1
|
Xing K, Zhang H, Wang S, Li J, Mu Z, Zhang L, Zuo S, Wang Y, Li S, Wu B, Jing Y, Wen J, Liu D, Huang M, Zhao L. Design, synthesis and biological evaluation of 4-(indolin-1-yl)-6-substituted-pyrido[3,2-d]pyrimidine derivatives as Mnk1/2 inhibitors. Eur J Med Chem 2024; 272:116499. [PMID: 38759457 DOI: 10.1016/j.ejmech.2024.116499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 05/10/2024] [Accepted: 05/12/2024] [Indexed: 05/19/2024]
Abstract
The Mnk-eIF4E axis plays a crucial role in tumor development, and inhibiting Mnk kinases is a promising approach for cancer therapy. Starting with fragment WS23, a series of 4-(indolin-1-yl)-6-substituted-pyrido[3,2-d]pyrimidine derivatives were designed and synthesized. Among these derivatives, compound 15b showed the highest potency with IC50 values of 0.8 and 1.5 nM against Mnk1 and Mnk2, respectively. Additionally, it demonstrated good selectivity among 30 selected kinases. 15b significantly suppressed MOLM-13 and K562 cell lines growth and caused cell cycle arrest. Furthermore, the Western blot assay revealed that 15b effectively downregulated the downstream proteins p-eIF4E, Mcl-1, and c-myc. Additionally, 15b exhibited remarkable stability in rat plasma and rat and human microsomes. In vivo anti-tumor activity study suggested that treatment with 15b suppressed tumor growth in LL/2 syngeneic models. These findings highlight the potential of 15b as a novel and potent Mnks inhibitor, which deserves further investigation.
Collapse
Affiliation(s)
- Kun Xing
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Huimin Zhang
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuxiang Wang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jinghuan Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Zhiying Mu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lanxin Zhang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shuwei Zuo
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yuetong Wang
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shujun Li
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Boyang Wu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yongkui Jing
- Liaoning Key Laboratory of Targeting Drugs for Hematological Malignancies, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Jiachen Wen
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Dan Liu
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Min Huang
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| | - Linxiang Zhao
- Key Laboratory of Structure-Based Drugs Design & Discovery of Ministry of Education, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|
2
|
Li Q, Ke L, Yu D, Xu H, Zhang Z, Yu R, Jiang T, Guo YW, Su M, Jin X. Discovery of D25, a Potent and Selective MNK Inhibitor for Sepsis-Associated Acute Spleen Injury. J Med Chem 2024; 67:3167-3189. [PMID: 38315032 DOI: 10.1021/acs.jmedchem.3c02441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Mitogen-activated protein kinase-interacting protein kinases (MNKs) and phosphorylate eukaryotic initiation factor 4E (p-eIF4E) play a critical role in regulating mRNA translation and protein synthesis associated with the development of cancer, metabolism, and inflammation. This study undertakes the modification of a 4-(3-(piperidin-4-yl)-1H-pyrazol-5-yl)pyridine structure, leading to the discovery of 4-(3-(piperidin-4-yl)-1H-pyrazol-5-yl)-1H-pyrrolo[2,3-b]pyridine (D25) as a potent and selective MNK inhibitor. D25 demonstrated inhibitory activity, with IC50 values of 120.6 nM for MNK1 and 134.7 nM for MNK2, showing exceptional selectivity. D25 inhibited the expression of pro-inflammation cytokines in RAW264.7 cells, such as inducible NO synthase, cyclooxygenase-2, and interleukin-6 (IL-6). In the lipopolysaccharide-induced sepsis mouse model, D25 significantly reduced p-eIF4E in spleen tissue and decreased the expression of tumor necrosis factor α, interleukin-1β, and IL-6, and it also reduced the production of reactive oxygen species, resulting in improved organ injury caused by inflammation. This suggests that D25 may provide a potential treatment for sepsis and sepsis-associated acute spleen injury.
Collapse
Affiliation(s)
- Qiang Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Linmao Ke
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Dandan Yu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- Guangdong Provincial Key Laboratory of Research and Development of Natural Drugs, and School of Pharmacy, Guangdong Medical University, Zhanjiang 524023, China
| | - Han Xu
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Pharmacy, Yantai University, Yantai 264005, China
| | - Zixuan Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Rilei Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Tao Jiang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Yue-Wei Guo
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
- School of Medicine, Shanghai University, Shanghai 200444, China
| | - Mingzhi Su
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| | - Xin Jin
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai 264117, China
| |
Collapse
|
3
|
Abdelaziz AM, Diab S, Islam S, Basnet SKC, Noll B, Li P, Mekonnen LB, Lu J, Albrecht H, Milne RW, Gerber C, Yu M, Wang S. Discovery of N-Phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine Derivatives as Potent Mnk2 Inhibitors: Design, Synthesis, SAR Analysis, and Evaluation of in vitro Anti-leukaemic Activity. Med Chem 2019; 15:602-623. [PMID: 30569866 DOI: 10.2174/1573406415666181219111511] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 12/03/2018] [Accepted: 12/11/2018] [Indexed: 01/25/2023]
Abstract
BACKGROUND Aberrant expression of eukaryotic translation initiation factor 4E (eIF4E) is common in many types of cancer including acute myeloid leukaemia (AML). Phosphorylation of eIF4E by MAPK-interacting kinases (Mnks) is essential for the eIF4E-mediated oncogenic activity. As such, the pharmacological inhibition of Mnks can be an effective strategy for the treatment of cancer. METHODS A series of N-phenyl-4-(1H-pyrrol-3-yl)pyrimidin-2-amine derivatives was designed and synthesised. The Mnk inhibitory activity of these derivatives as well as their anti-proliferative activity against MV4-11 AML cells was determined. RESULTS These compounds were identified as potent Mnk2 inhibitors. Most of them demonstrated potent anti-proliferative activity against MV4-11 AML cells. The cellular mechanistic studies of the representative inhibitors revealed that they reduced the level of phosphorylated eIF4E and induced apoptosis by down-regulating the anti-apoptotic protein myeloid cell leukaemia 1 (Mcl-1) and by cleaving poly(ADP-ribose)polymerase (PARP). The lead compound 7k possessed desirable pharmacokinetic properties and oral bioavailability. CONCLUSION This work proposes that exploration of the structural diversity in the context of Nphenyl- 4-(1H-pyrrol-3-yl)pyrimidin-2-amine would offer potent and selective Mnk inhibitors.
Collapse
Affiliation(s)
- Ahmed M Abdelaziz
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sarah Diab
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Saiful Islam
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sunita K C Basnet
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Benjamin Noll
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Peng Li
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Laychiluh B Mekonnen
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Jingfeng Lu
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Hugo Albrecht
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Robert W Milne
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Cobus Gerber
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Cancer Research Institute, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| |
Collapse
|
4
|
Batool A, Aashaq S, Andrabi KI. Eukaryotic initiation factor 4E (eIF4E): A recap of the cap-binding protein. J Cell Biochem 2019; 120:14201-14212. [PMID: 31074051 DOI: 10.1002/jcb.28851] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 04/09/2019] [Accepted: 04/11/2019] [Indexed: 12/29/2022]
Abstract
Eukaryotic initiation factor 4E (eIF4E), a fundamental effector and rate limiting element of protein synthesis, binds the 7-methylguanosine cap at the 5' end of eukaryotic messenger RNA (mRNA) specifically as a constituent of eIF4F translation initiation complex thus facilitating the recruitment of mRNA to the ribosomes. This review focusses on the engagement of signals contributing to growth factor originated maxim and their role in the activation of eIF4E to achieve a collective influence on cellular growth, with a key focus on conjuring vital processes like protein synthesis. The review invites considerable interest in elevating the appeal of eIF4E beyond its role in regulating translation viz a viz cancer genesis, attributed to its phosphorylation state that improves the prospect for the growth of the cancerous cell. This review highlights the latest studies that have envisioned to target these pathways and ultimately the translational machinery for therapeutic intervention. The review also brings forward the prospect of eIF4E to act as a converging juncture for signaling pathways like mTOR/PI3K and Mnk/MAPK to promote tumorigenesis.
Collapse
Affiliation(s)
- Asiya Batool
- Department of Biotechnology and Bioinformatics, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Sabreena Aashaq
- Department of Biotechnology and Bioinformatics, University of Kashmir, Srinagar, Jammu and Kashmir, India
| | - Khurshid I Andrabi
- Department of Biotechnology and Bioinformatics, University of Kashmir, Srinagar, Jammu and Kashmir, India
| |
Collapse
|
5
|
Sansook S, Lineham E, Hassell-Hart S, Tizzard GJ, Coles SJ, Spencer J, Morley SJ. Probing the Anticancer Action of Novel Ferrocene Analogues of MNK Inhibitors. Molecules 2018; 23:molecules23092126. [PMID: 30142961 PMCID: PMC6225114 DOI: 10.3390/molecules23092126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 08/20/2018] [Accepted: 08/20/2018] [Indexed: 11/22/2022] Open
Abstract
Two novel ferrocene-containing compounds based upon a known MNK1/2 kinase (MAPK-interacting kinase) inhibitor have been synthesized. The compounds were designed to use the unique shape of ferrocene to exploit a large hydrophobic pocket in MNK1/2 that is only partially occupied by the original compound. Screening of the ferrocene analogues showed that both exhibited potent anticancer effects in several breast cancer and AML (acute myeloid leukemia) cell lines, despite a loss of MNK potency. The most potent ferrocene-based compound 5 was further analysed in vitro in MDA-MB-231 (triple negative breast cancer cells). Dose–response curves of compound 5 for 2D assay and 3D assay generated IC50 values (half maximal inhibitory concentration) of 0.55 µM and 1.25 µM, respectively.
Collapse
Affiliation(s)
- Supojjanee Sansook
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ, UK.
- Faculty of Science and Technology, Princess of Naradhiwas University, Khok Khian 96000, Thailand.
| | - Ella Lineham
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QG, UK.
| | - Storm Hassell-Hart
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ, UK.
| | - Graham J Tizzard
- UK National Crystallography Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - Simon J Coles
- UK National Crystallography Service, Chemistry, Faculty of Natural and Environmental Sciences, University of Southampton, Southampton SO17 1BJ, UK.
| | - John Spencer
- Department of Chemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QJ, UK.
| | - Simon J Morley
- Department of Biochemistry, School of Life Sciences, University of Sussex, Falmer, Brighton, East Sussex BN1 9QG, UK.
| |
Collapse
|
6
|
Dual abrogation of MNK and mTOR: a novel therapeutic approach for the treatment of aggressive cancers. Future Med Chem 2017; 9:1539-1555. [PMID: 28841037 DOI: 10.4155/fmc-2017-0062] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Targeting the translational machinery has emerged as a promising therapeutic option for cancer treatment. Cancer cells require elevated protein synthesis and exhibit augmented activity to meet the increased metabolic demand. Eukaryotic translation initiation factor 4E is necessary for mRNA translation, its availability and phosphorylation are regulated by the PI3K/AKT/mTOR and MNK1/2 pathways. The phosphorylated form of eIF4E drives the expression of oncogenic proteins including those involved in metastasis. In this article, we will review the role of eIF4E in cancer, its regulation and discuss the benefit of dual inhibition of upstream pathways. The discernible interplay between the MNK and mTOR signaling pathways provides a novel therapeutic opportunity to target aggressive migratory cancers through the development of hybrid molecules.
Collapse
|
7
|
An integrated approach for discovery of highly potent and selective Mnk inhibitors: Screening, synthesis and SAR analysis. Eur J Med Chem 2015; 103:539-50. [DOI: 10.1016/j.ejmech.2015.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 10/07/2014] [Accepted: 09/05/2015] [Indexed: 02/02/2023]
|
8
|
Yu M, Li P, Basnet SKC, Kumarasiri M, Diab S, Teo T, Albrecht H, Wang S. Discovery of 4-(dihydropyridinon-3-yl)amino-5-methylthieno[2,3-d]pyrimidine derivatives as potent Mnk inhibitors: synthesis, structure-activity relationship analysis and biological evaluation. Eur J Med Chem 2015; 95:116-26. [PMID: 25800647 DOI: 10.1016/j.ejmech.2015.03.032] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Revised: 10/15/2014] [Accepted: 03/13/2015] [Indexed: 12/22/2022]
Abstract
Phosphorylation of the eukaryotic initiation factor 4E (eIF4E) by mitogen-activated protein kinase (MAPK)-interacting kinases (Mnks) is essential for oncogenesis but unnecessary for normal development. Thus, pharmacological inhibition of Mnks may offer an effective and non-toxic anti-cancer therapeutic strategy. Herein, we report the discovery of 4-(dihydropyridinon-3-yl)amino-5-methylthieno[2,3-d]pyrimidine derivatives as potent Mnk inhibitors. Docking study of 7a in Mnk2 suggests that the compound is stabilised in the ATP binding site through multiple hydrogen bonds and hydrophobic interaction. Cellular mechanistic studies on MV-4-11 cells with leads 7a, 8e and 8f reveal that they are able to down-regulate the phosphorylated eIF4E, Mcl-1 and cyclin D1, and induce apoptosis.
Collapse
Affiliation(s)
- Mingfeng Yu
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Peng Li
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sunita K C Basnet
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Malika Kumarasiri
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Sarah Diab
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Theodosia Teo
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Hugo Albrecht
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Sansom Institute for Health Research and Center for Cancer Biology, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, South Australia 5001, Australia.
| |
Collapse
|
9
|
Dynamical insights of Mnk2 kinase activation by phosphorylation to facilitate inhibitor discovery. Future Med Chem 2015; 7:91-102. [DOI: 10.4155/fmc.14.153] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: Mitogen-activated protein kinase-interacting kinases (Mnks) are emerging anticancer targets. Mnks feature unique structural features, enhancing their importance for selective inhibitor discovery. Nonetheless, the lack of structural details obstruct the development of selective Mnk inhibitors. Results: We disclose the first complete structure model of the activated state of Mnk2. Using all-atom accelerated molecular dynamics, we also demonstrate that its activation by phosphorylation grants access to distinct activation loop conformations, steering the inactive-to-active conformational transformation. Then we propose the binding mode of CGP57380 to active Mnk2, and evaluate key interactions that could be critical for future Mnk-targeted inhibitors. Conclusion: Critical insights of the Mnk2 activation process are gained, while providing a platform for designing Mnk-targeted anticancer agents.
Collapse
|
10
|
Diab S, Kumarasiri M, Yu M, Teo T, Proud C, Milne R, Wang S. MAP kinase-interacting kinases--emerging targets against cancer. ACTA ACUST UNITED AC 2014; 21:441-452. [PMID: 24613018 DOI: 10.1016/j.chembiol.2014.01.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 01/28/2014] [Accepted: 01/31/2014] [Indexed: 12/16/2022]
Abstract
Mitogen-activated protein kinase (MAPK)-interacting kinases (Mnks) regulate the initiation of translation through phosphorylation of eukaryotic initiation factor 4E (eIF4E). Mnk-mediated eIF4E activation promotes cancer development and progression. While the phosphorylation of eIF4E is necessary for oncogenic transformation, the kinase activity of Mnks seems dispensable for normal development. For this reason, pharmacological inhibition of Mnks could represent an ideal mechanism-based and nontoxic therapeutic strategy for cancer treatment. In this review, we discuss the current understanding of Mnk biological roles, structures, and functions, as well as clinical implications. Importantly, we propose different strategies for identification of highly selective small molecule inhibitors of Mnks, including exploring a structural feature of their kinase domain, DFD motif, which is unique within the human kinome. We also argue that a combined targeting of Mnks and other pathways should be considered given the complexity of cancer.
Collapse
Affiliation(s)
- Sarah Diab
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Malika Kumarasiri
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Mingfeng Yu
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Theodosia Teo
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Christopher Proud
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Robert Milne
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Shudong Wang
- Centre for Drug Discovery and Development, Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| |
Collapse
|
11
|
Diab S, Teo T, Kumarasiri M, Li P, Yu M, Lam F, Basnet SKC, Sykes MJ, Albrecht H, Milne R, Wang S. Discovery of 5-(2-(Phenylamino)pyrimidin-4-yl)thiazol-2(3H)-one Derivatives as Potent Mnk2 Inhibitors: Synthesis, SAR Analysis and Biological Evaluation. ChemMedChem 2014; 9:962-72. [DOI: 10.1002/cmdc.201300552] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2013] [Indexed: 12/24/2022]
|