1
|
Lee D, Jeong U, Kim D. Oxygen-excluded nanoimaging of polymer blend films. SCIENCE ADVANCES 2025; 11:eadt6177. [PMID: 40073140 PMCID: PMC11900874 DOI: 10.1126/sciadv.adt6177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 02/05/2025] [Indexed: 03/14/2025]
Abstract
Polymer blend films exhibit unique properties and have applications in various fields. However, understanding their nanoscale structures and polymer component distributions remains a challenge. To address this limitation, we have developed a super-resolution fluorescence microscopy-based technique called oxygen-excluded nanoimaging. By using point accumulation for imaging in nanoscale topography with sulfonate-based dye molecules, we achieved nanoscale imaging of polymer blend films while specifically labeling non-oxygen domains and excluding oxygen-containing domains. This selectivity is attributed to the electrostatic repulsion between the negatively charged sulfonate groups in the dye molecules and the oxygen atoms in the polymer side chains. We demonstrate the applicability of oxygen-excluded nanoimaging to various polymer blend films, enabling domain identification and visualization of nanoscale structures. Our oxygen-excluded nanoimaging technique provides unique insights into the complex phase separation behavior of polymer blends at the nanoscale, opening possibilities for the nanoscale characterization of a wide range of materials beyond polymer blends.
Collapse
Affiliation(s)
- Dongmin Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Uidon Jeong
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Doory Kim
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Convergence of Basic Science, Hanyang University, Seoul 04763, Republic of Korea
- Institute of Nano Science and Technology, Hanyang University, Seoul 04763, Republic of Korea
- Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Republic of Korea
| |
Collapse
|
2
|
Liao C, Zhang Z, He Y, Yuan J, Yang M, Li P, Jiang W, Liang Y, Liu W. Bioinspired Antiwear Poly(urea-imide) Composites: Influence of Tribology on Polymer Crystal Structure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2408249. [PMID: 39780741 DOI: 10.1002/smll.202408249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/13/2024] [Indexed: 01/11/2025]
Abstract
Polymer composite materials encounter considerable challenges in sustaining superior tribological properties at high rotational speeds. Inspired by the microstructure of dragonfly wings, a novel thermally stable and ambient pressure curing poly(urea-imide) resin (PURI) with excellent tribological properties has been eco-friendly synthesis using bio-based greener solvents. Furthermore, The PURI composites enhanced with polyether ether ketone (PEEK) and Polytetrafluoroethylene (PTFE) blended fabrics demonstrate excellent mechanical, with tensile strengths exceeding 175 MPa. The PURI composites synthesized in the green solvent dimethyl isosorbide (DMI) exhibit an average friction coefficient of 0.1160 and an average wear rate of 2.7 × 10-14 m3 (N·m)-1 at 800 r min-1. The excellent tribological performance is primarily attributed to the molecular chain rearrangement of the PURI resin during friction, which leads to the formation of crystalline structures in certain regions, a phenomenon known as friction-induced crystallization. This process is an entropy-reducing mechanism that absorbs other forms of energy, such as frictional heat, during the frictional process. Moreover, the PTFE fibers underwent tribochemical reactions resulting in changes to lattice spacing during friction and contributing to the formation of the tribofilm. This study provides new evidence regarding the frictional mechanisms of polymer composites, which is beneficial for designing high-performance wear-resistant composites.
Collapse
Affiliation(s)
- Chaoying Liao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaozhu Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yaohui He
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junya Yuan
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing, 100084, China
| | - Mingming Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peilong Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Wei Jiang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yongmin Liang
- State Key Laboratory of Applied Organic Chemistry, Lanzhou University, Lanzhou, 730000, China
| | - Weimin Liu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
3
|
Ganser C, Nishiguchi S, Chan FY, Uchihashi T. A look beyond topography: Transient phenomena of Escherichia coli cell division captured with high-speed in-line force mapping. SCIENCE ADVANCES 2025; 11:eads3010. [PMID: 39879298 PMCID: PMC11777186 DOI: 10.1126/sciadv.ads3010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 12/30/2024] [Indexed: 01/31/2025]
Abstract
Life on the nanoscale has been made accessible in recent decades by the development of fast and noninvasive techniques. High-speed atomic force microscopy (HS-AFM) is one such technique that shed light on single protein dynamics. Extending HS-AFM to effortlessly incorporate mechanical property mapping while maintaining fast imaging speed allows a look deeper than topography and reveal details of nanoscale mechanisms that govern life. Here, we present high-speed in-line force mapping (HS-iFM) to record mechanical properties and topography maps with high spatiotemporal resolution. Using HS-iFM, a comprehensive study of the nanoscale mechanical properties of living Escherichia coli revealed localized stiffening and details during cell division, formation and diffusion of pores in the membrane, and the impact of depressurization of a cell. The frame time was as low as 15 seconds with a spatial resolution of 5.5 nanometers per pixel in topography and 22 nanometers per pixel in force maps, allowing the capture of transient phenomena on bacterial surfaces in striking detail.
Collapse
Affiliation(s)
- Christian Ganser
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Shigetaka Nishiguchi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | | | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
- Department of Physics, Nagoya University, Nagoya, Japan
| |
Collapse
|
4
|
Zhang J, Wang C, Zhao H. Dynamic surfaces of latex films and their antifouling applications. J Colloid Interface Sci 2024; 654:1281-1292. [PMID: 37907007 DOI: 10.1016/j.jcis.2023.10.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/02/2023] [Accepted: 10/25/2023] [Indexed: 11/02/2023]
Abstract
Latex polymer particles have been widely used in industry and everyday life. For decades the fabrication of "smart" latex film from latex particles has been a great challenge due to the difficulty in the synthesis of the functional latex particles by traditional emulsion polymerization using small molecular surfactants. In this manuscript, a simple and environmentally-friendly approach to the fabrication of "smart" latex films with dynamic surfaces is reported. Latex particles with poly(n-butyl methacrylate) (PnBMA) in the cores and zwitterionic poly-3-[dimethyl-[2-(2-methylprop-2-enoyloxy) ethyl]azaniumyl]propane-1-sulfonate (PDMAPS) in the shells are synthesized by reversible addition-fragmentation chain transfer (RAFT) mediated surfactant-free emulsion polymerization. The kinetics for the emulsion polymerization is studied, and the latex particles are analyzed by transmission electron microscopy (TEM), scanning electron microscopy (SEM) and dynamic light scattering (DLS). Latex films are prepared by casting aqueous solutions of the latex particles at temperatures above the glass transition temperature (Tg) of PnBMA. On the dried latex film, the hydrophobic PnBMA blocks occupy the top surface; after water treatment, the hydrophilic PDMAPS blocks migrate to the surface. A change in the surface hydrophilicity results in a change in the water contact angle of the latex film. A mechanism for the formation of the dynamic surface structure is proposed in this research. Antifouling applications of the latex films are investigated. Experimental results indicate that the water-treated latex film is able to efficiently inhibit protein adsorption and resist bacterial adhesion.
Collapse
Affiliation(s)
- Jie Zhang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, PR China
| | - Chen Wang
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, PR China
| | - Hanying Zhao
- Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Chemistry, Nankai University, PR China.
| |
Collapse
|
5
|
Park Y, Jeong D, Jeong U, Park H, Yoon S, Kang M, Kim D. Polarity Nano-Mapping of Polymer Film Using Spectrally Resolved Super-Resolution Imaging. ACS APPLIED MATERIALS & INTERFACES 2022; 14:46032-46042. [PMID: 36103715 DOI: 10.1021/acsami.2c11958] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With the rapid development of the nanofabrication of polymer materials, the local measurement of the chemical properties of polymer nanostructures has become crucial because they can be highly heterogeneous at the nanoscale. We developed a spectroscopic imaging approach to characterize the nanoscale local polarity of polymer films via spectrally resolved super-resolution microscopy. We demonstrate the capability of the recently developed single-molecule sensing and imaging method to probe the polarity of polymers either inside a polymer matrix or on the external surface of a polymer. The nanoscale polarity sensing capability of our method facilitates the differentiation of various polymer surfaces based on chemical polarities, and it can further differentiate the polarity of functional side chain groups. Moreover, we demonstrate that a two-component polymer mixture can be locally distinguished based on the contrasting polarities of the lateral phase separation, further allowing for the investigation of nanoscale phase separation depending on the composition of the polymer blend film. This approach is anticipated to open the door to further characterizations of various nanocomposite materials.
Collapse
|
6
|
Polymer-solvent interaction and conformational changes at a molecular level: Implication to solvent-assisted deformation and aggregation at the polymer surface. J Colloid Interface Sci 2022; 616:221-233. [DOI: 10.1016/j.jcis.2022.02.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/01/2022] [Accepted: 02/02/2022] [Indexed: 11/17/2022]
|
7
|
Mrđenović D, Abbott D, Mougel V, Su W, Kumar N, Zenobi R. Visualizing Surface Phase Separation in PS-PMMA Polymer Blends at the Nanoscale. ACS APPLIED MATERIALS & INTERFACES 2022; 14:24938-24945. [PMID: 35590476 DOI: 10.1021/acsami.2c03857] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Phase-separated polymer blend films are an important class of functional materials with numerous technological applications in solar cells, catalysis, and biotechnology. These technologies are underpinned by the precise control of phase separation at the nanometer length-scales, which is highly challenging to visualize using conventional analytical tools. Herein, we introduce tip-enhanced Raman spectroscopy (TERS), in combination with atomic force microscopy (AFM), confocal Raman spectroscopy, and X-ray photoelectron spectroscopy (XPS), as a sensitive nanoanalytical method to determine lateral and vertical phase-separation in polystyrene (PS)-poly(methyl methacrylate) (PMMA) polymer blend films. Correlative topographical, molecular, and elemental information reveals a vertical phase separation of the polymers within the top ca. 20 nm of the blend surface in addition to the lateral phase separation in the bulk. Furthermore, complementary TERS and XPS measurements reveal the presence of PMMA within 9.2 nm of the surface and PS at the subsurface of the polymer blend. This fundamental work establishes TERS as a powerful analytical tool for surface characterization of this important class of polymers at nanometer length scales.
Collapse
Affiliation(s)
- Dušan Mrđenović
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Daniel Abbott
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Victor Mougel
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Weitao Su
- School of Sciences, Hangzhou Dianzi University, 310018 Hangzhou, China
| | - Naresh Kumar
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| | - Renato Zenobi
- Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland
| |
Collapse
|
8
|
Murphy JG, Raybin JG, Sibener SJ. Correlating polymer structure, dynamics, and function with atomic force microscopy. JOURNAL OF POLYMER SCIENCE 2022. [DOI: 10.1002/pol.20210321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Julia G. Murphy
- The James Franck Institute and Department of Chemistry The University of Chicago Chicago Illinois USA
| | - Jonathan G. Raybin
- The James Franck Institute and Department of Chemistry The University of Chicago Chicago Illinois USA
| | - Steven J. Sibener
- The James Franck Institute and Department of Chemistry The University of Chicago Chicago Illinois USA
| |
Collapse
|
9
|
Joshi J, Homburg SV, Ehrmann A. Atomic Force Microscopy (AFM) on Biopolymers and Hydrogels for Biotechnological Applications-Possibilities and Limits. Polymers (Basel) 2022; 14:1267. [PMID: 35335597 PMCID: PMC8949482 DOI: 10.3390/polym14061267] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/15/2022] [Accepted: 03/19/2022] [Indexed: 02/01/2023] Open
Abstract
Atomic force microscopy (AFM) is one of the microscopic techniques with the highest lateral resolution. It can usually be applied in air or even in liquids, enabling the investigation of a broader range of samples than scanning electron microscopy (SEM), which is mostly performed in vacuum. Since it works by following the sample surface based on the force between the scanning tip and the sample, interactions have to be taken into account, making the AFM of irregular samples complicated, but on the other hand it allows measurements of more physical parameters than pure topography. This is especially important for biopolymers and hydrogels used in tissue engineering and other biotechnological applications, where elastic properties, surface charges and other parameters influence mammalian cell adhesion and growth as well as many other effects. This review gives an overview of AFM modes relevant for the investigations of biopolymers and hydrogels and shows several examples of recent applications, focusing on the polysaccharides chitosan, alginate, carrageenan and different hydrogels, but depicting also a broader spectrum of materials on which different AFM measurements are reported in the literature.
Collapse
Affiliation(s)
- Jnanada Joshi
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Sarah Vanessa Homburg
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| | - Andrea Ehrmann
- Faculty of Engineering and Mathematics, Bielefeld University of Applied Sciences, 33619 Bielefeld, Germany
| |
Collapse
|
10
|
Werner M, Glück MS, Bräuer B, Bismarck A, Lieberzeit PA. Investigations on sub-structures within cavities of surface imprinted polymers using AFM and PF-QNM. SOFT MATTER 2022; 18:2245-2251. [PMID: 35234796 DOI: 10.1039/d2sm00137c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Investigations on lithographically formed cavities of surface-imprinted polymers (SIP) can help to gain deeper understanding on cell recognition with SIPs: it is known that surface topography and biomolecules transferred during surface imprinting contribute to cell adhesion. In this work, SIPs synthesized via two different imprinting techniques, namely stamp imprinting and polymerization of Pickering emulsions, were investigated and compared to each other, using atomic force microscopy (AFM) and Peak Force Quantitative Nano Mechanics (PF-QNM). We focused on SIPs based on poly(styrene-co-divinylbenzene) as model polymer and E. coli as model template for cell imprinting. Both imprinting approaches led to cavities that revealed nanostructures within the imprints. Stamp imprinting cavities feature low surface roughness and channel structures that resemble the negative pattern of the bacteria on the stamp and their filaments, while SIPs synthesized via polymerization of Pickering emulsions reveal globular nanostructures accumulating in the imprints. AFM phase imaging and adhesion mapping using PF-QNM show that these globular structures are remainders of the imprinted E. coli cells, most likely lipopolysaccarides, which is not observable in imprints resulting from stamp imprinting.
Collapse
Affiliation(s)
- Martin Werner
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Währingerstraße 42, 1090 Vienna, Austria.
| | - Matthias S Glück
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Währingerstraße 42, 1090 Vienna, Austria.
| | - Birgit Bräuer
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Währingerstraße 42, 1090 Vienna, Austria.
| | - Alexander Bismarck
- University of Vienna, Faculty for Chemistry, Department of Materials Chemistry, Währingerstraße 42, 1090 Vienna, Austria
| | - Peter A Lieberzeit
- University of Vienna, Faculty for Chemistry, Department of Physical Chemistry, Währingerstraße 42, 1090 Vienna, Austria.
| |
Collapse
|
11
|
Kingsbury R, Hegde M, Wang J, Kusoglu A, You W, Coronell O. Tunable Anion Exchange Membrane Conductivity and Permselectivity via Non-Covalent, Hydrogen Bond Cross-Linking. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52647-52658. [PMID: 34705410 PMCID: PMC9043033 DOI: 10.1021/acsami.1c15474] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Ion exchange membranes (IEMs) are a key component of electrochemical processes that purify water, generate clean energy, and treat waste. Most conventional polymer IEMs are covalently cross-linked, which results in a challenging tradeoff relationship between two desirable properties─high permselectivity and high conductivity─in which one property cannot be changed without negatively affecting the other. In an attempt to overcome this limitation, in this work we synthesized a series of anion exchange membranes containing non-covalent cross-links formed by a hydrogen bond donor (methacrylic acid) and a hydrogen bond acceptor (dimethylacrylamide). We show that these monomers act synergistically to improve both membrane permselectivity and conductivity relative to a control membrane without non-covalent cross-links. Furthermore, we show that the hydrogen bond donor and acceptor loading can be used to tune permselectivity and conductivity relatively independently of one another, escaping the tradeoff observed in conventional membranes.
Collapse
Affiliation(s)
- Ryan Kingsbury
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Maruti Hegde
- Department of Applied Physical Sciences, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Jingbo Wang
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Ahmet Kusoglu
- Energy Conversion Group, Energy Technologies Area, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Wei You
- Department of Chemistry, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Orlando Coronell
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
12
|
Infrared-spectroscopic, dynamic near-field microscopy of living cells and nanoparticles in water. Sci Rep 2021; 11:21860. [PMID: 34750511 PMCID: PMC8576021 DOI: 10.1038/s41598-021-01425-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/26/2021] [Indexed: 11/17/2022] Open
Abstract
Infrared fingerprint spectra can reveal the chemical nature of materials down to 20-nm detail, far below the diffraction limit, when probed by scattering-type scanning near-field optical microscopy (s-SNOM). But this was impossible with living cells or aqueous processes as in corrosion, due to water-related absorption and tip contamination. Here, we demonstrate infrared s-SNOM of water-suspended objects by probing them through a 10-nm thick SiN membrane. This separator stretches freely over up to 250 µm, providing an upper, stable surface to the scanning tip, while its lower surface is in contact with the liquid and localises adhering objects. We present its proof-of-principle applicability in biology by observing simply drop-casted, living E. coli in nutrient medium, as well as living A549 cancer cells, as they divide, move and develop rich sub-cellular morphology and adhesion patterns, at 150 nm resolution. Their infrared spectra reveal the local abundances of water, proteins, and lipids within a depth of ca. 100 nm below the SiN membrane, as we verify by analysing well-defined, suspended polymer spheres and through model calculations. SiN-membrane based s-SNOM thus establishes a novel tool of live cell nano-imaging that returns structure, dynamics and chemical composition. This method should benefit the nanoscale analysis of any aqueous system, from physics to medicine.
Collapse
|
13
|
Koo DG, Lee D, Noh J, Lee YH, Jang S, Nam I, Shin TJ, Park J. Impact of Intermolecular Interactions Between a Diketopyrrolopyrrole-Based Conjugated Polymer and Bromobenzaldehyde on Field-Effect Transistors. Macromol Res 2021. [DOI: 10.1007/s13233-021-9009-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
14
|
Cimatu KLA, Premadasa UI, Ambagaspitiya TD, Adhikari NM, Jang JH. Evident phase separation and surface segregation of hydrophobic moieties at the copolymer surface using atomic force microscopy and SFG spectroscopy. J Colloid Interface Sci 2020; 580:645-659. [PMID: 32712471 DOI: 10.1016/j.jcis.2020.07.066] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 11/18/2022]
Abstract
HYPOTHESIS Copolymers are developed to enhance the overall physical and chemical properties of polymers. The surface nature of a copolymer is relevant to creating efficient materials to improve adhesion and biocompatibility. We hypothesize that the improved adhesion, as a surface property, is due to phase separation, surface segregation, and the overall molecular organization of different polymer components at the copolymer surface. EXPERIMENTS The surface structure of a copolymer composed of 2-hydroxyethyl methacrylate (HEMA) monomer and 2-phenoxyethyl methacrylate (PhEMA) monomer was analyzed in comparison to the polyHEMA and polyPhEMA homopolymers using atomic force microscopy (AFM) and sum frequency generation (SFG) spectroscopy. FINDINGS The contrast in the phase images was due to the variance in the hydrophobic level provided by the hydroxyl and phenoxy modified monomers in the copolymer. The distribution of the adhesion values, supporting the presence of hydrophobic moieties, across the polymer surface defined the surface segregation of these two components. SFG spectra of the copolymer thin film showed combined spectral features of both polyHEMA and polyPhEMA thin films at the polymer surface. The tilt angles of the alpha-methyl group of homopolymers using the polarization intensity ratio analysis and the polarization mapping method were estimated to be in the range from 48° to 66°.
Collapse
Affiliation(s)
- Katherine Leslee A Cimatu
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States.
| | - Uvinduni I Premadasa
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States
| | - Tharushi D Ambagaspitiya
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States
| | - Narendra M Adhikari
- Department of Chemistry and Biochemistry, Ohio University, 100 University Terrace, 136 Clippinger Laboratories, Athens, OH 45701-2979, United States
| | - Joon Hee Jang
- Department of Nanomedicine, Houston Methodist Research Institute, 6670 Bertner Avenue, Houston, TX 77030, United States
| |
Collapse
|
15
|
Shahbazi S, Goodpaster JV, Smith GD, Becker T, Lewis SW. Preparation, characterization, and application of a lipophilic coated exfoliated Egyptian blue for near-infrared luminescent latent fingermark detection. Forensic Chem 2020. [DOI: 10.1016/j.forc.2019.100208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
16
|
Xue J, Liu X, Zhang J, Yin Y, Guiver MD. Poly(phenylene oxide)s incorporating N-spirocyclic quaternary ammonium cation/cation strings for anion exchange membranes. J Memb Sci 2020. [DOI: 10.1016/j.memsci.2019.117507] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
17
|
Sun H, Wang Z, He Y. Direct Observation of Spatiotemporal Heterogeneous Gelation by Rotational Tracking of a Single Anisotropic Nanoprobe. ACS NANO 2019; 13:11334-11342. [PMID: 31589398 DOI: 10.1021/acsnano.9b04491] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Polymer network gels usually exhibit spatial heterogeneity of local defects and cross-link density, which can affect their elasticity on the microscopic scale differently. The ability to evaluate the formation and distribution of these heterogeneities is important for guiding the application of gels in biology, medicine, and separation science. Previously, it has been reported that single-particle tracking based microrheology could provide local properties of gel networks with high resolution; however, the particle probes have been limited to spherical micro/nanotracers undergoing translational motions. In this work, we used single gold nanorods (AuNRs) as rotational microrheology probes to study the polyacrylamide gelation process by dual-channel polarization dark-field microscopy. The AuNRs were in Brownian motion during the initial stages of the gelation. As the reaction continues, individual AuNRs are confined locally and almost lost translational motion, but still maintained rotational motion. As the reaction proceeded further, the rotation state of the AuNRs gradually changed from free rotation in 3D to restricted rotation in 2D and eventually stopped completely. The appearance of the intermediate 2D plane indicated the existence of localized anisotropic compression of the gel during the heterogeneous gelation process. Our method can be further applied to investigate the formation of different polymer gels and a wide variety of heterogeneous biophysical and soft material systems.
Collapse
Affiliation(s)
- Hua Sun
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials , Qingdao University , Qingdao , 266071 , China
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing , 100084 , China
| | - Zonghua Wang
- College of Chemistry and Chemical Engineering, Shandong Sino-Japanese Center for Collaborative Research of Carbon Nanomaterials , Qingdao University , Qingdao , 266071 , China
| | - Yan He
- Department of Chemistry, Key Laboratory of Bioorganic Phosphorus Chemistry & Chemical Biology (Ministry of Education) , Tsinghua University , Beijing , 100084 , China
| |
Collapse
|
18
|
Marinello F, La Storia A, Mauriello G, Passeri D. Atomic Force microscopy techniques to investigate activated food packaging materials. Trends Food Sci Technol 2019. [DOI: 10.1016/j.tifs.2018.05.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
19
|
Anderson C, Simsek S. Mechanical profiles and topographical properties of films made from alkaline extracted arabinoxylans from wheat bran, maize bran, or dried distillers grain. Food Hydrocoll 2019. [DOI: 10.1016/j.foodhyd.2018.02.016] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Rajabifar B, Jadhav JM, Kiracofe D, Meyers GF, Raman A. Dynamic AFM on Viscoelastic Polymer Samples with Surface Forces. Macromolecules 2018. [DOI: 10.1021/acs.macromol.8b01485] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Bahram Rajabifar
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology
Center, 1205 W. State Street, West Lafayette, Indiana 47907, United States
| | - Jyoti M. Jadhav
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology
Center, 1205 W. State Street, West Lafayette, Indiana 47907, United States
| | - Daniel Kiracofe
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology
Center, 1205 W. State Street, West Lafayette, Indiana 47907, United States
| | - Gregory F. Meyers
- Analytical Sciences, The Dow Chemical Company, 1897 Building, Midland, Michigan 48667, United States
| | - Arvind Raman
- School of Mechanical Engineering, Purdue University, 585 Purdue Mall, West Lafayette, Indiana 47907, United States
- Birck Nanotechnology
Center, 1205 W. State Street, West Lafayette, Indiana 47907, United States
| |
Collapse
|
21
|
In situ AFM study of low-temperature polymerization and network formation of thin film polyurea in ionic liquid. Eur Polym J 2018. [DOI: 10.1016/j.eurpolymj.2018.06.022] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
22
|
Sun D, Sun G, Zhu X, Guarin A, Li B, Dai Z, Ling J. A comprehensive review on self-healing of asphalt materials: Mechanism, model, characterization and enhancement. Adv Colloid Interface Sci 2018; 256:65-93. [PMID: 29789126 DOI: 10.1016/j.cis.2018.05.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 05/06/2018] [Accepted: 05/06/2018] [Indexed: 10/16/2022]
Abstract
Self-healing has great potential to extend the service life of asphalt pavement, and this capability has been regarded as an important strategy when designing a sustainable infrastructure. This review presents a comprehensive summary of the state-of-the-art investigations concerning the self-healing mechanism, model, characterization and enhancement, ranging from asphalt to asphalt pavement. Firstly, the self-healing phenomenon as a general concept in asphalt materials is analyzed including its definition and the differences among self-healing and some viscoelastic responses. Additionally, the development of self-healing in asphalt pavement design is introduced. Next, four kinds of possible self-healing mechanism and corresponding models are presented. It is pointed out that the continuum thermodynamic model, considering the whole process from damage initiation to healing recovery, can be a promising study field. Further, a set of self-healing multiscale characterization methods from microscale to macroscale as well as computational simulation scale, are summed up. Thereinto, the computational simulation shows great potential in simulating the self-healing behavior of asphalt materials from mechanical and molecular level. Moreover, the factors influencing self-healing capability are discussed, but the action mechanisms of some factors remain unclear and need to be investigated. Finally, two extrinsic self-healing technologies, induction heating and capsule healing, are recommended as preventive maintenance applications in asphalt pavement. In future, more effective energy-based healing systems or novel material-based healing systems are expected to be developed towards designing sustainable long-life asphalt pavement.
Collapse
|
23
|
Klat D, Kępas-Suwara A, Lacayo-Pineda J, Cook S. MORPHOLOGY AND NANOMECHANICAL CHARACTERISTICS OF NR/SBR BLENDS. RUBBER CHEMISTRY AND TECHNOLOGY 2018. [DOI: 10.5254/rct-18-82612] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
ABSTRACT
Tire tread materials are generally blends of two or more rubbers, fillers, and other materials, resulting in a rubber compound with complex multiphase morphology. The bulk properties of these blends are influenced by morphology and microphase characteristics, hence the desire for techniques that can both discriminate between phases in a blend and provide quantitative information about their physical properties. The effect of polymer ratio and microstructure of SBR on blend morphology and nanomechanical mapping of unfilled NR/SBR blends will be discussed. With nanoindentation techniques available through the use of atomic force microscopy, nanomechanical properties are determined and compared with macroscopic values obtained by dynamic mechanical analysis.
Collapse
Affiliation(s)
- Darja Klat
- Continental Reifen Deutschland GmbH, Jaedekamp 30, 30419 Hanover, Germany
| | - Anna Kępas-Suwara
- Tun Abdul Razak Research Centre (TARRC), Malaysian Rubber Board, Brickendonbury, Hertford, SG13 8NL, UK
| | | | - Stuart Cook
- Tun Abdul Razak Research Centre (TARRC), Malaysian Rubber Board, Brickendonbury, Hertford, SG13 8NL, UK
| |
Collapse
|
24
|
Lasseuguette E, McClements J, Koutsos V, Schäfer T, Ferrari MC. Ionic liquid mediated surface micropatterning of polymer blends. J Appl Polym Sci 2017. [DOI: 10.1002/app.46109] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Elsa Lasseuguette
- School of Engineering; Institute for Materials and Processes, The University of Edinburgh; Robert Stevenson Road, Edinburgh EH9 3FB UK
| | - Jake McClements
- School of Engineering; Institute for Materials and Processes, The University of Edinburgh; Robert Stevenson Road, Edinburgh EH9 3FB UK
| | - Vasileios Koutsos
- School of Engineering; Institute for Materials and Processes, The University of Edinburgh; Robert Stevenson Road, Edinburgh EH9 3FB UK
| | - Thomas Schäfer
- Polymat University of the Basque Country; Av. Tolosa 72, Donostia-San Sebastián 20018 Spain
- Ikerbasque, Basque Foundation for Science; Bilbao Spain
| | - Maria-Chiara Ferrari
- School of Engineering; Institute for Materials and Processes, The University of Edinburgh; Robert Stevenson Road, Edinburgh EH9 3FB UK
| |
Collapse
|
25
|
Hesami M, Jalali-Arani A. Investigation of miscibility and phase structure of a novel blend of poly(lactic acid) (PLA)/acrylic rubber (ACM) and its nanocomposite with nanosilica. J Appl Polym Sci 2017. [DOI: 10.1002/app.45499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Mahdis Hesami
- Department of Polymer Engineering & Color Technology; Amirkabir University of Technology; P.O. Box 15875-4413 Tehran Iran
| | - Azam Jalali-Arani
- Department of Polymer Engineering & Color Technology; Amirkabir University of Technology; P.O. Box 15875-4413 Tehran Iran
| |
Collapse
|
26
|
Smith MJ, Malak ST, Jung J, Yoon YJ, Lin CH, Kim S, Lee KM, Ma R, White TJ, Bunning TJ, Lin Z, Tsukruk VV. Robust, Uniform, and Highly Emissive Quantum Dot-Polymer Films and Patterns Using Thiol-Ene Chemistry. ACS APPLIED MATERIALS & INTERFACES 2017; 9:17435-17448. [PMID: 28441503 DOI: 10.1021/acsami.7b03366] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
This work demonstrates a facile and versatile method for generating low scattering cross-linked quantum dot (QD)-polymer composite films and patterned highly emissive structures with ultrahigh QD loading, minimal phase separation, and tunable mechanical properties. Uniform QD-polymer films are fabricated using thiol-ene chemistry, in which cross-linked polymer networks are rapidly produced in ambient conditions via fast UV polymerization in bulk to suppress QD aggregation. UV-controlled thiol-ene chemistry limits phase separation through producing highly QD loaded cross-linked composites with loadings above majority of those reported in the literature (<1%) and approaching 30%. As the QD loading is increased, the thiol and ene conversion decreases, resulting in nanocomposites with widely variable and tailorable mechanical properties as a function of UV irradiation time with an elastic modulus decreasing to 1 GPa being characteristic of reinforced elastomeric materials, in contrast to usually observed stiff and brittle materials under these loading conditions. Furthermore, we demonstrate that the thiol-ene chemistry is compatible with soft-imprint lithography, making it possible to pattern highly loaded QD films while preserving the optical properties essential for high gain and low optical loss devices. The versatility of thiol-ene chemistry to produce high-dense QD-polymer films potentially makes it an important technique for polymer-based elastomeric optical metamaterials, where efficient light propagation is critical, like peculiar waveguides, sensors, and optical gain films.
Collapse
Affiliation(s)
- Marcus J Smith
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
- Air Force Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Sidney T Malak
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Jaehan Jung
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
- Department of Materials Science and Engineering, Hongik University , Sejong 339-701, South Korea
| | - Young Jun Yoon
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Chun Hao Lin
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Sunghan Kim
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Kyung Min Lee
- Air Force Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Ruilong Ma
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Timothy J White
- Air Force Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Timothy J Bunning
- Air Force Research Laboratories, Wright-Patterson Air Force Base, Ohio 45433, United States
| | - Zhiqun Lin
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | - Vladimir V Tsukruk
- School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| |
Collapse
|
27
|
Ortiz-Negrón A, Lasanta-Cotto N, Suleiman D. Imidazolium ionic liquid incorporation on sulfonated poly(styrene-isobutylene-styrene) proton exchange membranes. J Appl Polym Sci 2017. [DOI: 10.1002/app.44900] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ariangelís Ortiz-Negrón
- Department of Chemical Engineering; University of Puerto Rico; Mayagüez Campus Mayagüez 00681-9000 Puerto Rico
| | - Noelia Lasanta-Cotto
- Department of Chemical Engineering; University of Puerto Rico; Mayagüez Campus Mayagüez 00681-9000 Puerto Rico
| | - David Suleiman
- Department of Chemical Engineering; University of Puerto Rico; Mayagüez Campus Mayagüez 00681-9000 Puerto Rico
| |
Collapse
|
28
|
Nguyen VTA, De Pauw-Gillet MC, Sandre O, Gauthier M. Biocompatible Polyion Complex Micelles Synthesized from Arborescent Polymers. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:13482-13492. [PMID: 27993030 DOI: 10.1021/acs.langmuir.6b03683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Water-dispersible polyion complex (PIC) micelles were prepared by the self-assembly of an arborescent polystyrene-graft-poly(2-vinylpyridine) copolymer (denoted G0PS-g-P2VP or G1) serving as core and a poly(acrylic acid)-block-poly(2-hydroxyethyl acrylate) (PAA-b-PHEA) double-hydrophilic block copolymer (DHBC) forming a shell. Varying the density of hydrophilic polymer chains in the stabilizing layer provided control over the size and structure of the entities obtained, from large flocculated species to stable isolated PIC micelles with diameters ranging from 42 to 67 nm. The hydrodynamic radius (determined from dynamic light scattering measurements), and the weight-average molar mass (M̅w) and radius of gyration of the scatterers (extracted from static multiangle light scattering data) evidenced the formation of either isolated or aggregated PIC micelles depending on the self-assembly conditions used (pH, concentration and mixing molar ratio f). Changes in the morphology of the arborescent copolymer after complexation were observed by atomic force microscopy (AFM) imaging. In particular, by varying the force applied with the AFM tip on the samples, the core-shell structure of the PIC micelles was clearly evidenced. The PIC micelles displayed no significant cytotoxicity toward mouse fibroblast L929 cells, a standard cell line recommended for toxicity assays, due to the good biocompatibility of the hydrophilic PAA-b-PHEA shell. In spite of a negative residual zeta potential due to an excess of negative charges, fluorescently labeled PIC* micelles were successfully internalized by L929 cells, as confirmed by laser scanning confocal microscopy (LSCM) and transmission electron microscopy (TEM).
Collapse
Affiliation(s)
- Vo Thu An Nguyen
- Univ. Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France
- CNRS, Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33600 Pessac, France
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| | | | - Olivier Sandre
- Univ. Bordeaux, LCPO, UMR 5629, F-33600 Pessac, France
- CNRS, Laboratoire de Chimie des Polymères Organiques, UMR 5629, F-33600 Pessac, France
| | - Mario Gauthier
- Department of Chemistry, University of Waterloo , Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
29
|
Destino JF, Jones ZR, Gatley CM, Zhang Y, Craft AK, Detty MR, Bright FV. Hybrid Sol-Gel-Derived Films That Spontaneously Form Complex Surface Topographies. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2016; 32:10113-10119. [PMID: 27607195 DOI: 10.1021/acs.langmuir.6b02664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Surface patterns over multiple length scales are known to influence various biological processes. Here we report the synthesis and characterization of new, two-component xerogel thin films derived from carboxyethylsilanetriol (COE) and tetraethoxysilane (TEOS). Atomic force microscopy (AFM) reveals films surface with branched and hyper branched architectures that are ∼2 to 30 μm in diameter, that extend ∼3 to 1300 nm above the film base plane with surface densities that range from 2 to 77% surface area coverage. Colocalized AFM and Raman spectroscopy show that these branched structures are COE-rich domains, which are slightly stiffer (as shown from phase AFM imaging) and exhibit lower capacitive force in comparison with film base plane. Raman mapping reveals there are also discrete domains (≤300 nm in diameter) that are rich in COE dimers and densified TEOS, which do not appear to correspond with any surface structure seen by AFM.
Collapse
Affiliation(s)
- Joel F Destino
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Zachary R Jones
- Department of Chemistry, Ithaca College , Ithaca, New York 14850, United States
| | - Caitlyn M Gatley
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Yi Zhang
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Andrew K Craft
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Michael R Detty
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| | - Frank V Bright
- Department of Chemistry, Natural Sciences Complex , SUNY-Buffalo, Buffalo, New York 14260-3000, United States
| |
Collapse
|
30
|
Tan MSF, Moore SC, Tabor RF, Fegan N, Rahman S, Dykes GA. Attachment of Salmonella strains to a plant cell wall model is modulated by surface characteristics and not by specific carbohydrate interactions. BMC Microbiol 2016; 16:212. [PMID: 27629769 PMCID: PMC5024418 DOI: 10.1186/s12866-016-0832-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Indexed: 12/04/2022] Open
Abstract
Background Processing of fresh produce exposes cut surfaces of plant cell walls that then become vulnerable to human foodborne pathogen attachment and contamination, particularly by Salmonella enterica. Plant cell walls are mainly composed of the polysaccharides cellulose, pectin and hemicelluloses (predominantly xyloglucan). Our previous work used bacterial cellulose-based plant cell wall models to study the interaction between Salmonella and the various plant cell wall components. We demonstrated that Salmonella attachment was favoured in the presence of pectin while xyloglucan had no effect on its attachment. Xyloglucan significantly increased the attachment of Salmonella cells to the plant cell wall model only when it was in association with pectin. In this study, we investigate whether the plant cell wall polysaccharides mediate Salmonella attachment to the bacterial cellulose-based plant cell wall models through specific carbohydrate interactions or through the effects of carbohydrates on the physical characteristics of the attachment surface. Results We found that none of the monosaccharides that make up the plant cell wall polysaccharides specifically inhibit Salmonella attachment to the bacterial cellulose-based plant cell wall models. Confocal laser scanning microscopy showed that Salmonella cells can penetrate and attach within the tightly arranged bacterial cellulose network. Analysis of images obtained from atomic force microscopy revealed that the bacterial cellulose-pectin-xyloglucan composite with 0.3 % (w/v) xyloglucan, previously shown to have the highest number of Salmonella cells attached to it, had significantly thicker cellulose fibrils compared to other composites. Scanning electron microscopy images also showed that the bacterial cellulose and bacterial cellulose-xyloglucan composites were more porous when compared to the other composites containing pectin. Conclusions Our study found that the attachment of Salmonella cells to cut plant cell walls was not mediated by specific carbohydrate interactions. This suggests that the attachment of Salmonella strains to the plant cell wall models were more dependent on the structural characteristics of the attachment surface. Pectin reduces the porosity and space between cellulose fibrils, which then forms a matrix that is able to retain Salmonella cells within the bacterial cellulose network. When present with pectin, xyloglucan provides a greater surface for Salmonella cells to attach through the thickening of cellulose fibrils.
Collapse
Affiliation(s)
- Michelle Sze-Fan Tan
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Sean C Moore
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC, 3030, Australia
| | - Rico F Tabor
- School of Chemistry, Monash University, Clayton campus, Wellington Road, Clayton, VIC, 3800, Australia
| | - Narelle Fegan
- CSIRO Agriculture and Food, 671 Sneydes Road, Werribee, VIC, 3030, Australia
| | - Sadequr Rahman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Gary A Dykes
- School of Public Health, Curtin University, Perth, WA, 6845, Australia.
| |
Collapse
|
31
|
Rijal B, Delbreilh L, Saiter A. Dynamic Heterogeneity and Cooperative Length Scale at Dynamic Glass Transition in Glass Forming Liquids. Macromolecules 2015. [DOI: 10.1021/acs.macromol.5b01152] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Bidur Rijal
- AMME-LECAP
EA 4528 International
Laboratory, Normandie Université, Université et INSA de Rouen, Av. de l’Université BP 12, 76801 Saint Etienne du Rouvray Cedex, France
| | - Laurent Delbreilh
- AMME-LECAP
EA 4528 International
Laboratory, Normandie Université, Université et INSA de Rouen, Av. de l’Université BP 12, 76801 Saint Etienne du Rouvray Cedex, France
| | - Allisson Saiter
- AMME-LECAP
EA 4528 International
Laboratory, Normandie Université, Université et INSA de Rouen, Av. de l’Université BP 12, 76801 Saint Etienne du Rouvray Cedex, France
| |
Collapse
|
32
|
Brown P, Talbot E, Wood T, Egan M, Wu J, Saini K, Kumar N, Bain C, Badyal J. Controlling picolitre droplet impact dynamics by tailoring the solid subsurface. Colloids Surf A Physicochem Eng Asp 2015. [DOI: 10.1016/j.colsurfa.2015.04.047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Bahrami A, Morelle X, Hông Minh LD, Pardoen T, Bailly C, Nysten B. Curing dependent spatial heterogeneity of mechanical response in epoxy resins revealed by atomic force microscopy. POLYMER 2015. [DOI: 10.1016/j.polymer.2015.04.084] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
34
|
Trinca RB, Felisberti MI. Segmented polyurethanes based on poly(l-lactide), poly(ethylene glycol) and poly(trimethylene carbonate): Physico-chemical properties and morphology. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2014.11.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
35
|
Compatibilization mechanisms of nanoclays with different surface modifiers in UCST blends: Opposing effects on phase miscibility. POLYMER 2014. [DOI: 10.1016/j.polymer.2014.10.034] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
36
|
Iacono P, Karabeber H, Kircher MF. A "schizophotonic" all-in-one nanoparticle coating for multiplexed SE(R)RS biomedical imaging. Angew Chem Int Ed Engl 2014; 53:11756-61. [PMID: 25164141 PMCID: PMC4389888 DOI: 10.1002/anie.201403835] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Revised: 06/16/2014] [Indexed: 02/05/2023]
Abstract
SERS nanoprobes for in vivo biomedical applications require high quantum yield, long circulation times, and maximum colloidal stability. Traditional synthetic routes require high metal-dye affinities and are challenged by unfavorable electrostatic interactions and limited scalability. We report the synthesis of a new near-IR active poly(N-(2-hydroxypropyl) methacrylamide) (pHPMA). The integration of various SERS reporters into a biocompatible polymeric surface coating allows for controlled dye incorporation, high colloidal stability, and optimized in vivo circulation times. This technique allows the synthesis of very small (<20 nm) SERS probes, which is crucial for the design of excretable and thus highly translatable imaging agents. Depending on their size, the "schizophotonic" nanoparticles can emit both SERS and fluorescence. We demonstrate the capability of this all-in-one gold surface coating and SERS reporter for multiplexed lymph-node imaging.
Collapse
Affiliation(s)
- Pasquale Iacono
- Department of Radiology and Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center and Weill Cornell Medical CollegeNew York, NY 10065 (USA)
| | - Hazem Karabeber
- Department of Radiology and Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center and Weill Cornell Medical CollegeNew York, NY 10065 (USA)
| | - Moritz F Kircher
- Department of Radiology and Center for Molecular Imaging and Nanotechnology (CMINT), Memorial Sloan Kettering Cancer Center and Weill Cornell Medical CollegeNew York, NY 10065 (USA)
| |
Collapse
|
37
|
Wang Y, Geng Z, Guo M, Chen Y, Guo X, Wang X. Electroaddressing of ZnS quantum dots by codeposition with chitosan to construct fluorescent and patterned device surface. ACS APPLIED MATERIALS & INTERFACES 2014; 6:15510-15515. [PMID: 25133925 DOI: 10.1021/am5042077] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Electroaddressing is an attractive method for triggering assembly of stimuli-responsive biopolymers with exquisite spatiotemporal control, and it also offers a controllable means to concurrently assemble biological materials and nanoparticles for a diverse range of applications. Here, we demonstrate a novel method to construct fluorescent and patterned device surfaces by electroaddressing of quantum dots (QDs)/chitosan composite. First, the surfaces of ZnS QDs/chitosan composite on the electrodes are built by electrodeposition method. It is shown that the deposited surface displays clear fluorescence under UV light, and the fluorescence intensity of the surface can be controlled by electrodeposition conditions (e.g., deposition time). Furthermore, a variety of fluorescent patterns can be constructed by employing electrodes or substrates with various shapes. Specifically, taking advantage of the spatiotemporal selectivity of electroaddressing and the pH-responsive property of chitosan, we construct diverse fluorescent patterns by electroaddressing QDs/chitosan composite at the localized region. It is also found that the fluorescent patterns of QDs/chitosan composite have reproducibility. Thus, this work presents a convenient, versatile, and controllable method to construct fluorescent and patterned device surface by electroaddressing, which has promising applications in photoluminescence device, fluorescent and patterned coating, and nanocomposite biodevice.
Collapse
Affiliation(s)
- Yifeng Wang
- School of Material Science and Engineering, Wuhan University of Technology , Wuhan 430070, China
| | | | | | | | | | | |
Collapse
|
38
|
Sato M, Fujishima A, Shibata Y, Miyazaki T, Inoue M. Nanoindentation tests to assess polymerization of resin-based luting cement. Dent Mater 2014; 30:1021-8. [DOI: 10.1016/j.dental.2014.05.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2013] [Revised: 04/16/2014] [Accepted: 05/29/2014] [Indexed: 12/15/2022]
|
39
|
Iacono P, Karabeber H, Kircher MF. A “Schizophotonic” All-In-One Nanoparticle Coating for Multiplexed SE(R)RS Biomedical Imaging. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201403835] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
40
|
Voss A, Stark RW, Dietz C. Surface versus Volume Properties on the Nanoscale: Elastomeric Polypropylene. Macromolecules 2014. [DOI: 10.1021/ma500578e] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Agnieszka Voss
- Department of Materials and
Earth Sciences and Center of Smart Interfaces, Physics of Surfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany
| | - Robert W. Stark
- Department of Materials and
Earth Sciences and Center of Smart Interfaces, Physics of Surfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany
| | - Christian Dietz
- Department of Materials and
Earth Sciences and Center of Smart Interfaces, Physics of Surfaces, Technische Universität Darmstadt, Alarich-Weiss-Str. 10, 64287 Darmstadt, Germany
| |
Collapse
|
41
|
Krämer G, Griepentrog M, Bonaccurso E, Cappella B. Study of morphology and mechanical properties of polystyrene–polybutadiene blends with nanometre resolution using AFM and force–distance curves. Eur Polym J 2014. [DOI: 10.1016/j.eurpolymj.2014.03.026] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
42
|
Anjani G, Ohta A, Yasuhara K, Asakawa T. Solubilization of genistein by caseinate micellar system. J Oleo Sci 2014; 63:413-22. [PMID: 24599106 DOI: 10.5650/jos.ess13198] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
This study investigates the aggregation behavior of caseinate and the solubilization of genistein in aqueous caseinate solution. The critical aggregation concentration (CAC) of caseinate was obtained from the fluorescence intensity of 8-anilino-1-naphthalenesulfonic acid (ANS), which was enhanced by ANS-protein interactions and the hydrophobicity of caseinate. The increasing solubility of genistein in caseinate was confirmed by HPLC measurements; above and below the CAC, the genistein/caseinate molar ratio is 1:1 and 10:1, respectively. The latter ratio indicates that more caseinate molecules surround genistein below the CAC. However, the solubility of genistein in caseinate is unaffected by calcium ions. Atomic force microscopy (AFM) shows that casein sub-micelles are similarly structured in the presence and absence of genistein. In AFM phase images, the caseinate sub-micelle is brightened in the presence of genistein, implying that the particle becomes more rigid, probably because genistein attaches to the surface or to the narrow part of the sub-micelle. The diameter of sub-micelle aggregates is two times that of caseinate alone (24 nm versus 12 nm). These results were confirmed by cryo-TEM observations.
Collapse
Affiliation(s)
- Gemala Anjani
- Division of Material Sciences, Graduate School of Natural Science and Technology, Kanazawa University
| | | | | | | |
Collapse
|
43
|
Xia T, Huang Y, Jiang X, Lv Y, Yang Q, Li G. The Molecular Mechanism of the Morphology Change in PS/PVME/Silica Blends Based on Rheology. Macromolecules 2013. [DOI: 10.1021/ma4011582] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tian Xia
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
- College
of Material Science and Engineering, Chongqing University of Technology, Chongqing 400050, China
| | - Yajiang Huang
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaolian Jiang
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Yadong Lv
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Qi Yang
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Guangxian Li
- College
of Polymer Science and Engineering, State Key Laboratory of Polymer
Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
44
|
Kwon GH, Kim TY, Kim SJ. Electrokinetic microscopy: a technique for imaging three-dimensional surface topography and heterogeneity of surface material. THE REVIEW OF SCIENTIFIC INSTRUMENTS 2013; 84:043706. [PMID: 23635202 DOI: 10.1063/1.4802256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
In the present study, we introduce the concept of an electrokinetic microscope (EKM), a non-contact type probe microscope that can simultaneously provide a test specimen's three-dimensional surface topography and heterogeneity of surface material. In the EKM, the flow impedance and the streaming potential are measured during the scanning process to reproduce the topography and the heterogeneity, respectively. The working principle of the EKM is experimentally demonstrated by measuring specimens whose surfaces consist of thin layers of various materials and topographical differences. Experimental results also show that the EKM can be used regardless of the electrical conductivity of test specimens.
Collapse
Affiliation(s)
- G H Kwon
- School of Mechanical, Aerospace and Systems Engineering, KAIST, 353 Gwahangno, Daejeon, South Korea
| | | | | |
Collapse
|
45
|
Rettler EFJ, Rudolph T, Hanisch A, Hoeppener S, Retsch M, Schubert US, Schacher FH. UV-induced crosslinking of the polybutadiene domains in lamellar polystyrene-block-polybutadiene block copolymer films – An in-depth study. POLYMER 2012. [DOI: 10.1016/j.polymer.2012.09.054] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
46
|
Passeri D, Rossi M, Tamburri E, Terranova ML. Mechanical characterization of polymeric thin films by atomic force microscopy based techniques. Anal Bioanal Chem 2012; 405:1463-78. [PMID: 23052864 DOI: 10.1007/s00216-012-6419-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2012] [Revised: 06/28/2012] [Accepted: 07/20/2012] [Indexed: 11/24/2022]
Abstract
Polymeric thin films have been awakening continuous and growing interest for application in nanotechnology. For such applications, the assessment of their (nano)mechanical properties is a key issue, since they may dramatically vary between the bulk and the thin film state, even for the same polymer. Therefore, techniques are required for the in situ characterization of mechanical properties of thin films that must be nondestructive or only minimally destructive. Also, they must also be able to probe nanometer-thick ultrathin films and layers and capable of imaging the mechanical properties of the sample with nanometer lateral resolution, since, for instance, at these scales blends or copolymers are not uniform, their phases being separated. Atomic force microscopy (AFM) has been proposed as a tool for the development of a number of techniques that match such requirements. In this review, we describe the state of the art of the main AFM-based methods for qualitative and quantitative single-point measurements and imaging of mechanical properties of polymeric thin films, illustrating their specific merits and limitations.
Collapse
Affiliation(s)
- Daniele Passeri
- Department of Basic and Applied Sciences for Engineering, University of Rome Sapienza, Rome, Italy.
| | | | | | | |
Collapse
|
47
|
Weber A, Resch K. Effect of temperature-cycling on the morphology of polymeric thermotropic glazings for overheating protection applications. JOURNAL OF POLYMER RESEARCH 2012. [DOI: 10.1007/s10965-012-9888-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
48
|
Topographical heterogeneity in transparent PVA hydrogels studied by AFM. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012. [DOI: 10.1016/j.msec.2011.10.022] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
49
|
Vlad-Cristea M, Riedl B, Blanchet P, Jimenez-Pique E. Nanocharacterization techniques for investigating the durability of wood coatings. Eur Polym J 2012. [DOI: 10.1016/j.eurpolymj.2011.12.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
50
|
Li H, Sun L, Shen G, Liang Q. The nanoscale phase distinguishing of PCL-PB-PCL blended in epoxy resin by tapping mode atomic force microscopy. NANOSCALE RESEARCH LETTERS 2012; 7:153. [PMID: 22360980 PMCID: PMC3311068 DOI: 10.1186/1556-276x-7-153] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Accepted: 02/23/2012] [Indexed: 05/31/2023]
Abstract
In this work, we investigated the bulk phase distinguishing of the poly(ε-caprolactone)-polybutadiene-poly(ε-caprolactone) (PCL-PB-PCL) triblock copolymer blended in epoxy resin by tapping mode atomic force microscopy (TM-AFM). We found that at a set-point amplitude ratio (rsp) less than or equal to 0.85, a clear phase contrast could be obtained using a probe with a force constant of 40 N/m. When rsp was decreased to 0.1 or less, the measured size of the PB-rich domain relatively shrank; however, the height images of the PB-rich domain would take reverse (translating from the original light to dark) at rsp = 0.85. Force-probe measurements were carried out on the phase-separated regions by TM-AFM. According to the phase shift angle vs. rsp curve, it could be concluded that the different force exerting on the epoxy matrix or on the PB-rich domain might result in the height and phase image reversion. Furthermore, the indentation depth vs. rsp plot showed that with large tapping force (lower rsp), the indentation depth for the PB-rich domain was nearly identical for the epoxy resin matrix.
Collapse
Affiliation(s)
- Huiqin Li
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Limin Sun
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Guangxia Shen
- Research Institute of Micro/Nano Science and Technology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Liang
- Instrumental Analysis Center, Shanghai Jiao Tong University, Shanghai, 200240, China
| |
Collapse
|