in aqueous environment. The effect of KPS concentrations on particle size and lower critical temperature solution (LCST) was examined by dynamic light scattering (DLS). The conductivity in the course of the synthesis and during cooling were investigated. The structural studies were performed by attenuated total reflectance-Fourier transform infrared spectroscopy (ATR-FTIR), H nuclear magnetic resonance (1H NMR), thermogravimetric analysis (TGA/DTA) and powder X-ray diffraction (PXRD). ATR-FTIR, 1H NMR and PXRD data confirmed the polymeric nature of the material. TGA/DTA curves demonstrated thermal stability up to approx. 160 °C. The effect of temperature on the hydrodynamic diameter (HD) and zeta potential (ZP) were evaluated by dynamic light scattering (DLS) and electrophoretic mobility (EM) in 18-45 °C range. The LCST values were between 30 and 34 °C. HD and polydispersity index (PDI) of aqueous dispersions of the synthesized polymers PS1-PS5 at 18 °C were found to be 226 ± 35 nm (PDI = 0.42 ± 0.04), 299 ± 145 nm (PDI = 0.49 ± 0.29), 389 ± 39 nm (PDI = 0.28 ± 0.07), 584 ± 75 nm (PDI = 0.44 ± 0.06), and 271 ± 50.00 nm (PDI = 0.26 ± 0.14), respectively. At 18 °C the ZPs of synthesized polymers suspensions were -13.14 ± 2.85 mV, -19.52 ± 2.86 mV, -7.73 ± 2.76 mV, -7.99 ± 1.70 mV, and -9.05 ± 2.60 mV for PS1-PS5, respectively. We found that the initiator concentration influences the physicochemical properties of products including the size of polymeric particles and the LCST.
Collapse
|
14
|
Fischer T, Demco DE, Fechete R, Möller M, Singh S. Poly(vinylamine-co-N-isopropylacrylamide) linear polymer and hydrogels with tuned thermoresponsivity. SOFT MATTER 2020; 16:6549-6562. [PMID: 32617537 DOI: 10.1039/d0sm00408a] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The fabrication of functional hydrogels with tuned thermoresponsivity is a major challenge. To meet this challenge we copolymerize N-isopropylacrylamide (NIPAm) with N-vinylformamide (NVF) in different ratios with the formamide group being subsequently selectively hydrolyzed to the corresponding amine (VAm). The copolymers are crosslinked with phenylcarbonate telechelic glycol. The influence of the NIPAm : VAm ratio on the thermoresponsitiviy is investigated in terms of absorbance, rheology, NMR spectroscopy, relaxometry, and diffusometry. Phase transition temperatures, change in the entropy of the polymer-water system, and width of the transition in the process of coil-to-globule and swollen-to-collapsed network transitions were evaluated by a two state model and Boltzmann sigmoidal function.
Collapse
Affiliation(s)
- Thorsten Fischer
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| | - Dan E Demco
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany. and Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., RO-400027, Cluj-Napoca, Romania
| | - Radu Fechete
- Technical University of Cluj-Napoca, Department of Physics and Chemistry, 25 G. Baritiu Str., RO-400027, Cluj-Napoca, Romania
| | - Martin Möller
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| | - Smriti Singh
- DWI-Leibniz-Institute for Interactive Materials, e.V., RWTH Aachen University, Forckenbeckstraße 50, D-52074 Aachen, Germany.
| |
Collapse
|
15
|
Browne S, Hossainy S, Healy K. Hyaluronic Acid Macromer Molecular Weight Dictates the Biophysical Properties and in Vitro Cellular Response to Semisynthetic Hydrogels. ACS Biomater Sci Eng 2020; 6:1135-1143. [PMID: 33464856 DOI: 10.1021/acsbiomaterials.9b01419] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In situ-forming hydrogels present a promising approach for minimally invasive cell transplantation and tissue regeneration. Among prospective materials, hyaluronic acid (HyA) has displayed great potential, owing to its inherent biocompatibility, biodegradation, and ease of chemical modification. However, current studies in the literature use a broad range of HyA macromer molecular weights (MWs) from <100 kDa to 1 MDa with no consensus regarding an optimal MW for a specific application. We investigated the effects of different HyA macromer MWs on key biophysical properties of semisynthetic hydrogels, such as viscosity, gelation time, shear storage modulus, molecular diffusion, and degradation. Using higher-MW HyA macromers leads to quicker gelation times and stiffer, more stable hydrogels with smaller mesh sizes. Assessment of the potential for HyA hydrogels to support network formation by encapsulated vascular cells derived from human-induced pluripotent stem cells reveals key differences between HyA hydrogels dependent on macromer MW. These effects must be considered holistically to address the multifaceted, nonmonotonic nature of HyA MW on hydrogel behavior. Our study identified an intermediate HyA macromer MW of 500 kDa as providing optimal conditions for a readily injectable, in situ-forming hydrogel with appropriate biophysical properties to promote vascular cell spreading and sustain vascular network formation in vitro.
Collapse
|
16
|
Otanicar T, Patel J, Sarica E. Mechanical milling of thermoresponsive poly(
N
‐isopropylacrylamide) hydrogel for particle‐oriented oil–water separation. J Appl Polym Sci 2019. [DOI: 10.1002/app.48771] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Todd Otanicar
- Department of Mechanical EngineeringUniversity of Tulsa Tulsa Oklahoma 74104
- Department of Mechanical and Biomedical EngineeringBoise State University Boise Idaho 83725
| | - Jay Patel
- Department of Mechanical EngineeringUniversity of Tulsa Tulsa Oklahoma 74104
| | - Erhan Sarica
- Department of Mechanical EngineeringUniversity of Tulsa Tulsa Oklahoma 74104
| |
Collapse
|
17
|
Hamcerencu M, Popa M, Riess G, Desbrieres J. Chemically modified xanthan and gellan for preparation of biomaterials for ophthalmic applications. POLYM INT 2019. [DOI: 10.1002/pi.5927] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mihaela Hamcerencu
- Faculty of Chemical Engineering and Environment Protection, Department of Natural and Synthetic Polymers ‘Gheorghe Asachi’ Technical University Iasi Romania
- IPREM, Université de Pau et des Pays de l'Adour, Helioparc Pau Pyrénées, IPREM Pau Cedex 09 France
- Laboratoire de Photochimie et Ingénierie Macromoléculaire, Ecole Nationale Supérieure de Chimie de Mulhouse Université de Haute Alsace Mulhouse Cedex France
| | - Marcel Popa
- Faculty of Chemical Engineering and Environment Protection, Department of Natural and Synthetic Polymers ‘Gheorghe Asachi’ Technical University Iasi Romania
- Academy of Romanian Scientist Bucuresti Romania
| | - Gerard Riess
- Laboratoire de Photochimie et Ingénierie Macromoléculaire, Ecole Nationale Supérieure de Chimie de Mulhouse Université de Haute Alsace Mulhouse Cedex France
| | - Jacques Desbrieres
- IPREM, Université de Pau et des Pays de l'Adour, Helioparc Pau Pyrénées, IPREM Pau Cedex 09 France
| |
Collapse
|
18
|
Hofmeister Effect on Thermo-responsive Poly(N-isopropylacrylamide) Hydrogels Grafted on Macroporous Poly(vinyl alcohol) Formaldehyde Sponges. CHINESE JOURNAL OF POLYMER SCIENCE 2019. [DOI: 10.1007/s10118-019-2320-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
19
|
Awwad S, Abubakre A, Angkawinitwong U, Khaw PT, Brocchini S. In situ antibody-loaded hydrogel for intravitreal delivery. Eur J Pharm Sci 2019; 137:104993. [DOI: 10.1016/j.ejps.2019.104993] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 07/09/2019] [Accepted: 07/10/2019] [Indexed: 10/26/2022]
|
20
|
Cao M, Wang Y, Hu X, Gong H, Li R, Cox H, Zhang J, Waigh TA, Xu H, Lu JR. Reversible Thermoresponsive Peptide–PNIPAM Hydrogels for Controlled Drug Delivery. Biomacromolecules 2019; 20:3601-3610. [PMID: 31365246 DOI: 10.1021/acs.biomac.9b01009] [Citation(s) in RCA: 109] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Meiwen Cao
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Yu Wang
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Xuzhi Hu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, U.K
| | - Haoning Gong
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, U.K
| | - Ruiheng Li
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, U.K
| | - Henry Cox
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, U.K
| | - Jing Zhang
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, U.K
| | - Thomas A. Waigh
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, U.K
- Photon Science Institute, University of Manchester, Oxford Road, Manchester M13 9PL, U.K
| | - Hai Xu
- State Key Laboratory of Heavy Oil Processing and Centre for Bioengineering and Biotechnology, College of Chemical Engineering, China University of Petroleum (East China), 66 Changjiang West Road, Qingdao 266580, China
| | - Jian Ren Lu
- Biological Physics Laboratory, School of Physics and Astronomy, University of Manchester, Schuster Building, Oxford Road, Manchester M13 9PL, U.K
| |
Collapse
|
21
|
Khan MIH, An X, Dai L, Li H, Khan A, Ni Y. Chitosan-based Polymer Matrix for Pharmaceutical Excipients and Drug Delivery. Curr Med Chem 2019; 26:2502-2513. [DOI: 10.2174/0929867325666180927100817] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 03/15/2017] [Accepted: 04/02/2017] [Indexed: 12/27/2022]
Abstract
The development of innovative drug delivery systems, versatile to different drug characteristics
with better effectiveness and safety, has always been in high demand. Chitosan, an
aminopolysaccharide, derived from natural chitin biomass, has received much attention as one of
the emerging pharmaceutical excipients and drug delivery entities. Chitosan and its derivatives
can be used for direct compression tablets, as disintegrant for controlled release or for improving
dissolution. Chitosan has been reported for use in drug delivery system to produce drugs with
enhanced muco-adhesiveness, permeation, absorption and bioavailability. Due to filmogenic and
ionic properties of chitosan and its derivative(s), drug release mechanism using microsphere
technology in hydrogel formulation is particularly relevant to pharmaceutical product development.
This review highlights the suitability and future of chitosan in drug delivery with special
attention to drug loading and release from chitosan based hydrogels. Extensive studies on the favorable
non-toxicity, biocompatibility, biodegradability, solubility and molecular weight variation
have made this polymer an attractive candidate for developing novel drug delivery systems
including various advanced therapeutic applications such as gene delivery, DNA based drugs,
organ specific drug carrier, cancer drug carrier, etc.
Collapse
Affiliation(s)
- Md. Iqbal Hassan Khan
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Xingye An
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Lei Dai
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Hailong Li
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Avik Khan
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick, E3B 5A3, Canada
| |
Collapse
|
22
|
Soliman KA, Ullah K, Shah A, Jones DS, Singh TRR. Poloxamer-based in situ gelling thermoresponsive systems for ocular drug delivery applications. Drug Discov Today 2019; 24:1575-1586. [PMID: 31175956 DOI: 10.1016/j.drudis.2019.05.036] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/15/2019] [Accepted: 05/31/2019] [Indexed: 02/06/2023]
Abstract
In situ gels have recently received interest as ocular drug delivery vehicles because they combine the merits of easy instillation and sustained drug release. In this review, we focus on the use of poloxamers as in situ gelling systems in ocular drug delivery because of their thermoresponsive gelling behaviour, biocompatibility, and ease of sterilisation. Furthermore, the sol-gel transition temperature, mucoadhesive properties, and drug release profiles of poloxamer-based in situ gels can be finely tuned, enabling them to be used as vehicles for the delivery of small and large drug molecules to treat diseases of the anterior and posterior segments of the eye. Poloxamer-based ocular products have already found their way to the pharmaceutical market, but remain a potential arena for further investigation and commercial exploitation.
Collapse
Affiliation(s)
- Karim A Soliman
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - K Ullah
- Department of Pharmacy, COMSATS University Islamabad, Abottabad Campus, Pakistan
| | - A Shah
- Department of Pharmacy, COMSATS University Islamabad, Abottabad Campus, Pakistan
| | - David S Jones
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - Thakur R R Singh
- School of Pharmacy, Queen's University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK.
| |
Collapse
|
23
|
Alenezi A, Hulander M, Atefyekta S, Andersson M. Development of a photon induced drug-delivery implant coating. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 98:619-627. [DOI: 10.1016/j.msec.2019.01.015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 11/30/2018] [Accepted: 01/04/2019] [Indexed: 10/27/2022]
|
24
|
Thermo-sensitive gellan maleate/N-isopropylacrylamide hydrogels: initial “in vitro” and “in vivo” evaluation as ocular inserts. Polym Bull (Berl) 2019. [DOI: 10.1007/s00289-019-02772-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
25
|
Zhang Y, Yu J, Ren K, Zuo J, Ding J, Chen X. Thermosensitive Hydrogels as Scaffolds for Cartilage Tissue Engineering. Biomacromolecules 2019; 20:1478-1492. [PMID: 30843390 DOI: 10.1021/acs.biomac.9b00043] [Citation(s) in RCA: 174] [Impact Index Per Article: 34.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Yanbo Zhang
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Jiakuo Yu
- Knee Surgery Department of the Institute of Sports Medicine, Peking University Third Hospital, 49 Huayuanbei Road, Beijing 100191, P. R. China
| | - Kaixuan Ren
- Mork Family Department of Chemical Engineering & Materials Science, University of Southern California, 925 West 34th Street, Los Angeles, California 90089, United States of America
| | - Jianlin Zuo
- Department of Orthopedics, China-Japan Union Hospital of Jilin University, 126 Xiantai Street, Changchun 130033, P. R. China
| | - Jianxun Ding
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, P. R. China
| | - Xuesi Chen
- Key Laboratory
of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun 130022, P. R. China
- Jilin Biomedical Polymers Engineering Laboratory, 5625 Renmin Street, Changchun 130022, P. R. China
| |
Collapse
|
26
|
Perera MM, Fischesser DM, Molkentin JD, Ayres N. Stiffness of thermoresponsive gelatin-based dynamic hydrogels affects fibroblast activation. Polym Chem 2019. [DOI: 10.1039/c9py01424a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Matrix dynamics can influence fibroblast activation.
Collapse
Affiliation(s)
- M. Mario Perera
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| | - Demetria M. Fischesser
- Cincinnati Children's Hospital Medical Center
- Division of Molecular Cardiovascular Biology
- Cincinnati
- USA
| | - Jeffery D. Molkentin
- Cincinnati Children's Hospital Medical Center
- Division of Molecular Cardiovascular Biology
- Cincinnati
- USA
| | - Neil Ayres
- Department of Chemistry
- The University of Cincinnati
- Cincinnati
- USA
| |
Collapse
|
27
|
Pérez-Luna VH, González-Reynoso O. Encapsulation of Biological Agents in Hydrogels for Therapeutic Applications. Gels 2018; 4:E61. [PMID: 30674837 PMCID: PMC6209244 DOI: 10.3390/gels4030061] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/03/2023] Open
Abstract
Hydrogels are materials specially suited for encapsulation of biological elements. Their large water content provides an environment compatible with most biological molecules. Their crosslinked nature also provides an ideal material for the protection of encapsulated biological elements against degradation and/or immune recognition. This makes them attractive not only for controlled drug delivery of proteins, but they can also be used to encapsulate cells that can have therapeutic applications. Thus, hydrogels can be used to create systems that will deliver required therapies in a controlled manner by either encapsulation of proteins or even cells that produce molecules that will be released from these systems. Here, an overview of hydrogel encapsulation strategies of biological elements ranging from molecules to cells is discussed, with special emphasis on therapeutic applications.
Collapse
Affiliation(s)
- Víctor H Pérez-Luna
- Department of Chemical and Biological Engineering, Illinois Institute of Technology, 10 West 33rd Street, Chicago, IL 60616, USA.
| | - Orfil González-Reynoso
- Departamento de Ingeniería Química, Universidad de Guadalajara, Blvd. Gral. Marcelino García Barragán # 1451, Guadalajara, Jalisco C.P. 44430, Mexico.
| |
Collapse
|
28
|
Antibody loaded collapsible hyaluronic acid hydrogels for intraocular delivery. Eur J Pharm Biopharm 2018; 124:95-103. [DOI: 10.1016/j.ejpb.2017.12.019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 10/18/2022]
|
29
|
Newman KD, McLaughlin CR, Carlsson D, Li F, Liu Y, Griffith M. Bioactive Hydrogel-Filament Scaffolds for Nerve Repair and Regeneration. Int J Artif Organs 2018; 29:1082-91. [PMID: 17160966 DOI: 10.1177/039139880602901109] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The design of novel biomaterials is crucial for the advancement of tissue engineering in nerve regeneration. In this study we developed and evaluated novel biosynthetic scaffolds comprising collagen crosslinked with a terpolymer of poly(N-isopropylacrylamide) (PNiPAAm) as conduits for nerve growth. These collagen-terpolymer (collagen-TERP) scaffolds grafted with the laminin pentapeptide YIGSR were previously used as corneal substitutes in pigs and demonstrated enhanced nerve regeneration compared to allografts. The purpose of this project was to enhance neuronal growth on the collagen-TERP scaffolds through the incorporation of supporting fibers. Neuronal growth on these matrices was assessed in vitro using isolated dorsal root ganglia as a nerve source. Statistical significance was assessed using a one-way ANOVA. The incorporation of fibers into the collagen-TERP scaffolds produced a significant increase in neurite extension (p<0.05). The growth habit of the nerves varied with the type of fiber and included directional growth of the neurites along the surface of certain fiber types. Furthermore, the presence of fibers in the collagen-TERP scaffolds appeared to influence neurite morphology and function; neurites grown on fibers-incorporated collagen-TERP scaffolds expressed higher levels of Na channels compared to the scaffolds without fiber. Overall, our results suggest that incorporation of supporting fibers enhanced neurite outgrowth and that surface properties of the scaffold play an important role in promoting and guiding nerve regeneration. More importantly, this study demonstrates the potential value of tissue engineered collagen-TERP hybrid scaffolds as conduits in peripheral nerve repair.
Collapse
Affiliation(s)
- K D Newman
- University of Ottawa Eye Institute, Ottawa Hospital, General Campus, Ottawa, Ontario, Canada
| | | | | | | | | | | |
Collapse
|
30
|
Horkay F, Douglas JF. Polymer Gels: Basics, Challenges, and Perspectives. ACS SYMPOSIUM SERIES 2018. [DOI: 10.1021/bk-2018-1296.ch001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ferenc Horkay
- Section on Quantitative Imaging and Tissue Sciences, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, United States
| | | |
Collapse
|
31
|
Tang S, Floy M, Bhandari R, Sunkara M, Morris AJ, Dziubla TD, Hilt JZ. Synthesis and Characterization of Thermoresponsive Hydrogels Based on N-Isopropylacrylamide Crosslinked with 4,4'-Dihydroxybiphenyl Diacrylate. ACS OMEGA 2017; 2:8723-8729. [PMID: 29302630 PMCID: PMC5748278 DOI: 10.1021/acsomega.7b01247] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/21/2017] [Indexed: 05/29/2023]
Abstract
A novel crosslinker [4,4'-dihydroxybiphenyl diacrylate (44BDA)] was developed, and a series of temperature-responsive hydrogels were synthesized through free radical polymerization of N-isopropylacrylamide (NIPAAm) with 44BDA. The temperature-responsive behavior of the resulting gels was characterized by swelling studies, and the lower critical solution temperature (LCST) of the hydrogels was characterized through differential scanning calorimetry. Increased content of 44BDA led to a decreased swelling ratio and shifted the LCST to lower temperatures. These novel hydrogels also displayed resiliency through multiple swelling-deswelling cycles, and their temperature responsiveness was reversible. The successful synthesis of NIPAAm-based hydrogels crosslinked with 44BDA has led to a new class of temperature-responsive hydrogel systems with a variety of potential applications.
Collapse
Affiliation(s)
- Shuo Tang
- Department
of Chemical and Materials Engineering, University
of Kentucky, 177 F. Paul
Anderson Tower, Lexington, Kentucky 40506, United
States
- Superfund
Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, Kentucky 40536, United States
| | - Martha Floy
- Department
of Chemical Engineering, Kansas State University, 1005 Durland Hall 1701A Platt Street, Manhattan, Kansas 66506, United States
| | - Rohit Bhandari
- Department
of Chemical and Materials Engineering, University
of Kentucky, 177 F. Paul
Anderson Tower, Lexington, Kentucky 40506, United
States
- Superfund
Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, Kentucky 40536, United States
| | - Manjula Sunkara
- Division
of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, 741 S. Limestone Street, Lexington, Kentucky 40506, United
States
- Superfund
Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, Kentucky 40536, United States
| | - Andrew J. Morris
- Division
of Cardiovascular Medicine, The Gill Heart Institute, University of Kentucky, 741 S. Limestone Street, Lexington, Kentucky 40506, United
States
- Superfund
Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, Kentucky 40536, United States
| | - Thomas D. Dziubla
- Department
of Chemical and Materials Engineering, University
of Kentucky, 177 F. Paul
Anderson Tower, Lexington, Kentucky 40506, United
States
- Superfund
Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, Kentucky 40536, United States
| | - J. Zach Hilt
- Department
of Chemical and Materials Engineering, University
of Kentucky, 177 F. Paul
Anderson Tower, Lexington, Kentucky 40506, United
States
- Superfund
Research Center, University of Kentucky, 900 S. Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
32
|
Awwad S, Mohamed Ahmed AHA, Sharma G, Heng JS, Khaw PT, Brocchini S, Lockwood A. Principles of pharmacology in the eye. Br J Pharmacol 2017; 174:4205-4223. [PMID: 28865239 PMCID: PMC5715579 DOI: 10.1111/bph.14024] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 08/14/2017] [Accepted: 08/17/2017] [Indexed: 12/18/2022] Open
Abstract
The eye is a highly specialized organ that is subject to a huge range of pathology. Both local and systemic disease may affect different anatomical regions of the eye. The least invasive routes for ocular drug administration are topical (e.g. eye drops) and systemic (e.g. tablets) formulations. Barriers that subserve as protection against pathogen entry also restrict drug permeation. Topically administered drugs often display limited bioavailability due to many physical and biochemical barriers including the pre-corneal tear film, the structure and biophysiological properties of the cornea, the limited volume that can be accommodated by the cul-de-sac, the lacrimal drainage system and reflex tearing. The tissue layers of the cornea and conjunctiva are further key factors that act to restrict drug delivery. Using carriers that enhance viscosity or bind to the ocular surface increases bioavailability. Matching the pH and polarity of drug molecules to the tissue layers allows greater penetration. Drug delivery to the posterior segment is a greater challenge and, currently, the standard route is via intravitreal injection, notwithstanding the risks of endophthalmitis and retinal detachment with frequent injections. Intraocular implants that allow sustained drug release are at different stages of development. Novel exciting therapeutic approaches include methods for promoting transscleral delivery, sustained release devices, nanotechnology and gene therapy.
Collapse
Affiliation(s)
- Sahar Awwad
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Abeer H A Mohamed Ahmed
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Garima Sharma
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Jacob S Heng
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Peng T Khaw
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | - Steve Brocchini
- UCL School of PharmacyLondonUK
- National Institute for Health Research (NIHR) Biomedical Research Centre at Moorfields Eye Hospital NHS Foundation Trust and UCL Institute of OphthalmologyLondonUK
| | | |
Collapse
|
33
|
Injectable silk fibroin hydrogels functionalized with microspheres as adult stem cells-carrier systems. Int J Biol Macromol 2017; 108:960-971. [PMID: 29113887 DOI: 10.1016/j.ijbiomac.2017.11.013] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 11/02/2017] [Accepted: 11/03/2017] [Indexed: 12/30/2022]
Abstract
Hydrogels are good candidate materials for cell delivery scaffolds because they can mimic the physical, chemical, electrical and biological properties of most of the native tissues. In this study, composite biosynthetic hydrogels were produced by combining the bio-functionality of silk fibroin (SF) with the structural versatility of polyethylene-glycol-diacrylated (PEGDa). The formation of a photopolymerizable PEGDa-SF hydrogel (PSFHy) was optimized for 3D-cell culture. Functionalization of the 3D-PSFHy with protein microspheres (MS) was required to increase the porosity and cell-adhesive properties of the material. Cardiac mesenchymal stem cells, which were cultured within the MS-embedding PSFHy, exhibited good viability and expression of proteins that are characteristic of the initial phases of the cardiac muscle differentiation process. Further, the addition of chondroitin sulfate into the scaffolds improved the cell viability. A cell-preconditioning of the scaffold was also performed, suggesting a potential application of these sponge-like scaffolds for analysing the effects of several extracellular microenvironments, produced by different kinds of cells, on the stem cells fate. The results presented herein highlight on the possibility to use the PSFHys functionalized with MS as stem cell-carrier systems with sponge-like properties, potential ultrasound-imaging contrast agents and controlled biochemical factor delivery.
Collapse
|
34
|
Demirdirek B, Uhrich KE. Physically crosslinked salicylate-based poly (N-isopropylacrylamide-co-acrylic acid) hydrogels for protein delivery. J BIOACT COMPAT POL 2017. [DOI: 10.1177/0883911517721070] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Physically crosslinked hydrogels were developed via solvent casting methods using a temperature-sensitive polymer, poly( N-isopropylacrylamide- co-acrylic acid), and a therapeutic polymer, salicylate-based poly(anhydride-esters), to concurrently release salicylic acid and bovine serum albumin in a sustained manner. The physical interactions between the two polymer systems were confirmed using Fourier transform infrared spectroscopy. The crosslinked polymers were porous, thus able to encapsulate bovine serum albumin (23 wt%) and then released the protein in a sustained fashion over 96 h. Concurrently, the hydrogel releases salicylic acid in a sustained manner up to 120 h. Hydrogel systems were cytocompatible at relevant therapeutic concentrations. These hydrogel systems can be used for simultaneous delivery of salicylic acid and protein to achieve synergic effects.
Collapse
Affiliation(s)
- Bahar Demirdirek
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| | - Kathryn E Uhrich
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ, USA
| |
Collapse
|
35
|
Lorson T, Jaksch S, Lübtow MM, Jüngst T, Groll J, Lühmann T, Luxenhofer R. A Thermogelling Supramolecular Hydrogel with Sponge-Like Morphology as a Cytocompatible Bioink. Biomacromolecules 2017; 18:2161-2171. [DOI: 10.1021/acs.biomac.7b00481] [Citation(s) in RCA: 77] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Thomas Lorson
- Functional
Polymer Materials, Chair for Advanced Materials Synthesis, Department
of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Sebastian Jaksch
- Jülich
Centre for Neutron Science JCNS, Forschungszentrum Jülich GmbH, Outstation at MLZ, Lichtenbergstraße 1, 85748 Garching, Germany
| | - Michael M. Lübtow
- Functional
Polymer Materials, Chair for Advanced Materials Synthesis, Department
of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| | - Tomasz Jüngst
- Chair
for Functional Materials in Medicine and Dentistry and Bavarian Polymer
Institute, Julius-Maximilians-Universität Würzburg, Pleicherwall
2, 97070 Würzburg, Germany
| | - Jürgen Groll
- Chair
for Functional Materials in Medicine and Dentistry and Bavarian Polymer
Institute, Julius-Maximilians-Universität Würzburg, Pleicherwall
2, 97070 Würzburg, Germany
| | - Tessa Lühmann
- Institute
of Pharmacy and Food Chemistry, Department of Chemistry and Pharmacy, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Robert Luxenhofer
- Functional
Polymer Materials, Chair for Advanced Materials Synthesis, Department
of Chemistry and Pharmacy and Bavarian Polymer Institute, Julius-Maximilians-Universität Würzburg, Röntgenring 11, 97070 Würzburg, Germany
| |
Collapse
|
36
|
Xu K, Liang X, Li P, Deng Y, Pei X, Tan Y, Zhai K, Wang P. Tough, stretchable chemically cross-linked hydrogel using core – shell polymer microspheres as cross-linking junctions. POLYMER 2017. [DOI: 10.1016/j.polymer.2017.04.055] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
37
|
Huq NA, Ekblad JR, Leonard AT, Scalfani VF, Bailey TS. Phototunable Thermoplastic Elastomer Hydrogel Networks. Macromolecules 2017. [DOI: 10.1021/acs.macromol.6b02005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Nabila A. Huq
- Department
of Chemical and Biological Engineering, Colorado State University, Fort
Collins, Colorado 80521, United States
| | - John R. Ekblad
- Department
of Chemical and Biological Engineering, Colorado State University, Fort
Collins, Colorado 80521, United States
| | - Alex T. Leonard
- Department
of Chemical and Biological Engineering, Colorado State University, Fort
Collins, Colorado 80521, United States
| | - Vincent F. Scalfani
- University
Libraries, Rodgers Library for Science and Engineering, University of Alabama, Tuscaloosa, Alabama 35487, United States
| | - Travis S. Bailey
- Department
of Chemical and Biological Engineering, Colorado State University, Fort
Collins, Colorado 80521, United States
| |
Collapse
|
38
|
Belali S, Karimi AR, Hadizadeh M. Novel nanostructured smart, photodynamic hydrogels based on poly(N-isopropylacrylamide) bearing porphyrin units in their crosslink chains: A potential sensitizer system in cancer therapy. POLYMER 2017. [DOI: 10.1016/j.polymer.2016.12.041] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Chuah YJ, Peck Y, Lau JEJ, Hee HT, Wang DA. Hydrogel based cartilaginous tissue regeneration: recent insights and technologies. Biomater Sci 2017; 5:613-631. [DOI: 10.1039/c6bm00863a] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
Hydrogel based technologies has been extensively employed in both exploratory research and clinical applications to address numerous existing challenges in the regeneration of articular cartilage and intervertebral disc.
Collapse
Affiliation(s)
- Yon Jin Chuah
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Yvonne Peck
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| | - Jia En Josias Lau
- School of Chemical & Life Sciences
- Singapore Polytechnic
- Singapore 139651
- Singapore
| | - Hwan Tak Hee
- Lee Kong Chian School of Medicine
- Nanyang Technological University
- Singapore 636921
- Singapore
- Pinnacle Spine & Scoliosis Centre
| | - Dong-An Wang
- School of Chemical and Biomedical Engineering
- Nanyang Technological University
- Singapore 637459
- Singapore
| |
Collapse
|
40
|
Eslahi N, Abdorahim M, Simchi A. Smart Polymeric Hydrogels for Cartilage Tissue Engineering: A Review on the Chemistry and Biological Functions. Biomacromolecules 2016; 17:3441-3463. [PMID: 27775329 DOI: 10.1021/acs.biomac.6b01235] [Citation(s) in RCA: 146] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Stimuli responsive hydrogels (SRHs) are attractive bioscaffolds for tissue engineering. The structural similarity of SRHs to the extracellular matrix (ECM) of many tissues offers great advantages for a minimally invasive tissue repair. Among various potential applications of SRHs, cartilage regeneration has attracted significant attention. The repair of cartilage damage is challenging in orthopedics owing to its low repair capacity. Recent advances include development of injectable hydrogels to minimize invasive surgery with nanostructured features and rapid stimuli-responsive characteristics. Nanostructured SRHs with more structural similarity to natural ECM up-regulate cell-material interactions for faster tissue repair and more controlled stimuli-response to environmental changes. This review highlights most recent advances in the development of nanostructured or smart hydrogels for cartilage tissue engineering. Different types of stimuli-responsive hydrogels are introduced and their fabrication processes through physicochemical procedures are reported. The applications and characteristics of natural and synthetic polymers used in SRHs are also reviewed with an outline on clinical considerations and challenges.
Collapse
Affiliation(s)
- Niloofar Eslahi
- Department of Textile Engineering, Science and Research Branch, Islamic Azad University , P.O. Box 14515/775, Tehran, Iran
| | | | | |
Collapse
|
41
|
Heidari Kani M, Chan EC, Young RC, Butler T, Smith R, Paul JW. 3D Cell Culturing and Possibilities for Myometrial Tissue Engineering. Ann Biomed Eng 2016; 45:1746-1757. [PMID: 27770218 DOI: 10.1007/s10439-016-1749-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2016] [Accepted: 10/12/2016] [Indexed: 12/19/2022]
Abstract
Research insights into uterine function and the mechanisms of labour have been hindered by the lack of suitable animal and cellular models. The use of traditional culturing methods limits the exploration of complex uterine functions, such as cell interactions, connectivity and contractile behaviour, as it fails to mimic the three-dimensional (3D) nature of uterine cell interactions in vivo. Animal models are an option, however, use of these models is constrained by ethical considerations as well as translational limitations to humans. Evidence indicates that these limitations can be overcome by using 3D culture systems, or 3D Bioprinters, to model the in vivo cytological architecture of the tissue in an in vitro environment. 3D cultured or 3D printed cells can be used to form an artificial tissue. This artificial tissue can not only be used as an appropriate model in which to study cellular function and organisation, but could also be used for regenerative medicine purposes including organ or tissue transplantation, organ donation and obstetric care. The current review describes recent developments in cell culture that can facilitate the development of myometrial 3D structures and tissue engineering applications.
Collapse
Affiliation(s)
- Minoo Heidari Kani
- Mothers and Babies Research Centre, School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia. .,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia. .,Priority Research Centre of Reproductive Science, University of Newcastle, Callaghan, NSW, 2308, Australia.
| | - Eng-Cheng Chan
- Mothers and Babies Research Centre, School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.,Priority Research Centre of Reproductive Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Roger C Young
- Mothers and Babies Research Centre, School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Trent Butler
- Mothers and Babies Research Centre, School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.,Priority Research Centre of Reproductive Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.,Priority Research Centre of Reproductive Science, University of Newcastle, Callaghan, NSW, 2308, Australia.,John Hunter Hospital, New Lambton Heights, NSW, 2305, Australia
| | - Jonathan W Paul
- Mothers and Babies Research Centre, School of Medicine and Public Health, Faculty of Health and Medicine, University of Newcastle, Callaghan, NSW, 2308, Australia.,Hunter Medical Research Institute, 1 Kookaburra Circuit, New Lambton Heights, NSW, 2305, Australia.,Priority Research Centre of Reproductive Science, University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
42
|
Goponenko AV, Dzenis YA. Role of Mechanical Factors in Applications of Stimuli-Responsive Polymer Gels - Status and Prospects. POLYMER 2016; 101:415-449. [PMID: 28348443 PMCID: PMC5365095 DOI: 10.1016/j.polymer.2016.08.068] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Due to their unique characteristics such as multifold change of volume in response to minute change in the environment, resemblance of soft biological tissues, ability to operate in wet environments, and chemical tailorability, stimuli responsive gels represent a versatile and very promising class of materials for sensors, muscle-type actuators, biomedical applications, and autonomous intelligent structures. Success of these materials in practical applications largely depends on their ability to fulfill application-specific mechanical requirements. This article provides an overview of recent application-driven development of covalent polymer gels with special emphasis on the relevant mechanical factors and properties. A short account of mechanisms of gel swelling and mechanical characteristics of importance to stimuli-responsive gels is presented. The review highlights major barriers for wider application of these materials and discusses latest advances and potential future directions toward overcoming these barriers, including interpenetrating networks, homogeneous networks, nanocomposites, and nanofilamentary gels.
Collapse
Affiliation(s)
- Alexander V. Goponenko
- Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588, USA
| | - Yuris A. Dzenis
- Department of Mechanical and Materials Engineering and Nebraska Center for Materials and Nanoscience, University of Nebraska, Lincoln, NE 68588, USA
| |
Collapse
|
43
|
Ma HL, Chen H, Hou SZ, Tan YB. Tuning thermal gelling behavior of N-isopropylacrylamide based copolymer through introducing cucurbit[8]uril ternary complex on side-chain. CHINESE JOURNAL OF POLYMER SCIENCE 2016. [DOI: 10.1007/s10118-016-1837-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
44
|
Wei W, Qi X, Li J, Zuo G, Sheng W, Zhang J, Dong W. Smart Macroporous Salecan/Poly( N, N-diethylacrylamide) Semi-IPN Hydrogel for Anti-Inflammatory Drug Delivery. ACS Biomater Sci Eng 2016; 2:1386-1394. [PMID: 33434992 DOI: 10.1021/acsbiomaterials.6b00318] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Poly(N,N-diethylacrylamide) is not only a thermosensitive polymer, but also a good hydrogen bond acceptor. Therefore, drugs with carboxyl groups can serve as hydrogen bond donors and form interactions with the tertiary amide groups in N,N-diethylacrylamide. Herein, we report a novel drug delivery system for anionic drugs composed of poly(N,N-diethylacrylamide) and salecan. Salecan was used to improve the hydrophilicity and accelerate the responsive rate of this system. As expected, salecan-enriched hydrogels exhibited higher swelling ratios and were more sensitive to temperature. Moreover, scanning electron microscopy images showed that the hydrogels are superporous structures, with pore-sizes that increase with salecan concentration. The swelling ratios decreased continuously with the increase of temperature in the range 25-37 °C. MTT assay for cell viability and cell adhesion studies confirm the cell compatibility of the system. Delivery tests using diclofenac sodium, an anti-inflammatory drug, indicate that the thermosensitive property of this system is favorable for anionic drug delivery. Interestingly, the release rates of diclofenac sodium from the hydrogels were temperature dependent, with higher temperatures contributing toward faster release rate.
Collapse
Affiliation(s)
- Wei Wei
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Xiaoliang Qi
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Junjian Li
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Gancheng Zuo
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wei Sheng
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Jianfa Zhang
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| | - Wei Dong
- Center for Molecular Metabolism, Nanjing University of Science & Technology, Nanjing 210094, China
| |
Collapse
|
45
|
|
46
|
Jeuken RM, Roth AK, Peters RJRW, Van Donkelaar CC, Thies JC, Van Rhijn LW, Emans PJ. Polymers in Cartilage Defect Repair of the Knee: Current Status and Future Prospects. Polymers (Basel) 2016; 8:E219. [PMID: 30979313 PMCID: PMC6432241 DOI: 10.3390/polym8060219] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/26/2016] [Accepted: 05/31/2016] [Indexed: 02/06/2023] Open
Abstract
Cartilage defects in the knee are often seen in young and active patients. There is a need for effective joint preserving treatments in patients suffering from cartilage defects, as untreated defects often lead to osteoarthritis. Within the last two decades, tissue engineering based techniques using a wide variety of polymers, cell sources, and signaling molecules have been evaluated. We start this review with basic background information on cartilage structure, its intrinsic repair, and an overview of the cartilage repair treatments from a historical perspective. Next, we thoroughly discuss polymer construct components and their current use in commercially available constructs. Finally, we provide an in-depth discussion about construct considerations such as degradation rates, cell sources, mechanical properties, joint homeostasis, and non-degradable/hybrid resurfacing techniques. As future prospects in cartilage repair, we foresee developments in three areas: first, further optimization of degradable scaffolds towards more biomimetic grafts and improved joint environment. Second, we predict that patient-specific non-degradable resurfacing implants will become increasingly applied and will provide a feasible treatment for older patients or failed regenerative treatments. Third, we foresee an increase of interest in hybrid construct, which combines degradable with non-degradable materials.
Collapse
Affiliation(s)
- Ralph M Jeuken
- Department of Orthopaedic Surgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht 6229 HX, The Netherlands.
| | - Alex K Roth
- Department of Orthopaedic Surgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht 6229 HX, The Netherlands.
| | | | - Corrinus C Van Donkelaar
- Department of Biomedical Engineering, Eindhoven University of Technology, P.O. Box 513, Eindhoven 5600 MB, The Netherlands.
| | - Jens C Thies
- DSM Biomedical, Koestraat 1, Geleen 6167 RA, The Netherlands.
| | - Lodewijk W Van Rhijn
- Department of Orthopaedic Surgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht 6229 HX, The Netherlands.
| | - Pieter J Emans
- Department of Orthopaedic Surgery, Maastricht University Medical Center, P. Debyelaan 25, Maastricht 6229 HX, The Netherlands.
| |
Collapse
|
47
|
Zhang Z, Eyster TW, Ma PX. Nanostructured injectable cell microcarriers for tissue regeneration. Nanomedicine (Lond) 2016; 11:1611-28. [PMID: 27230960 PMCID: PMC5619097 DOI: 10.2217/nnm-2016-0083] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/05/2016] [Indexed: 11/21/2022] Open
Abstract
Biodegradable polymer microspheres have emerged as cell carriers for the regeneration and repair of irregularly shaped tissue defects due to their injectability, controllable biodegradability and capacity for drug incorporation and release. Notably, recent advances in nanotechnology allowed the manipulation of the physical and chemical properties of the microspheres at the nanoscale, creating nanostructured microspheres mimicking the composition and/or structure of natural extracellular matrix. These nanostructured microspheres, including nanocomposite microspheres and nanofibrous microspheres, have been employed as cell carriers for tissue regeneration. They enhance cell attachment and proliferation, promote positive cell-carrier interactions and facilitate stem cell differentiation for target tissue regeneration. This review highlights the recent advances in nanostructured microspheres that are employed as injectable, biomimetic and cell-instructive cell carriers.
Collapse
Affiliation(s)
- Zhanpeng Zhang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Thomas W Eyster
- Department of Biologic & Materials Sciences, University of Michigan, Ann Arbor, MI 48109-1078, USA
| | - Peter X Ma
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Department of Biologic & Materials Sciences, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Macromolecular Science & Engineering Center, University of Michigan, Ann Arbor, MI 48109-1078, USA
- Materials Science & Engineering, University of Michigan, Ann Arbor, MI 48109-1078, USA
| |
Collapse
|
48
|
Lynch B, Crawford K, Baruti O, Abdulahad A, Webster M, Puetzer J, Ryu C, Bonassar LJ, Mendenhall J. The effect of hypoxia on thermosensitive poly(N
-vinylcaprolactam) hydrogels with tunable mechanical integrity for cartilage tissue engineering. J Biomed Mater Res B Appl Biomater 2016; 105:1863-1873. [DOI: 10.1002/jbm.b.33705] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 02/25/2016] [Accepted: 04/21/2016] [Indexed: 02/04/2023]
Affiliation(s)
- Brandon Lynch
- Department of Chemistry; Morehouse College; Atlanta Georgia
| | | | - Omari Baruti
- Department of Chemistry; Morehouse College; Atlanta Georgia
| | - Asem Abdulahad
- Department of Chemistry and Chemical Biology; Rensselaer Polytechnic Institute; Troy New York
| | | | - Jennifer Puetzer
- Department of Biomedical Engineering; Cornell University; Ithaca New York
| | - Chang Ryu
- Department of Chemistry and Chemical Biology; Rensselaer Polytechnic Institute; Troy New York
| | | | | |
Collapse
|
49
|
Jones S, Walsh-Korb Z, Barrow SJ, Henderson SL, del Barrio J, Scherman OA. The Importance of Excess Poly(N-isopropylacrylamide) for the Aggregation of Poly(N-isopropylacrylamide)-Coated Gold Nanoparticles. ACS NANO 2016; 10:3158-65. [PMID: 26788966 PMCID: PMC4838950 DOI: 10.1021/acsnano.5b04083] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 01/20/2016] [Indexed: 05/26/2023]
Abstract
Thermoresponsive materials are generating significant interest on account of the sharp and tunable temperature deswelling transition of the polymer chain. Such materials have shown promise in drug delivery devices, sensing systems, and self-assembly. Incorporation of nanoparticles (NPs), typically through covalent attachment of the polymer chains to the NP surface, can add additional functionality and tunability to such hybrid materials. The versatility of these thermoresponsive polymer/nanoparticle materials has been shown previously; however, significant and important differences exist in the published literature between virtually identical materials. Here we use poly(N-isopropylacrylamide) (PNIPAm)-AuNPs as a model system to understand the aggregation behavior of thermoresponsive polymer-coated nanoparticles in pure water, made by either grafting-to or grafting-from methods. We show that, contrary to popular belief, the aggregation of PNIPAm-coated AuNPs, and likely other such materials, relies on the size and concentration of unbound "free" PNIPAm in solution. It is this unbound polymer that also leads to an increase in solution turbidity, a characteristic that is typically used to prove nanoparticle aggregation. The size of PNIPAm used to coat the AuNPs, as well as the concentration of the resultant polymer-AuNP composites, is shown to have little effect on aggregation. Without free PNIPAm, contraction of the polymer corona in response to increasing temperature is observed, instead of nanoparticle aggregation, and is accompanied by no change in solution turbidity or color. We develop an alternative method for removing all traces of excess free polymer and develop an approach for analyzing the aggregation behavior of such materials, which truly allows for heat-triggered aggregation to be studied.
Collapse
Affiliation(s)
- Samuel
T. Jones
- Melville
Laboratory for Polymer
Synthesis, Department of Chemistry, Cambridge
University, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Zarah Walsh-Korb
- Melville
Laboratory for Polymer
Synthesis, Department of Chemistry, Cambridge
University, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Steven J. Barrow
- Melville
Laboratory for Polymer
Synthesis, Department of Chemistry, Cambridge
University, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Sarah L. Henderson
- Melville
Laboratory for Polymer
Synthesis, Department of Chemistry, Cambridge
University, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Jesús del Barrio
- Melville
Laboratory for Polymer
Synthesis, Department of Chemistry, Cambridge
University, Lensfield
Road, Cambridge CB2 1EW, U.K.
| | - Oren A. Scherman
- Melville
Laboratory for Polymer
Synthesis, Department of Chemistry, Cambridge
University, Lensfield
Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
50
|
Sallouh O, Weberskirch R. Facile formation of hydrogels by using functional precursor polymers and the chemoselective Staudinger coupling. POLYMER 2016. [DOI: 10.1016/j.polymer.2016.01.066] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|