1
|
Yang Y, Chen J, Shi Y, Liu P, Feng Y, Peng Q, Xu S. Catalytic Enantioselective Primary C-H Borylation for Acyclic All-Carbon Quaternary Stereocenters. J Am Chem Soc 2024; 146:1635-1643. [PMID: 38182551 DOI: 10.1021/jacs.3c12266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
Creating a perfect catalyst to operate enzyme-like chiral recognition has been a long-sought aim. A challenging example in this context is constructing acyclic all-carbon quaternary stereogenic centers by transition metal-catalyzed enantioselective C-H activation. We now report highly enantioselective iridium-catalyzed primary C-H borylation of α-all-carbon substituted 2,2-dimethyl amides enabled by a tailor-made chiral bidentate boryl ligand (CBL). The success of the current transformation is attributed to the CBL/iridium catalyst, which has a confined chiral pocket. This protocol provides a diverse array of acyclic all-carbon quaternary stereocenters with excellent enantiocontrol and distinct structural features. Computational study reveals that steric hindrance of CBL could regulate the type of dominant orbital interaction between the catalyst and substrate, which is crucial to conferring high chiral induction.
Collapse
Affiliation(s)
- Yuhuan Yang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Jingyao Chen
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yongjia Shi
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | - Peizhi Liu
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yuxiang Feng
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qian Peng
- State Key Laboratory of Elemento-Organic Chemistry, and Tianjin Key Laboratory of Biosensing and Molecular Recognition, College of Chemistry, Nankai University, Tianjin 300071, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Senmiao Xu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Material Chemistry and Chemical Engineering, Key Laboratory of Organosilicon Chemistry and Material Technology, Ministry of Education, Hangzhou Normal University, Hangzhou 311121, China
| |
Collapse
|
2
|
Zhang WQ, Shen HC. Nickel/Enamine Cooperative Catalysis Enables Highly Enantioselective Allylic Alkylation of α-Branched Aldehydes. ACS Catal 2021. [DOI: 10.1021/acscatal.1c03449] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Wen-Qian Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| | - Hong-Cheng Shen
- Hefei National Laboratory for Physical Sciences at the Microscale, and Department of Chemistry, University of Science and Technology of China, Hefei 230026, People’s Republic of China
| |
Collapse
|
3
|
Gataullin RR. Formation of Benzo[e]cycloalk[g][1,4]oxazocinones by Reaction of N-Mesyl- or N-Tosyl-N-2-[(1-cycloalken-1-yl)phenyl]glycines with Molecular Bromine. RUSS J GEN CHEM+ 2021. [DOI: 10.1134/s1070363221080090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
4
|
Feng S, Buchwald SL. CuH-Catalyzed Regio- and Enantioselective Hydrocarboxylation of Allenes: Toward Carboxylic Acids with Acyclic Quaternary Centers. J Am Chem Soc 2021; 143:4935-4941. [PMID: 33761252 PMCID: PMC8058699 DOI: 10.1021/jacs.1c01880] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We report a method to prepare α-chiral carboxylic acid derivatives, including those bearing all-carbon quaternary centers, through an enantioselective CuH-catalyzed hydrocarboxylation of allenes with a commercially available fluoroformate. A broad range of heterocycles and functional groups on the allenes were tolerated in this protocol, giving enantioenriched α-quaternary and tertiary carboxylic acid derivatives in good yields with exclusive branched regioselectivity. The synthetic utility of this approach was further demonstrated by derivatization of the products to afford biologically important compounds, including the antiplatelet drug indobufen.
Collapse
Affiliation(s)
- Sheng Feng
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Stephen L Buchwald
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
5
|
Gataullin RR. Advances in the Synthesis of Benzo‐Fused Spiro Nitrogen Heterocycles: New Approaches and Modification of Old Strategies. Helv Chim Acta 2020. [DOI: 10.1002/hlca.202000137] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rail R. Gataullin
- Ufa Federal Research Centre Ufa Institute of Chemistry of the Russian Academy of Sciences Prospect Oktyabrya, 71 Ufa 450054 Russian Federation
| |
Collapse
|
6
|
Gadais C, Ballet S. The Neurokinins: Peptidomimetic Ligand Design and Therapeutic Applications. Curr Med Chem 2018; 27:1515-1561. [PMID: 30209994 DOI: 10.2174/0929867325666180913095918] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 08/09/2018] [Accepted: 08/13/2018] [Indexed: 12/15/2022]
Abstract
The neurokinins are indisputably essential neurotransmitters in numerous pathoand physiological events. Being widely distributed in the Central Nervous System (CNS) and peripheral tissues, their discovery rapidly promoted them to drugs targets. As a necessity for molecular tools to understand the biological role of this class, endogenous peptides and their receptors prompted the scientific community to design ligands displaying either agonist and antagonist activity at the three main neurokinin receptors, called NK1, NK2 and NK3. Several strategies were implemented for this purpose. With a preference to small non-peptidic ligands, many research groups invested efforts in synthesizing and evaluating a wide range of scaffolds, but only the NK1 antagonist Aprepitant (EMENDT) and its prodrug Fosaprepitant (IVEMENDT) have been approved by the Food Drug Administration (FDA) for the treatment of Chemotherapy-Induced and Post-Operative Nausea and Vomiting (CINV and PONV, respectively). While non-peptidic drugs showed limitations, especially in side effect control, peptidic and pseudopeptidic compounds progressively regained attention. Various strategies were implemented to modulate affinity, selectivity and activity of the newly designed ligands. Replacement of canonical amino acids, incorporation of conformational constraints, and fusion with non-peptidic moieties gave rise to families of ligands displaying individual or dual NK1, NK2 and NK3 antagonism, that ultimately were combined with non-neurokinin ligands (such as opioids) to target enhanced biological impact.
Collapse
Affiliation(s)
- Charlène Gadais
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussels, Pleinlaan 2, B-1050 Brussels, Belgium
| | - Steven Ballet
- Research Group of Organic Chemistry, Departments of Chemistry and Bioengineering Sciences, Vrije Universiteit Brussels, Pleinlaan 2, B-1050 Brussels, Belgium
| |
Collapse
|
7
|
Nederpelt I, Kuzikov M, de Witte WEA, Schnider P, Tuijt B, Gul S, IJzerman AP, de Lange ECM, Heitman LH. From receptor binding kinetics to signal transduction; a missing link in predicting in vivo drug-action. Sci Rep 2017; 7:14169. [PMID: 29075004 PMCID: PMC5658448 DOI: 10.1038/s41598-017-14257-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 10/09/2017] [Indexed: 11/12/2022] Open
Abstract
An important question in drug discovery is how to overcome the significant challenge of high drug attrition rates due to lack of efficacy and safety. A missing link in the understanding of determinants for drug efficacy is the relation between drug-target binding kinetics and signal transduction, particularly in the physiological context of (multiple) endogenous ligands. We hypothesized that the kinetic binding parameters of both drug and endogenous ligand play a crucial role in determining cellular responses, using the NK1 receptor as a model system. We demonstrated that the binding kinetics of both antagonists (DFA and aprepitant) and endogenous agonists (NKA and SP) have significantly different effects on signal transduction profiles, i.e. potency values, in vitro efficacy values and onset rate of signal transduction. The antagonistic effects were most efficacious with slowly dissociating aprepitant and slowly associating NKA while the combination of rapidly dissociating DFA and rapidly associating SP had less significant effects on the signal transduction profiles. These results were consistent throughout different kinetic assays and cellular backgrounds. We conclude that knowledge of the relationship between in vitro drug-target binding kinetics and cellular responses is important to ultimately improve the understanding of drug efficacy in vivo.
Collapse
Affiliation(s)
- Indira Nederpelt
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Maria Kuzikov
- Fraunhofer IME Screening Port, Schnackenburgallee 114, D-22525, Hamburg, Germany
| | - Wilbert E A de Witte
- Division of Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Patrick Schnider
- Roche Pharmaceutical Research and Early Development, Small Molecule Research, Roche Innovation Center Basel, F. Hoffmann-La Roche Ltd, Grenzacherstrasse 124, 4070, Basel, Switzerland
| | - Bruno Tuijt
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Sheraz Gul
- Fraunhofer IME Screening Port, Schnackenburgallee 114, D-22525, Hamburg, Germany
| | - Adriaan P IJzerman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Elizabeth C M de Lange
- Division of Pharmacology, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands
| | - Laura H Heitman
- Division of Medicinal Chemistry, Leiden Academic Centre for Drug Research (LACDR), Leiden University, P.O. Box 9502, 2300 RA, Leiden, The Netherlands.
| |
Collapse
|
8
|
Tang ZL, Wang L, Tan JZ, Wan YC, Jiao YC. Synthesis and Fungicidal Activity of 1-(Carbamoylmethyl)-2-aryl-3,1-benzoxazines. Molecules 2017; 22:molecules22071103. [PMID: 28684698 PMCID: PMC6152388 DOI: 10.3390/molecules22071103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 06/25/2017] [Accepted: 06/27/2017] [Indexed: 01/21/2023] Open
Abstract
A series of new 1-(carbamoylmethyl)-2-aryl-3,1-benzoxazines were prepared in moderate to good yields by BF3·OEt2-catalyzed reactions of aromatic aldehydes with 2-(N-substituted carbamoylmethylamino)benzyl alcohols. The structures of the target compounds were confirmed by IR, 1H-NMR, 13C-NMR, and elemental analyses. The fungicidal activities of the target compounds against plant fungi were preliminarily evaluated, and some of them exhibited good activity.
Collapse
Affiliation(s)
- Zi-Long Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Lian Wang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Jing-Zhao Tan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Yi-Chao Wan
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecule of Ministry of Education, Hunan University of Science and Technology, Xiangtan 411201, China.
| | - Yin-Chun Jiao
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China.
| |
Collapse
|
9
|
Mo X, Hall DG. Dual Catalysis Using Boronic Acid and Chiral Amine: Acyclic Quaternary Carbons via Enantioselective Alkylation of Branched Aldehydes with Allylic Alcohols. J Am Chem Soc 2016; 138:10762-5. [DOI: 10.1021/jacs.6b06101] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiaobin Mo
- Department
of Chemistry,
Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| | - Dennis G. Hall
- Department
of Chemistry,
Centennial Centre for Interdisciplinary Science, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
10
|
Ouyang J, Yan R, Mi X, Hong R. Enantioselective Total Synthesis of (−)-Hosieine A. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/anie.201505251] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
11
|
|
12
|
Primi MC, Maltarollo VG, Magalhães JG, de Sá MM, Rangel-Yagui CO, Trossini GHG. Convergent QSAR studies on a series of NK₃ receptor antagonists for schizophrenia treatment. J Enzyme Inhib Med Chem 2015; 31:283-94. [PMID: 25856571 DOI: 10.3109/14756366.2015.1021250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The dopamine hypothesis states that decreased dopaminergic neurotransmission reduces schizophrenia symptoms. Neurokinin-3 receptor (NK3) antagonists reduce dopamine release and have shown positive effects in pre-clinical and clinical trials. We employed 2D and 3D-QSAR analysis on a series of 40 non-peptide NK3 antagonists. Multivariate statistical analysis, PCA and HCA, were performed to rational training/test set splitting and PLS regression was employed to construct all QSAR models. We constructed one highly predictive CoMFA model (q(2)= 0.810 and r(2)= 0.929) and acceptable HQSAR and CoMSIA models (HQSAR q(2)= 0.644 and r(2)= 0.910; CoMSIA q(2)= 0.691, r(2)= 0.911). The three different techniques provided convergent physicochemical results. All models indicate cyclopropane, piperidine and di-chloro-phenyl ring attached to cyclopropane ring and also the amide group attached to the piperidine ring could play an important role in ligand-receptor interactions. These findings may contribute to develop potential NK3 receptor antagonists for schizophrenia.
Collapse
Affiliation(s)
- Marina Candido Primi
- a Department of Pharmacy, Faculty of Pharmaceutical Sciences , University of São Paulo , SP , Brazil
| | | | | | - Matheus Malta de Sá
- b Laboratory of Genetics and Molecular Cardiology , Heart Institute (InCor), University of São Paulo Medical School , SP , Brazil , and
| | - Carlota Oliveira Rangel-Yagui
- c Department of Biochemical and Pharmaceutical Technology, Faculty of Pharmaceutical Sciences , University of São Paulo , SP , Brazil
| | | |
Collapse
|
13
|
The use of spirocyclic scaffolds in drug discovery. Bioorg Med Chem Lett 2014; 24:3673-82. [DOI: 10.1016/j.bmcl.2014.06.081] [Citation(s) in RCA: 564] [Impact Index Per Article: 56.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 06/17/2014] [Accepted: 06/27/2014] [Indexed: 12/12/2022]
|