1
|
Voráčová M, Zore M, Yli-Kauhaluoma J, Kiuru P. Harvesting phosphorus-containing moieties for their antibacterial effects. Bioorg Med Chem 2023; 96:117512. [PMID: 37939493 DOI: 10.1016/j.bmc.2023.117512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/27/2023] [Accepted: 10/31/2023] [Indexed: 11/10/2023]
Abstract
Clinically manifested resistance of bacteria to antibiotics has emerged as a global threat to society and there is an urgent need for the development of novel classes of antibacterial agents. Recently, the use of phosphorus in antibacterial agents has been explored in quite an unprecedent manner. In this comprehensive review, we summarize the use of phosphorus-containing moieties (phosphonates, phosphonamidates, phosphonopeptides, phosphates, phosphoramidates, phosphinates, phosphine oxides, and phosphoniums) in compounds with antibacterial effect, including their use as β-lactamase inhibitors and antibacterial disinfectants. We show that phosphorus-containing moieties can serve as novel pharmacophores, bioisosteres, and prodrugs to modify pharmacodynamic and pharmacokinetic properties. We further discuss the mechanisms of action, biological activities, clinical use and highlight possible future prospects.
Collapse
Affiliation(s)
- Manuela Voráčová
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Matej Zore
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Jari Yli-Kauhaluoma
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | - Paula Kiuru
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland.
| |
Collapse
|
2
|
Tabor W, Katsogiannou A, Karta D, Andrianopoulou E, Berlicki Ł, Vassiliou S, Grabowiecka A. Exploration of Thiourea-Based Scaffolds for the Construction of Bacterial Ureases Inhibitors. ACS OMEGA 2023; 8:28783-28796. [PMID: 37576686 PMCID: PMC10413841 DOI: 10.1021/acsomega.3c03702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/14/2023] [Indexed: 08/15/2023]
Abstract
A series of 32 thiourea-based urease inhibitors were synthesized and evaluated against native bacterial enzyme and whole cells of Sporosarcina pasteurii and Proteus mirabilis strains. The proposed inhibitors represented structurally diverse thiosemicarbazones and thiocarbohydrazones, benzyl-substituted thiazolyl thioureas, 1H-pyrazole-1-carbothioamides, and dihydropirimidine-2(1H)-thiones. Kinetic characteristics with purified S. pasteurii enzyme determined low micromolar inhibitors within each structural group. (E)-2-(1-Phenylethylidene)hydrazine-1-carbothioamide 19 (Ki = 0.39 ± 0.01 μM), (E)-2-(4-methylbenzylidene)hydrazine-1-carbothioamide 16 (Ki = 0.99 ± 0.04 μM), and N'-((1E,2E)-1,3-diphenylallylidene)hydrazinecarbothiohydrazide 29 (Ki = 2.23 ± 0.19 μM) were used in modeling studies that revealed sulfur ion coordination of the active site nickel ion and hydrogen bonds between the amide group and the side chain of Asp363 and Ala366 carbonyl moiety. Whole-cell studies proved the activity of compounds in Gram-positive and Gram-negative microorganisms. Ureolysis control observed in P. mirabilis PCM 543 (e.g., IC50 = 304 ± 14 μM for 1-benzyl-3-(4-(4-hydroxyphenyl)thiazol-2-yl)thiourea 52) is a valuable achievement, as urease is recognized as a major virulence factor of this urinary tract pathogen.
Collapse
Affiliation(s)
- Wojciech Tabor
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Aikaterini Katsogiannou
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Danai Karta
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Evgenia Andrianopoulou
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| | - Stamatia Vassiliou
- Laboratory
of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15771 Athens, Greece
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego
27, 50-370 Wrocław, Poland
| |
Collapse
|
3
|
Maślanka M, Tabor W, Krzyżek P, Grabowiecka A, Berlicki Ł, Mucha A. Inhibitory activity of catecholic phosphonic and phosphinic acids against Helicobacter pylori ureolysis. Eur J Med Chem 2023; 257:115528. [PMID: 37290184 DOI: 10.1016/j.ejmech.2023.115528] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/10/2023]
Abstract
Catechols have been reported to be potent covalent inhibitors of ureases, and they exhibit activity by modifying cysteine residues at the entrance to enzymatic active sites. Following these principles, we designed and synthesized novel catecholic derivatives that contained carboxylate and phosphonic/phosphinic functionalities and assumed expanded specific interactions. When studying the chemical stability of the molecules, we found that their intrinsic acidity catalyzes spontaneous esterification/hydrolysis reactions in methanol or water solutions, respectively. Regarding biological activity, the most promising compound, 2-(3,4-dihydroxyphenyl)-3-phosphonopropionic acid (15), exhibited significant anti-urease potential (Ki = 2.36 μM, Sporosarcinia pasteurii urease), which was reflected in the antiureolytic effect in live Helicobacter pylori cells at a submicromolar concentration (IC50 = 0.75 μM). As illustrated by molecular modeling, this compound was bound in the active site of urease through a set of concerted electrostatic and hydrogen bond interactions. The antiureolytic activity of catecholic phosphonic acids could be specific because these compounds were chemically inert and not cytotoxic to eukaryotic cells.
Collapse
Affiliation(s)
- Marta Maślanka
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Wojciech Tabor
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Paweł Krzyżek
- Department of Microbiology, Faculty of Medicine, Wrocław Medical University, Wybrzeże L. Pasteura 1, 50-367, Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Artur Mucha
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.
| |
Collapse
|
4
|
Yang X, Zhao Z, Zhao C, Li Y, El-Kott AF, Bani-Fwaz MZ. Anti-breast Adenocarcinoma and Anti-urease Anti-tyrosinase Properties of 5-Pentylresorcinol as Natural Compound with Molecular Docking Studies. J Oleo Sci 2022; 71:1031-1038. [PMID: 35781255 DOI: 10.5650/jos.ess22024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
5-Pentylresorcinol is a type of the group of resorcinol compounds that is resorcinol in that has hydrogen atom at position 5 is replaced by a pentyl group. It has a role as a lichen metabolite. This compound showed excellent to good inhibitory activities against studied these enzymes with IC50 values of 65.96 µM for urease and 34.81 µM for tyrosinase. Standard compounds for enzymes had IC50 values of 1.94±0.24 µM against urease and 84.36±5.17 µM against tyrosinase. The IC50 of 5-pentylresorcinol against MCF7 cell line was 165.72 µg/mL; against Hs 578Bst cell line was 102.14 µg/mL; against Hs 319.T cell line was 12.34 µg/mL; and against UACC-3133 cell line was 73.07 µg/mL, respectively. The chemical activities of 5-pentylresorcinol against urease and tyrosinase were evaluated using the molecular modeling study. The anti-cancer activity of 5-pentylresorcinol was also investigated by treating the compound on the BRCT repeat region from the breast cancer-associated protein (BRCA1), and their interactions were assessed utilizing the molecular docking calculations. The results revealed the probable interactions and their characteristics at an atomic level. The docking scores of 5-pentylresorcinol against urease, tyrosinase, and BRCA1 are -3.073, -5.262, and -3.238 (kcal/mol), respectively.
Collapse
Affiliation(s)
- Xiaopeng Yang
- Department of Thyroid and Breast Surgery, The First People's Hospital of Wenling
| | - Zhenyu Zhao
- Department of Oncology, The Third People's Hospital of Hubei Province, Affiliated Hospital of Jianghan University
| | - Chenhui Zhao
- Department of General Surgery, The Second People's Hospital of Jiulongpo District
| | - Yan Li
- Department of General Surgery, Puren Hospital of Wuhan University of Science and Technology
| | - Attalla F El-Kott
- Department of Biology, College of Science, King Khalid University.,Department of Zoology, College of Science, Damanhour University
| | | |
Collapse
|
5
|
Loharch S, Berlicki Ł. Rational Development of Bacterial Ureases Inhibitors. CHEM REC 2022; 22:e202200026. [PMID: 35502852 DOI: 10.1002/tcr.202200026] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/28/2022] [Indexed: 12/23/2022]
Abstract
Urease, an enzyme that catalyzes the hydrolysis of urea, is a virulence factor of various pathogenic bacteria. In particular, Helicobacter pylori, that colonizes the digestive tract and Proteus spp., that can infect the urinary tract, are related to urease activity. Therefore, urease inhibitors are considered as potential therapeutics against these infections. This review describes current knowledge of the structures, activity, and biological importance of bacterial ureases. Moreover, the structure-based design of several classes of bacterial urease inhibitors is presented and discussed. Phosphinic and phosphonic acids were applied as transition-state analogues, while Michael acceptors and ebselen derivatives were applied as covalent binders of cysteine residue. This review incorporates bacterial urease inhibitors from literature published between 2008 and 2021.
Collapse
Affiliation(s)
- Saurabh Loharch
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| |
Collapse
|
6
|
Zamudio-Medina A, Pérez-Hernández N, Castrejón-Flores JL, Romero-García S, Prado-García H, Bañuelos-Hernández A, Franco-Pérez M. Obtaining symmetric and asymmetric bisphosphoramidates and bisphosphoramidothioates by a single step multicomponent reaction. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1878358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Angel Zamudio-Medina
- Unidad Profesional Interdisciplinaria de Biotecnología, Instituto Politécnico Nacional, CDMX, México
| | - Nury Pérez-Hernández
- Escuela Nacional de Medicina y Homeopatía, Instituto Politécnico Nacional, CDMX, México
| | | | - Susana Romero-García
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | - Heriberto Prado-García
- Department of Chronic-Degenerative Diseases, National Institute of Respiratory Diseases “Ismael Cosío Villegas”, Mexico City, Mexico
| | | | - Marco Franco-Pérez
- Departamento de Física y Química Teórica, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad Universitaria, CDMX, México
| |
Collapse
|
7
|
Pagoni A, Grabowiecka A, Tabor W, Mucha A, Vassiliou S, Berlicki Ł. Covalent Inhibition of Bacterial Urease by Bifunctional Catechol-Based Phosphonates and Phosphinates. J Med Chem 2020; 64:404-416. [PMID: 33369409 DOI: 10.1021/acs.jmedchem.0c01143] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this study, a new class of bifunctional inhibitors of bacterial ureases, important molecular targets for antimicrobial therapies, was developed. The structures of the inhibitors consist of a combination of a phosphonate or (2-carboxyethyl)phosphinate functionality with a catechol-based fragment, which are designed for complexation of the catalytic nickel ions and covalent bonding with the thiol group of Cys322, respectively. Compounds with three types of frameworks, including β-3,4-dihydroxyphenyl-, α-3,4-dihydroxybenzyl-, and α-3,4-dihydroxybenzylidene-substituted derivatives, exhibited complex and varying structure-dependent kinetics of inhibition. Among irreversible binders, methyl β-(3,4-dihydroxyphenyl)-β-(2-carboxyethyl)phosphorylpropionate was observed to be a remarkably reactive inhibitor of Sporosarcina pasteurii urease (kinact/KI = 10 420 s-1 M-1). The high potential of this group of compounds was also confirmed in Proteus mirabilis whole-cell-based inhibition assays. Some compounds followed slow-binding and reversible kinetics, e.g., methyl β-(3,4-dihydroxyphenyl)-β-phosphonopropionate, with Ki* = 0.13 μM, and an atypical low dissociation rate (residence time τ = 205 min).
Collapse
Affiliation(s)
- Aikaterini Pagoni
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15701 Athens, Greece
| | - Agnieszka Grabowiecka
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Wojciech Tabor
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Stamatia Vassiliou
- Laboratory of Organic Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis, Zografou, 15701 Athens, Greece
| | - Łukasz Berlicki
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
8
|
Castrejón-Flores JL, Reyna-Luna J, Flores-Martinez YM, García-Ventura MI, Zamudio-Medina A, Franco-Pérez M. Characterizing the thermal degradation mechanism of two bisphosphoramidates by TGA, DSC, mass spectrometry and first-principle theoretical protocols. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
9
|
N-Benzyl Residues as the P1' Substituents in Phosphorus-Containing Extended Transition State Analog Inhibitors of Metalloaminopeptidases. Molecules 2020; 25:molecules25184334. [PMID: 32971789 PMCID: PMC7571175 DOI: 10.3390/molecules25184334] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 12/31/2022] Open
Abstract
Peptidyl enzyme inhibitors containing an internal aminomethylphosphinic bond system (P(O)(OH)-CH2-NH) can be termed extended transition state analogs by similarity to the corresponding phosphonamidates (P(O)(OH)-NH). Phosphonamidate pseudopeptides are broadly recognized as competitive mechanism-based inhibitors of metalloenzymes, mainly hydrolases. Their practical use is, however, limited by hydrolytic instability, which is particularly restricting for dipeptide analogs. Extension of phosphonamidates by addition of the methylene group produces a P-C-N system fully resistant in water conditions. In the current work, we present a versatile synthetic approach to such modified dipeptides, based on the three-component phospha-Mannich condensation of phosphinic acids, formaldehyde, and N-benzylglycines. The last-mentioned component allowed for simple and versatile introduction of functionalized P1′ residues located on the tertiary amino group. The products demonstrated moderate inhibitory activity towards porcine and plant metalloaminopeptidases, while selected derivatives appeared very potent with human alanyl aminopeptidase (Ki = 102 nM for 6a). Analysis of ligand-protein complexes obtained by molecular modelling revealed canonical modes of interactions for mono-metallic alanyl aminopeptidases, and distorted modes for di-metallic leucine aminopeptidases (with C-terminal carboxylate, not phosphinate, involved in metal coordination). In general, the method can be dedicated to examine P1′-S1′ complementarity in searching for non-evident structures of specific residues as the key fragments of perspective ligands.
Collapse
|
10
|
Kazmi M, Khan I, Khan A, Halim SA, Saeed A, Mehsud S, Al-Harrasi A, Ibrar A. Developing new hybrid scaffold for urease inhibition based on carbazole-chalcone conjugates: Synthesis, assessment of therapeutic potential and computational docking analysis. Bioorg Med Chem 2019; 27:115123. [DOI: 10.1016/j.bmc.2019.115123] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022]
|
11
|
Gholivand K, Pooyan M, Mohammadpanah F, Pirastefar F, Junk PC, Wang J, Ebrahimi Valmoozi AA, Mani-Varnosfaderani A. Synthesis, crystal structure and biological evaluation of new phosphoramide derivatives as urease inhibitors using docking, QSAR and kinetic studies. Bioorg Chem 2019; 86:482-493. [DOI: 10.1016/j.bioorg.2019.01.064] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Revised: 01/20/2019] [Accepted: 01/27/2019] [Indexed: 12/24/2022]
|
12
|
Catechol-based inhibitors of bacterial urease. Bioorg Med Chem Lett 2019; 29:1085-1089. [DOI: 10.1016/j.bmcl.2019.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/25/2019] [Accepted: 02/27/2019] [Indexed: 12/16/2022]
|
13
|
Ntatsopoulos V, Macegoniuk K, Mucha A, Vassiliou S, Berlicki Ł. Structural exploration of cinnamate-based phosphonic acids as inhibitors of bacterial ureases. Eur J Med Chem 2018; 159:307-316. [DOI: 10.1016/j.ejmech.2018.09.074] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 09/27/2018] [Accepted: 09/29/2018] [Indexed: 12/25/2022]
|
14
|
Kozioł A, Macegoniuk K, Grela E, Grabowiecka A, Biernat M, Lochyński S. Synthesis of terpenoid oxo derivatives with antiureolytic activity. Mol Biol Rep 2018; 46:51-58. [PMID: 30350237 DOI: 10.1007/s11033-018-4442-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 10/15/2018] [Indexed: 10/28/2022]
Abstract
Urease is an important virulence factor for a variety of pathogenic bacteria strains such as Helicobacter pylori, which colonizes human gastric mucosa, and Proteus sp., responsible for urinary tract infections. Specific inhibition of urease activity could be a promising adjuvant strategy for eradication of these pathogens. Due to the interesting antiureolytic activity of carvone and the scant information regarding the inhibitory properties of corresponding monoterpenes, we decided to study selected monoterpenic ketones and their oxygen derivatives. Several monoterpenes and their terpenoid oxygen derivatives were evaluated in vitro against Sporosarcina pasteurii urease. The most effective inhibitors-derivatives of β-cyclocitral (ester 10 and bromolactone 14)-were described with [Formula: see text] of 46.7 µM and 45.8 µM, respectively. Active inhibitors of native urease were tested against H. pylori and Proteus mirabilis whole cells. Here, the most active inhibitor, 14, was characterized with IC50 values of 0.32 mM and 0.61 mM for P. mirabilis and H. pylori, respectively. The antibacterial activity of a few tested inhibitors was also observed. Compound 14 limited the growth of E. coli ([Formula: see text]= 250 μg/mL). Interestingly, 10 was the only compound that was effective against both Gram-negative and Gram-positive bacteria. It had a [Formula: see text] of 150 μg/mL against E. coli and S. aureus. In the presented study a group of novel antiureolytic compounds was characterised. Besides carvone stereoisomers, these are the only terpenoid urease inhibitors described so far.
Collapse
Affiliation(s)
- Agata Kozioł
- Bioorganic Chemistry Department, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland.,Institute of Cosmetology, Wrocław College of Physiotherapy, Kościuszki 4, 50-038, Wrocław, Poland
| | - Katarzyna Macegoniuk
- Bioorganic Chemistry Department, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Ewa Grela
- Bioorganic Chemistry Department, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Agnieszka Grabowiecka
- Bioorganic Chemistry Department, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland
| | - Monika Biernat
- Department and Clinic of Haematology, Blood Neoplasms, and Bone Marrow Transplantation, Wrocław Medical University, Wybrzeże Pasteura 4, 50-367, Wrocław, Poland
| | - Stanisław Lochyński
- Bioorganic Chemistry Department, Faculty of Chemistry, Wroclaw University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370, Wrocław, Poland. .,Institute of Cosmetology, Wrocław College of Physiotherapy, Kościuszki 4, 50-038, Wrocław, Poland.
| |
Collapse
|
15
|
Rego YF, Queiroz MP, Brito TO, Carvalho PG, de Queiroz VT, de Fátima Â, Macedo Jr. F. A review on the development of urease inhibitors as antimicrobial agents against pathogenic bacteria. J Adv Res 2018; 13:69-100. [PMID: 30094084 PMCID: PMC6077150 DOI: 10.1016/j.jare.2018.05.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 04/30/2018] [Accepted: 05/01/2018] [Indexed: 01/24/2023] Open
Abstract
Ureases are enzymes that hydrolyze urea into ammonium and carbon dioxide. They have received considerable attention due to their impacts on living organism health, since the urease activity in microorganisms, particularly in bacteria, are potential causes and/or factors contributing to the persistence of some pathogen infections. This review compiles examples of the most potent antiurease organic substances. Emphasis was given to systematic screening studies on the inhibitory activity of rationally designed series of compounds with the corresponding SAR considerations. Ureases of Canavalia ensiformis, the usual model in antiureolytic studies, are emphasized. Although the active site of this class of hydrolases is conserved among bacteria and vegetal ureases, the same is not observerd for allosteric site. Therefore, inhibitors acting by participating in interactions with the allosteric site are more susceptible to a potential lack of association among their inhibitory profile for different ureases. The information about the inhibitory activity of different classes of compounds can be usefull to guide the development of new urease inhibitors that may be used in future in small molecular therapy against pathogenic bacteria.
Collapse
Affiliation(s)
- Yuri F. Rego
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Marcelo P. Queiroz
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Tiago O. Brito
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Priscila G. Carvalho
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| | - Vagner T. de Queiroz
- Departamento de Química e Física, Centro de Ciências Exatas, Naturais e da Saúde, Universidade Federal do Espírito Santo, Alegre, ES, Brazil
| | - Ângelo de Fátima
- Departamento de Química, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernando Macedo Jr.
- Departamento de Química, Centro de Ciências Exatas, Universidade Estadual de Londrina, Londrina, PR, Brazil
| |
Collapse
|
16
|
Kafarski P, Talma M. Recent advances in design of new urease inhibitors: A review. J Adv Res 2018; 13:101-112. [PMID: 30094085 PMCID: PMC6077125 DOI: 10.1016/j.jare.2018.01.007] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/09/2018] [Accepted: 01/16/2018] [Indexed: 12/22/2022] Open
Abstract
Urease is a nickel-dependent metalloenzyme found in plants, some bacteria, and fungi. Bacterial enzyme is of special importance since it has been demonstrated as a potent virulence factor for some species. Especially it is central to Helicobacter pylori metabolism and virulence being necessary for its colonization of the gastric mucosa, and is a potent immunogen that elicits a vigorous immune response. Therefore, it is not surprising that efforts to design, synthesize and evaluate of new inhibitors of urease are and active field of medicinal chemistry. In this paper recent advances on this field are reviewed.
Collapse
Affiliation(s)
- Paweł Kafarski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Science and Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | | |
Collapse
|
17
|
Piasta K, Dziełak A, Mucha A, Gumienna-Kontecka E. Non-symmetrical bis(aminoalkyl)phosphinates: new ligands with enhanced binding of Cu(ii) ions. NEW J CHEM 2018. [DOI: 10.1039/c8nj01094c] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel, non-symmetrical bis(aminoalkyl)phosphinic acids exhibit enhanced efficiency in Cu(ii) ion binding.
Collapse
Affiliation(s)
- Karolina Piasta
- Faculty of Chemistry
- University of Wrocław
- 50-383 Wrocław
- Poland
| | - Anna Dziełak
- Department of Bioorganic Chemistry
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | - Artur Mucha
- Department of Bioorganic Chemistry
- Faculty of Chemistry
- Wrocław University of Science and Technology
- 50-370 Wrocław
- Poland
| | | |
Collapse
|
18
|
Weekes DM, Jaraquemada-Peláez MDG, Kostelnik TI, Patrick BO, Orvig C. Di- and Trivalent Metal-Ion Solution Studies with the Phosphinate-Containing Heterocycle DEDA-(PO). Inorg Chem 2017; 56:10155-10161. [DOI: 10.1021/acs.inorgchem.7b01117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- David M. Weekes
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Maria de Guadalupe Jaraquemada-Peláez
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Thomas I. Kostelnik
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Brian O. Patrick
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Chris Orvig
- Medicinal Inorganic Chemistry Group, Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
19
|
Macegoniuk K, Grela E, Biernat M, Psurski M, Gościniak G, Dziełak A, Mucha A, Wietrzyk J, Berlicki Ł, Grabowiecka A. Aminophosphinates against Helicobacter pylori ureolysis-Biochemical and whole-cell inhibition characteristics. PLoS One 2017; 12:e0182437. [PMID: 28792967 PMCID: PMC5550016 DOI: 10.1371/journal.pone.0182437] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/18/2017] [Indexed: 12/14/2022] Open
Abstract
Urease is an important virulence factor from Helicobacter pylori that enables bacterial colonization of human gastric mucosa. Specific inhibition of urease activity can be regarded as a promising adjuvant strategy for eradication of this pathogen. A group of organophosphorus inhibitors of urease, namely, aminophosphinic acid and aminophosphonic acid derivatives, were evaluated in vitro against H. pylori urease. The kinetic characteristics of recombinant enzyme activity demonstrated a competitive reversible mode of inhibition with Ki values ranging from 0.294 to 878 μM. N-n-Hexylaminomethyl-P-aminomethylphosphinic acid and N-methylaminomethyl-P-hydroxymethylphosphinic acid were the most effective inhibitors (Ki = 0.294 μM and 1.032 μM, respectively, compared to Ki = 23 μM for the established urease inhibitor acetohydroxamic acid). The biological relevance of the inhibitors was verified in vitro against a ureolytically active Escherichia coli Rosetta host that expressed H. pylori urease and against a reference strain, H. pylori J99 (CagA+/VacA+). The majority of the studied compounds exhibited urease-inhibiting activity in these whole-cell systems. Bis(N-methylaminomethyl)phosphinic acid was found to be the most effective inhibitor in the susceptibility profile studies of H. pylori J99. The cytotoxicity of nine structurally varied inhibitors was evaluated against four normal human cell lines and was found to be negligible.
Collapse
Affiliation(s)
- Katarzyna Macegoniuk
- Wrocław University of Technology, Faculty of Chemistry, Department of Bioorganic Chemistry, Wrocław, Poland
| | - Ewa Grela
- Wrocław University of Technology, Faculty of Chemistry, Department of Bioorganic Chemistry, Wrocław, Poland
| | - Monika Biernat
- Medical University of Wrocław, Department of Microbiology, Wrocław, Poland
| | - Mateusz Psurski
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Grażyna Gościniak
- Medical University of Wrocław, Department of Microbiology, Wrocław, Poland
| | - Anna Dziełak
- Wrocław University of Technology, Faculty of Chemistry, Department of Bioorganic Chemistry, Wrocław, Poland
| | - Artur Mucha
- Wrocław University of Technology, Faculty of Chemistry, Department of Bioorganic Chemistry, Wrocław, Poland
| | - Joanna Wietrzyk
- Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wrocław, Poland
| | - Łukasz Berlicki
- Wrocław University of Technology, Faculty of Chemistry, Department of Bioorganic Chemistry, Wrocław, Poland
| | - Agnieszka Grabowiecka
- Wrocław University of Technology, Faculty of Chemistry, Department of Bioorganic Chemistry, Wrocław, Poland
- * E-mail:
| |
Collapse
|
20
|
Ntatsopoulos V, Vassiliou S, Macegoniuk K, Berlicki Ł, Mucha A. Novel organophosphorus scaffolds of urease inhibitors obtained by substitution of Morita-Baylis-Hillman adducts with phosphorus nucleophiles. Eur J Med Chem 2017; 133:107-120. [DOI: 10.1016/j.ejmech.2017.03.070] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 03/02/2017] [Accepted: 03/28/2017] [Indexed: 10/19/2022]
|
21
|
Potent covalent inhibitors of bacterial urease identified by activity-reactivity profiling. Bioorg Med Chem Lett 2017; 27:1346-1350. [DOI: 10.1016/j.bmcl.2017.02.022] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 01/21/2023]
|
22
|
Macegoniuk K, Grela E, Palus J, Rudzińska-Szostak E, Grabowiecka A, Biernat M, Berlicki Ł. 1,2-Benzisoselenazol-3(2H)-one Derivatives As a New Class of Bacterial Urease Inhibitors. J Med Chem 2016; 59:8125-33. [DOI: 10.1021/acs.jmedchem.6b00986] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Katarzyna Macegoniuk
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ewa Grela
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Jerzy Palus
- Department
of Organic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Ewa Rudzińska-Szostak
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Agnieszka Grabowiecka
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| | - Monika Biernat
- Department
of Microbiology, Medical University of Wrocław, Tytusa Chałubińskiego
4, 50-368 Wrocław, Poland
| | - Łukasz Berlicki
- Department
of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wybrzeże Wyspiańskiego 27, 50-370 Wrocław, Poland
| |
Collapse
|
23
|
Grela E, Dziełak A, Szydłowska K, Mucha A, Kafarski P, Grabowiecka AM. Whole-cell Proteus mirabilis urease inhibition by aminophosphinates for the control of struvite formation. J Med Microbiol 2016; 65:1123-1129. [PMID: 27550502 DOI: 10.1099/jmm.0.000342] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
The study evaluated the in vitro impact of a series of aminophosphinic urease inhibitors on Proteusmirabilis. The group of compounds comprised structurally diverse analogues of diamidophosphate built on an N-C-P scaffold. The influence of urease inhibition on urea-splitting activity was assessed by whole-cell pH-static kinetic measurements. The potential to prevent struvite formation was determined by monitoring changes in pH and ionic composition of artificial urine medium during P. mirabilis growth. The most active compounds exhibited stronger positive effect on urine stability than the acknowledged inhibitor acetohydroxamic acid. The high anti-ureolytic and pH-stabilizing effect of urease inhibitors 4 and 14 was well correlated with their reported kinetic properties against pure urease from P. mirabilis (Ki values of 0.62±0.09 and 0.202±0.057 µM, respectively, compared to 5.7±0.4 µM for acetohydroxamic acid). The effect of repressed ureolysis upon the viability of Proteus cells was studied using MTT [3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide] metabolic efficiency assay and LIVE/DEAD fluorescent staining. Most of the compounds caused whole-cell dehydrogenase activity loss; four structures (1, 2, 4 and 14) reduced the culture viability by nearly 70 % at 1 mM concentration. Results of dual fluorescent staining suggested that besides urea-splitting prevention, the structures additionally exerted an outer-membrane-destabilizing effect.
Collapse
Affiliation(s)
- Ewa Grela
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Anna Dziełak
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Katarzyna Szydłowska
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Artur Mucha
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | - Paweł Kafarski
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wrocław University of Technology, Wrocław, Poland
| | | |
Collapse
|
24
|
Zhu Y, Wang CF, Yan K, Zhao KD, Sheng GH, Hu Q, Zhang L, You Z. Synthesis, crystal structure, and Helicobacter pylori urease inhibition of a dicyanoamide bridged Cu(I/II) complex. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1186801] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Yueyang Zhu
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| | - Cun-Fang Wang
- School of Life Sciences, Shandong University of Technology, Zibo, PR China
| | - Kai Yan
- School of Life Sciences, Shandong University of Technology, Zibo, PR China
| | - Ke-Dong Zhao
- School of Life Sciences, Shandong University of Technology, Zibo, PR China
| | - Gui-Hua Sheng
- School of Life Sciences, Shandong University of Technology, Zibo, PR China
| | - Qiqige Hu
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| | - Leiyu Zhang
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| | - Zhonglu You
- Department of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian, PR China
| |
Collapse
|
25
|
Niu F, Yan KX, Pang L, Qu D, Zhao X, You Z. Synthesis and structural characterization of Schiff base copper(II) complexes with Helicobacter pylori urease inhibitory activities. Inorganica Chim Acta 2015. [DOI: 10.1016/j.ica.2015.07.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|