1
|
Kim M, Naik SD, Jarhad DB, Aswar VR, Tripathi SK, Aslam MA, Huh JY, Jeong LS. Stereochemical influence of 4'-methyl substitutions on truncated 4'-thioadenosine derivatives: Impact on A 3 adenosine receptor binding and antagonism. Bioorg Chem 2024; 153:107901. [PMID: 39447347 DOI: 10.1016/j.bioorg.2024.107901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/10/2024] [Accepted: 10/17/2024] [Indexed: 10/26/2024]
Abstract
Herein, we investigated the stereochemical effects of 4'-methyl substitution on A3 adenosine receptor (A3AR) ligands by synthesizing and evaluating a series of truncated 4'-thioadenosine derivatives featuring 4'-α-methyl, 4'-β-methyl, and 4',4'-dimethyl substitutions. We successfully synthesized these derivatives, using the stereoselective addition of an organometallic reagent, KSAc-mediated sulfur cyclization, and Vorbrüggen condensation. Binding assays demonstrated that the 4'-β-methyl substitution conferred the highest affinity for A3AR, with compound 1 h exhibiting a Ki = 3.5 nM, followed by the 4',4'-dimethyl and 4'-α-methyl substitutions. Notably, despite the absence of the 5'-OH group, compound 1 h unexpectedly displayed partial agonism. Computational docking studies indicated that compound 1 h, the β-methyl derivative, adopted a South conformation and maintained strong interactions within the receptor, including a critical interaction with Thr94, a residue known to be notable for agonistic effects. Conversely, compound 2 h, the α-methyl derivative, also adopted a South conformation but resulted in a flattened structure that hindered interactions with Thr94 and Asn250. The dimethyl derivative 3 h exhibited steric clashes with Thr94, contributing to a reduction in binding affinity. However, the docking results for 3 h indicated a North conformation, suggesting that the change in sugar conformation due to the additional 4'-methyl group altered the angle between the α-methyl group and the sugar plane, enabling binding despite the increased steric bulk. These findings suggest that not only do the substituents and their stereochemistry influence receptor-ligand interactions, but the conformation and the resulting spatial orientation of the substituents also play a crucial role in modulating receptor-ligand interaction. This stereochemical insight offers a valuable framework for the design of new, selective, and potent A3AR ligands, potentially facilitating the development of novel therapeutics for A3AR-related diseases such as glaucoma, inflammation, and cancer.
Collapse
Affiliation(s)
- Minjae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Siddhi D Naik
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Government College of Arts Science and Commerce, Khandola Marcela, Goa, India
| | - Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Vikas R Aswar
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Sushil Kumar Tripathi
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea
| | - Muhammad Arif Aslam
- College of Pharmacy, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Joo Young Huh
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea; Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, Seoul 06974, Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, South Korea; Future Medicine Co., Ltd, 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea.
| |
Collapse
|
2
|
Kim G, Jarhad DB, Lee G, Kim G, Hou X, Yu J, Lee CS, Warnick E, Gao ZG, Ahn SY, Kwak D, Park K, Lee SD, Park TU, Jung SY, Lee JH, Choi JR, Kim M, Kim D, Kim B, Jacobson KA, Jeong LS. Structural Modification and Biological Evaluation of 2,8-Disubstituted Adenine and Its Nucleosides as A 2A Adenosine Receptor Antagonists: Exploring the Roles of Ribose at Adenosine Receptors. J Med Chem 2024; 67:10490-10507. [PMID: 38845345 PMCID: PMC11302573 DOI: 10.1021/acs.jmedchem.4c01003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Building on the preceding structural analysis and a structure-activity relationship (SAR) of 8-aryl-2-hexynyl nucleoside hA2AAR antagonist 2a, we strategically inverted C2/C8 substituents and eliminated the ribose moiety. These modifications aimed to mitigate potential steric interactions between ribose and adenosine receptors. The SAR findings indicated that such inversions significantly modulated hA3AR binding affinities depending on the type of ribose, whereas removal of ribose altered the functional efficacy via hA2AAR. Among the synthesized derivatives, 2-aryl-8-hexynyl adenine 4a demonstrated the highest selectivity for hA2AAR (Ki,hA2A = 5.0 ± 0.5 nM, Ki,hA3/Ki,hA2A = 86) and effectively blocked cAMP production and restored IL-2 secretion in PBMCs. Favorable pharmacokinetic properties and a notable enhancement of anticancer effects in combination with an mAb immune checkpoint blockade were observed upon oral administration of 4a. These findings establish 4a as a viable immune-oncology therapeutic candidate.
Collapse
Affiliation(s)
- Gibae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Grim Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Xiyan Hou
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Life Science, Dalian Minzu University, Dalian 116600, People's Republic of China
| | - Jinha Yu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Chang Soo Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eugene Warnick
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sang Yeop Ahn
- Future Medicine Co., Ltd., 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea
| | - Dongik Kwak
- Future Medicine Co., Ltd., 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea
| | - Kichul Park
- LNPsolution, R&D Laboratory, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Summer Dabin Lee
- LNPsolution, R&D Laboratory, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do 10326, Republic of Korea
| | - Tae-Uk Park
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - So-Young Jung
- Preclincial Research Center (PRC), Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | | | | | | | | | - Bongtae Kim
- HK inno.N Corp., Seoul 04551, Republic of Korea
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Future Medicine Co., Ltd., 54 Changup-ro, Sujeong-gu, Seongnam, Gyeonggi-do 13449, Republic of Korea
| |
Collapse
|
3
|
Kim G, Hou X, Byun WS, Kim G, Jarhad DB, Lee G, Hyun YE, Yu J, Lee CS, Qu S, Warnick E, Gao ZG, Kim JY, Ji S, Shin H, Choi JR, Jacobson KA, Lee HW, Lee SK, Jeong LS. Structure-Activity Relationship of Truncated 2,8-Disubstituted-Adenosine Derivatives as Dual A 2A/A 3 Adenosine Receptor Antagonists and Their Cancer Immunotherapeutic Activity. J Med Chem 2023; 66:12249-12265. [PMID: 37603705 PMCID: PMC10896643 DOI: 10.1021/acs.jmedchem.3c00806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Based on hA2AAR structures, a hydrophobic C8-heteroaromatic ring in 5'-truncated adenosine analogues occupies the subpocket tightly, converting hA2AAR agonists into antagonists while maintaining affinity toward hA3AR. The final compounds of 2,8-disubstituted-N6-substituted 4'-thionucleosides, or 4'-oxo, were synthesized from d-mannose and d-erythrono-1,4-lactone, respectively, using a Pd-catalyst-controlled regioselective cross-coupling reaction. All tested compounds completely antagonized hA2AAR, including 5d with the highest affinity (Ki,A2A = 7.7 ± 0.5 nM). The hA2AAR-5d X-ray structure revealed that C8-heteroaromatic rings prevented receptor activation-associated conformational changes. However, the C8-substituted compounds still antagonized hA3AR. Structural SAR features and docking studies supported different binding modes at A2AAR and A3AR, elucidating pharmacophores for receptor activation and selectivity. Favorable pharmacokinetics were demonstrated, in which 5d displayed high oral absorption, moderate half-life, and bioavailability. Also, 5d significantly improved the antitumor effect of anti-PD-L1 in vivo. Overall, this study suggests that the novel dual A2AAR/A3AR nucleoside antagonists would be promising drug candidates for immune-oncology.
Collapse
Affiliation(s)
- Gibae Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Xiyan Hou
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Life Science, Dalian Minzu University, Dalian 116600, People's Republic of China
| | - Woong Sub Byun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Department of Chemical and Systems Biology, Chem-H and Stanford Cancer Institute, Stanford School of Medicine, Stanford University, Stanford, California 94305, United States
| | - Gyudong Kim
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Dnyandev B Jarhad
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Grim Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Young Eum Hyun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jinha Yu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- College of Pharmacy and Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, South Korea
| | - Chang Soo Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Shuhao Qu
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Eugene Warnick
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Ji Yong Kim
- Future Medicine Company Limited, Seoul 06665, Republic of Korea
| | - Seunghee Ji
- HK Inno.N Corporation, Seoul 04551, Republic of Korea
| | - Hyunwoo Shin
- HK Inno.N Corporation, Seoul 04551, Republic of Korea
| | | | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Hyuk Woo Lee
- Future Medicine Company Limited, Seoul 06665, Republic of Korea
| | - Sang Kook Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Lak Shin Jeong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
- Future Medicine Company Limited, Seoul 06665, Republic of Korea
| |
Collapse
|
4
|
Determination and validation of LJ-2698, a potent human A 3 adenosine receptor antagonist, in rat plasma by liquid chromatography-tandem mass spectrometry and its application in pharmacokinetic study. Arch Pharm Res 2017; 40:952-961. [PMID: 28756559 DOI: 10.1007/s12272-017-0935-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 07/25/2017] [Indexed: 10/19/2022]
Abstract
LJ-2698, a highly potent human A3 adenosine receptor antagonist with nucleoside structure, was designed to have a minimal species dependence. For further pre-clinical studies, analytical method for the detection of LJ-2698 in rat plasma was developed by liquid chromatography-tandem mass. Plasma samples were processed by protein precipitation method with acetonitrile, using losartan as the internal standard (IS). Chromatographic separation was carried out using a Kinetex C18 column (100 × 4.6 mm; 100 Å; 2.6 μ) with acetonitrile/water with 0.2% (v/v) formic acid (65:35, v/v) in the isocratic mode at a flow rate of 0.4 mL/min. Mass spectrometric detection in multiple reaction monitoring mode was performed with positive electrospray ionization. The mass transitions of LJ-2698 and IS were m/z 412.3 → 294.1 and m/z 423.1 → 207.2, respectively. The calibration curves were linear in the range 5.00-5000 ng/mL (r 2 ≥ 0.998). The lower limit of quantification was established as 5.00 ng/mL. Within- and between-run precisions were <7.01%, as relative standard deviation; and accuracies were in the range 3.37-3.64%, as relative error. The validated method was successfully applied to its pharmacokinetic evaluation after intravenous and oral administration in rats, and the dose-dependent pharmacokinetic behavior of LJ-2698 was elucidated for the first time.
Collapse
|
5
|
Shimamura S, Takahashi M, Fujimoto T, Yasuoka H, Itou T. Development of Practical Synthetic Method for 1-(2-Deoxy-2-Fluoro-4-Thio-β-D-Arabinofuranosyl) Thymine(S-FMAU) which is a Promising Therapeutic Agent for the Chronic Active Epstein Barr Virus Infection; CAEBV. J SYN ORG CHEM JPN 2017. [DOI: 10.5059/yukigoseikyokaishi.75.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | | | | | | | - Takayuki Itou
- Synthetic Organic Chemistry Laboratories, Research & Development Headquarters, FUJIFILM Corporation
| |
Collapse
|
6
|
Design, synthesis, and anticancer activity of C8-substituted-4′-thionucleosides as potential HSP90 inhibitors. Bioorg Med Chem 2016; 24:3418-28. [DOI: 10.1016/j.bmc.2016.05.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 05/18/2016] [Accepted: 05/20/2016] [Indexed: 11/20/2022]
|
7
|
Bharate SB, Singh B, Kachler S, Oliveira A, Kumar V, Bharate SS, Vishwakarma RA, Klotz KN, Gutiérrez de Terán H. Discovery of 7-(Prolinol-N-yl)-2-phenylamino-thiazolo[5,4-d]pyrimidines as Novel Non-Nucleoside Partial Agonists for the A2A Adenosine Receptor: Prediction from Molecular Modeling. J Med Chem 2016; 59:5922-8. [PMID: 27227326 DOI: 10.1021/acs.jmedchem.6b00552] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We describe the identification of 7-(prolinol-N-yl)-2-phenylamino-thiazolo[5,4-d]pyrimidines as a novel chemotype of non-nucleoside partial agonists for the A2A adenosine receptor (A2AAR). Molecular-modeling indicated that the (S)-2-hydroxymethylene-pyrrolidine could mimic the interactions of agonists' ribose, suggesting that this class of compounds could have agonistic properties. This was confirmed by functional assays on the A2AAR, where their efficacy could be associated with the presence of the 2-hydroxymethylene moiety. Additionally, the best compound displays promising affinity, selectivity profile, and physicochemical properties.
Collapse
Affiliation(s)
| | | | - Sonja Kachler
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg , Versbacher Strasse 9, D-97078 Würzburg, Germany
| | - Ana Oliveira
- Department of Cell and Molecular Biology, Uppsala University , Box 596, SE-751 24 Uppsala, Sweden
| | | | | | | | - Karl-Norbert Klotz
- Institut für Pharmakologie und Toxikologie, Julius-Maximilians-Universität Würzburg , Versbacher Strasse 9, D-97078 Würzburg, Germany
| | - Hugo Gutiérrez de Terán
- Department of Cell and Molecular Biology, Uppsala University , Box 596, SE-751 24 Uppsala, Sweden
| |
Collapse
|
8
|
Rodríguez D, Gao ZG, Moss SM, Jacobson KA, Carlsson J. Molecular docking screening using agonist-bound GPCR structures: probing the A2A adenosine receptor. J Chem Inf Model 2015; 55:550-63. [PMID: 25625646 DOI: 10.1021/ci500639g] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Crystal structures of G protein-coupled receptors (GPCRs) have recently revealed the molecular basis of ligand binding and activation, which has provided exciting opportunities for structure-based drug design. The A2A adenosine receptor (A2AAR) is a promising therapeutic target for cardiovascular diseases, but progress in this area is limited by the lack of novel agonist scaffolds. We carried out docking screens of 6.7 million commercially available molecules against active-like conformations of the A2AAR to investigate whether these structures could guide the discovery of agonists. Nine out of the 20 predicted agonists were confirmed to be A2AAR ligands, but none of these activated the ARs. The difficulties in discovering AR agonists using structure-based methods originated from limited atomic-level understanding of the activation mechanism and a chemical bias toward antagonists in the screened library. In particular, the composition of the screened library was found to strongly reduce the likelihood of identifying AR agonists, which reflected the high ligand complexity required for receptor activation. Extension of this analysis to other pharmaceutically relevant GPCRs suggested that library screening may not be suitable for targets requiring a complex receptor-ligand interaction network. Our results provide specific directions for the future development of novel A2AAR agonists and general strategies for structure-based drug discovery.
Collapse
Affiliation(s)
- David Rodríguez
- †Science for Life Laboratory, Stockholm University, Box 1031, SE-171 21 Solna, Sweden.,‡Swedish e-Science Research Center (SeRC), SE-100 44 Stockholm, Sweden.,§Department of Biochemistry and Biophysics and Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Zhang-Guo Gao
- ∥Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Steven M Moss
- ∥Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenneth A Jacobson
- ∥Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Jens Carlsson
- †Science for Life Laboratory, Stockholm University, Box 1031, SE-171 21 Solna, Sweden.,‡Swedish e-Science Research Center (SeRC), SE-100 44 Stockholm, Sweden.,§Department of Biochemistry and Biophysics and Center for Biomembrane Research, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
9
|
Rodríguez A, Guerrero A, Gutierrez-de-Terán H, Rodríguez D, Brea J, Loza MI, Rosell G, Pilar Bosch M. New selective A2A agonists and A3 antagonists for human adenosine receptors: synthesis, biological activity and molecular docking studies. MEDCHEMCOMM 2015. [DOI: 10.1039/c5md00086f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Synthesis and pharmacological characterization of a new series of adenosine derivatives on the four human adenosine receptors are reported.
Collapse
Affiliation(s)
- Anna Rodríguez
- Department of Biological Chemistry and Molecular Modelling
- IQAC (CSIC)
- 08034 Barcelona
- Spain
| | - Angel Guerrero
- Department of Biological Chemistry and Molecular Modelling
- IQAC (CSIC)
- 08034 Barcelona
- Spain
| | - Hugo Gutierrez-de-Terán
- Department of Cell and Molecular Biology
- Uppsala University
- Biomedical Center
- SE-751 24 Uppsala
- Sweden
| | - David Rodríguez
- Department of Biochemistry and Biophysics and Center for Biomembrane Research
- Stockholm University
- Sweden
| | - José Brea
- Biofarma Research Group, Center of Research in Molecular Medicine and Chronic Diseases (CIMUS)
- 15782 Santiago de Compostela
- Spain
| | - María I. Loza
- Biofarma Research Group, Center of Research in Molecular Medicine and Chronic Diseases (CIMUS)
- 15782 Santiago de Compostela
- Spain
| | - Gloria Rosell
- Department of Pharmacology and Medicinal Chemistry (Unit Associated to CSIC)
- Faculty of Pharmacy
- University of Barcelona
- 08028 Barcelona
- Spain
| | - M. Pilar Bosch
- Department of Biological Chemistry and Molecular Modelling
- IQAC (CSIC)
- 08034 Barcelona
- Spain
| |
Collapse
|
10
|
Gao ZG, Balasubramanian R, Kiselev E, Wei Q, Jacobson KA. Probing biased/partial agonism at the G protein-coupled A(2B) adenosine receptor. Biochem Pharmacol 2014; 90:297-306. [PMID: 24853985 PMCID: PMC4128710 DOI: 10.1016/j.bcp.2014.05.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/12/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
Abstract
G protein-coupled A(2B) adenosine receptor (AR) regulates numerous important physiological functions, but its activation by diverse A(2B)AR agonists is poorly profiled. We probed potential partial and/or biased agonism in cell lines expressing variable levels of endogenous or recombinant A(2B)AR. In cAMP accumulation assays, both 5'-substituted NECA and C2-substituted MRS3997 are full agonists. However, only 5'-substituted adenosine analogs are full agonists in calcium mobilization, ERK1/2 phosphorylation and β-arrestin translocation. A(2B)AR overexpression in HEK293 cells markedly increased the agonist potency and maximum effect in cAMP accumulation, but less in calcium and ERK1/2. A(2B)AR siRNA silencing was more effective in reducing the maximum cAMP effect of non-nucleoside agonist BAY60-6583 than NECA's. A quantitative 'operational model' characterized C2-substituted MRS3997 as either balanced (cAMP accumulation, ERK1/2) or strongly biased agonist (against calcium, β-arrestin). N⁶-substitution biased against ERK1/2 (weakly) and calcium and β-arrestin (strongly) pathways. BAY60-6583 is ERK1/2-biased, suggesting a mechanism distinct from adenosine derivatives. BAY60-6583, as A(2B)AR antagonist in MIN-6 mouse pancreatic β cells expressing low A(2B)AR levels, induced insulin release. This is the first relatively systematic study of structure-efficacy relationships of this emerging drug target.
Collapse
Affiliation(s)
- Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Blg. 8A, Rm B1 A-17, NDDK 8 Center Dr., 9000 Rockville Pike, Bethesda, MD 20892-0810, USA.
| | - Ramachandran Balasubramanian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Blg. 8A, Rm B1 A-17, NDDK 8 Center Dr., 9000 Rockville Pike, Bethesda, MD 20892-0810, USA
| | - Evgeny Kiselev
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Blg. 8A, Rm B1 A-17, NDDK 8 Center Dr., 9000 Rockville Pike, Bethesda, MD 20892-0810, USA
| | - Qiang Wei
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Blg. 8A, Rm B1 A-17, NDDK 8 Center Dr., 9000 Rockville Pike, Bethesda, MD 20892-0810, USA
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, NIDDK, National Institutes of Health, Blg. 8A, Rm B1 A-17, NDDK 8 Center Dr., 9000 Rockville Pike, Bethesda, MD 20892-0810, USA.
| |
Collapse
|
11
|
Nayak A, Chandra G, Hwang I, Kim K, Hou X, Kim HO, Sahu PK, Roy KK, Yoo J, Lee Y, Cui M, Choi S, Moss SM, Phan K, Gao ZG, Ha H, Jacobson KA, Jeong LS. Synthesis and anti-renal fibrosis activity of conformationally locked truncated 2-hexynyl-N(6)-substituted-(N)-methanocarba-nucleosides as A3 adenosine receptor antagonists and partial agonists. J Med Chem 2014; 57:1344-54. [PMID: 24456490 PMCID: PMC3954500 DOI: 10.1021/jm4015313] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
![]()
Truncated N6-substituted-(N)-methanocarba-adenosine derivatives
with 2-hexynyl substitution
were synthesized to examine parallels with corresponding 4′-thioadenosines.
Hydrophobic N6 and/or C2 substituents were tolerated in
A3AR binding, but only an unsubstituted 6-amino group with
a C2-hexynyl group promoted high hA2AAR affinity. A small
hydrophobic alkyl (4b and 4c) or N6-cycloalkyl group (4d) showed
excellent binding affinity at the hA3AR and was better
than an unsubstituted free amino group (4a). A3AR affinities of 3-halobenzylamine derivatives 4f–4i did not differ significantly, with Ki values of 7.8–16.0 nM. N6-Methyl derivative 4b (Ki = 4.9 nM) was a highly selective, low efficacy partial A3AR agonist. All compounds were screened for renoprotective effects
in human TGF-β1-stimulated mProx tubular cells, a kidney fibrosis
model. Most compounds strongly inhibited TGF-β1-induced collagen
I upregulation, and their A3AR binding affinities were
proportional to antifibrotic effects; 4b was most potent
(IC50 = 0.83 μM), indicating its potential as a good
therapeutic candidate for treating renal fibrosis.
Collapse
Affiliation(s)
- Akshata Nayak
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University , Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Tosh DK, Paoletta S, Deflorian F, Phan K, Moss SM, Gao ZG, Jiang X, Jacobson KA. Structural sweet spot for A1 adenosine receptor activation by truncated (N)-methanocarba nucleosides: receptor docking and potent anticonvulsant activity. J Med Chem 2012; 55:8075-90. [PMID: 22921089 PMCID: PMC3463139 DOI: 10.1021/jm300965a] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A(1) adenosine receptor (AR) agonists display antiischemic and antiepileptic neuroprotective activity, but peripheral cardiovascular side effects impeded their development. SAR study of N(6)-cycloalkylmethyl 4'-truncated (N)-methanocarba-adenosines identified 10 (MRS5474, N(6)-dicyclopropylmethyl, K(i) = 47.9 nM) as a moderately A(1)AR-selective full agonist. Two stereochemically defined N(6)-methynyl group substituents displayed narrow SAR; groups larger than cyclobutyl greatly reduced AR affinity, and those larger or smaller than cyclopropyl reduced A(1)AR selectivity. Nucleoside docking to A(1)AR homology model characterized distinct hydrophobic cyclopropyl subpockets, the larger "A" forming contacts with Thr270 (7.35), Tyr271 (7.36), Ile274 (7.39), and carbon chains of glutamates (EL2) and the smaller subpocket "B" forming contacts between TM6 and TM7. 10 suppressed minimal clonic seizures (6 Hz mouse model) without typical rotarod impairment of A(1)AR agonists. Truncated nucleosides, an appealing preclinical approach, have more druglike physicochemical properties than other A(1)AR agonists. Thus, we identified highly restricted regions for substitution around N(6) suitable for an A(1)AR agonist with anticonvulsant activity.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Silvia Paoletta
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Francesca Deflorian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Khai Phan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Steven M. Moss
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Xiaohui Jiang
- Anticonvulsant Screening Program, Office of Translational Research, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| |
Collapse
|
13
|
Hou X, Majik MS, Kim K, Pyee Y, Lee Y, Alexander V, Chung HJ, Lee HW, Chandra G, Lee JH, Park SG, Choi WJ, Kim HO, Phan K, Gao ZG, Jacobson KA, Choi S, Lee SK, Jeong LS. Structure-activity relationships of truncated C2- or C8-substituted adenosine derivatives as dual acting A₂A and A₃ adenosine receptor ligands. J Med Chem 2012; 55:342-56. [PMID: 22142423 PMCID: PMC3266722 DOI: 10.1021/jm201229j] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Truncated N(6)-substituted-4'-oxo- and 4'-thioadenosine derivatives with C2 or C8 substitution were studied as dual acting A(2A) and A(3) adenosine receptor (AR) ligands. The lithiation-mediated stannyl transfer and palladium-catalyzed cross-coupling reactions were utilized for functionalization of the C2 position of 6-chloropurine nucleosides. An unsubstituted 6-amino group and a hydrophobic C2 substituent were required for high affinity at the hA(2A)AR, but hydrophobic C8 substitution abolished binding at the hA(2A)AR. However, most of synthesized compounds displayed medium to high binding affinity at the hA(3)AR, regardless of C2 or C8 substitution, and low efficacy in a functional cAMP assay. Several compounds tended to be full hA(2A)AR agonists. C2 substitution probed geometrically through hA(2A)AR docking was important for binding in order of hexynyl > hexenyl > hexanyl. Compound 4g was the most potent ligand acting dually as hA(2A)AR agonist and hA(3)AR antagonist, which might be useful for treatment of asthma or other inflammatory diseases.
Collapse
Affiliation(s)
- Xiyan Hou
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Mahesh S. Majik
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Kyunglim Kim
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Yuna Pyee
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Yoonji Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Varughese Alexander
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Hwa-Jin Chung
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Hyuk Woo Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Girish Chandra
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Jin Hee Lee
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Seul-gi Park
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Won Jun Choi
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
- College of Pharmacy, Dongguk University, Kyungki-do 410-774, Korea
| | - Hea Ok Kim
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Khai Phan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes, and Digestive and Kidney Disease, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Sun Choi
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| | - Sang Kook Lee
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Lak Shin Jeong
- Laboratory of Medicinal Chemistry, College of Pharmacy and Department of Bioinspired Science, Ewha Womans University, Seoul 120-750, Korea
| |
Collapse
|
14
|
Deflorian F, Kumar TS, Phan K, Gao ZG, Xu F, Wu H, Katritch V, Stevens RC, Jacobson KA. Evaluation of molecular modeling of agonist binding in light of the crystallographic structure of an agonist-bound A₂A adenosine receptor. J Med Chem 2011; 55:538-52. [PMID: 22104008 DOI: 10.1021/jm201461q] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Molecular modeling of agonist binding to the human A(2A) adenosine receptor (AR) was assessed and extended in light of crystallographic structures. Heterocyclic adenine nitrogens of cocrystallized agonist overlaid corresponding positions of the heterocyclic base of a bound triazolotriazine antagonist, and ribose moiety was coordinated in a hydrophilic region, as previously predicted based on modeling using the inactive receptor. Automatic agonist docking of 20 known potent nucleoside agonists to agonist-bound A(2A)AR crystallographic structures predicted new stabilizing protein interactions to provide a structural basis for previous empirical structure activity relationships consistent with previous mutagenesis results. We predicted binding of novel C2 terminal amino acid conjugates of A(2A)AR agonist CGS21680 and used these models to interpret effects on binding affinity of newly synthesized agonists. d-Amino acid conjugates were generally more potent than l-stereoisomers and free terminal carboxylates more potent than corresponding methyl esters. Amino acid moieties were coordinated close to extracellular loops 2 and 3. Thus, molecular modeling is useful in probing ligand recognition and rational design of GPCR-targeting compounds with specific pharmacological profiles.
Collapse
Affiliation(s)
- Francesca Deflorian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Building 8A, Room B1A-19, Bethesda, Maryland 20892-0810, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Tosh DK, Phan K, Deflorian F, Wei Q, Gao ZG, Jacobson KA. Truncated (N)-Methanocarba Nucleosides as A(1) Adenosine Receptor Agonists and Partial Agonists: Overcoming Lack of a Recognition Element. ACS Med Chem Lett 2011; 2:626-631. [PMID: 21858244 DOI: 10.1021/ml200114q] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
A(1) adenosine receptor (AR) agonists are neuroprotective, cardioprotective, and anxiolytic. (N)-Methanocarba adenine nucleosides designed to bind to human A(1)AR were truncated to eliminate 5'-CH(2)OH. This modification previously converted A(3)AR agonists into antagonists, but the comparable effect at A(1)AR is unknown. In comparison to ribosides, affinity at the A(1)AR was less well preserved than at the A(3)AR, although a few derivatives were moderately A(1)AR selective, notably full agonist 21 (N(6)-dicyclopropylmethyl, K(i) 47.9 nM). Thus, at the A(1)AR recognition elements for nucleoside binding depend more on 5'region interactions, and in their absence A(3)AR selectivity predominates. Based on the recently reported agonist-bound AR structure, this difference between subtypes likely correlates with an essential His residue in transmembrane domain 6 of A(1) but not A(3)AR. The derivatives ranged from partial to full agonists in A(1)AR-mediated adenylate cyclase inhibition. Truncated derivatives have more drug-like physical properties than other A(1)AR agonists; this approach is appealing for preclinical development.
Collapse
Affiliation(s)
- Dilip K. Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Khai Phan
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Francesca Deflorian
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Qiang Wei
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Kenneth A. Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|