1
|
Menna M, Fiorentino F, Marrocco B, Lucidi A, Tomassi S, Cilli D, Romanenghi M, Cassandri M, Pomella S, Pezzella M, Del Bufalo D, Zeya Ansari MS, Tomašević N, Mladenović M, Viviano M, Sbardella G, Rota R, Trisciuoglio D, Minucci S, Mattevi A, Rotili D, Mai A. Novel non-covalent LSD1 inhibitors endowed with anticancer effects in leukemia and solid tumor cellular models. Eur J Med Chem 2022; 237:114410. [DOI: 10.1016/j.ejmech.2022.114410] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/20/2022] [Accepted: 04/21/2022] [Indexed: 12/22/2022]
|
2
|
Fioravanti R, Rodriguez V, Caroli J, Chianese U, Benedetti R, Di Bello E, Noce B, Zwergel C, Corinti D, Viña D, Altucci L, Mattevi A, Valente S, Mai A. Heterocycle-containing tranylcypromine derivatives endowed with high anti-LSD1 activity. J Enzyme Inhib Med Chem 2022; 37:973-985. [PMID: 35317680 PMCID: PMC8942502 DOI: 10.1080/14756366.2022.2052869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
As regioisomers/bioisosteres of 1a, a 4-phenylbenzamide tranylcypromine (TCP) derivative previously disclosed by us, we report here the synthesis and biological evaluation of some (hetero)arylbenzoylamino TCP derivatives 1b-6, in which the 4-phenyl moiety of 1a was shifted at the benzamide C3 position or replaced by 2- or 3-furyl, 2- or 3-thienyl, or 4-pyridyl group, all at the benzamide C4 or C3 position. In anti-LSD1-CoREST assay, all the meta derivatives were more effective than the para analogues, with the meta thienyl analogs 4b and 5b being the most potent (IC50 values = 0.015 and 0.005 μM) and the most selective over MAO-B (selectivity indexes: 24.4 and 164). When tested in U937 AML and prostate cancer LNCaP cells, selected compounds 1a,b, 2b, 3b, 4b, and 5a,b displayed cell growth arrest mainly in LNCaP cells. Western blot analyses showed increased levels of H3K4me2 and/or H3K9me2 confirming the involvement of LSD1 inhibition in these assays.
Collapse
Affiliation(s)
- Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Veronica Rodriguez
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Jonatan Caroli
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Beatrice Noce
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Davide Corinti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Dolores Viña
- Center for Research in Molecular Medicine and Chronic Disease (CIMUS), Department of Pharmacology, Pharmacy and Pharmaceutical Technology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", Naples, Italy.,Biogem Institute of Molecular and Genetic Biology, Ariano Irpino, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Pavia, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, Rome, Italy. Laboratory affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti
| |
Collapse
|
3
|
Ravasio R, Ceccacci E, Nicosia L, Hosseini A, Rossi PL, Barozzi I, Fornasari L, Zuffo RD, Valente S, Fioravanti R, Mercurio C, Varasi M, Mattevi A, Mai A, Pavesi G, Bonaldi T, Minucci S. Targeting the scaffolding role of LSD1 (KDM1A) poises acute myeloid leukemia cells for retinoic acid-induced differentiation. SCIENCE ADVANCES 2020; 6:eaax2746. [PMID: 32284990 PMCID: PMC7141832 DOI: 10.1126/sciadv.aax2746] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Accepted: 01/15/2020] [Indexed: 05/08/2023]
Abstract
The histone demethylase LSD1 is deregulated in several tumors, including leukemias, providing the rationale for the clinical use of LSD1 inhibitors. In acute promyelocytic leukemia (APL), pharmacological doses of retinoic acid (RA) induce differentiation of APL cells, triggering degradation of the PML-RAR oncogene. APL cells are resistant to LSD1 inhibition or knockout, but targeting LSD1 sensitizes them to physiological doses of RA without altering of PML-RAR levels, and extends survival of leukemic mice upon RA treatment. The combination of RA with LSD1 inhibition (or knockout) is also effective in other non-APL, acute myeloid leukemia (AML) cells. Nonenzymatic activities of LSD1 are essential to block differentiation, while RA with targeting of LSD1 releases a differentiation gene expression program, not strictly dependent on changes in histone H3K4 methylation. Integration of proteomic/epigenomic/mutational studies showed that LSD1 inhibitors alter the recruitment of LSD1-containing complexes to chromatin, inhibiting the interaction between LSD1 and the transcription factor GFI1.
Collapse
MESH Headings
- Antineoplastic Agents/pharmacology
- Catalysis
- Cell Differentiation/drug effects
- Cell Differentiation/genetics
- Cell Line, Tumor
- Dose-Response Relationship, Drug
- Drug Resistance, Neoplasm
- Histone Demethylases/antagonists & inhibitors
- Histone Demethylases/genetics
- Histone Demethylases/metabolism
- Histones/metabolism
- Humans
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/etiology
- Leukemia, Myeloid, Acute/metabolism
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Promyelocytic, Acute
- Oncogene Proteins, Fusion/genetics
- Oncogene Proteins, Fusion/metabolism
- Tretinoin/pharmacology
- Tumor Cells, Cultured
Collapse
Affiliation(s)
- Roberto Ravasio
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Via Adamello 16, Milan 20139, Italy
| | - Elena Ceccacci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Via Adamello 16, Milan 20139, Italy
| | - Luciano Nicosia
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Via Adamello 16, Milan 20139, Italy
| | - Amir Hosseini
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Via Adamello 16, Milan 20139, Italy
| | - Pier Luigi Rossi
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Via Adamello 16, Milan 20139, Italy
| | - Iros Barozzi
- Department of Surgery and Cancer, Imperial College London, Hammersmith, London W12, UK
| | - Lorenzo Fornasari
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Via Adamello 16, Milan 20139, Italy
- EryDel SpA, Via Meucci 3, 20091 Bresso (MI), Italy
| | - Roberto Dal Zuffo
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), Via Adamello 16, Milan 20139, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Pasteur Institute Italy, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Pasteur Institute Italy, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Ciro Mercurio
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), Via Adamello 16, Milan 20139, Italy
| | - Mario Varasi
- Experimental Therapeutics Program, FIRC Institute of Molecular Oncology Foundation (IFOM), Via Adamello 16, Milan 20139, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100 Pavia, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Pasteur Institute Italy, Cenci Bolognetti Foundation, Sapienza University of Rome, Rome, Italy
| | - Giulio Pavesi
- Department of Biosciences, University of Milan, Milan 20133, Italy
| | - Tiziana Bonaldi
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Via Adamello 16, Milan 20139, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, European Institute of Oncology (IEO), IRCCS, Via Adamello 16, Milan 20139, Italy
- Department of Biosciences, University of Milan, Milan 20133, Italy
- New Drugs Program, European Institute of Oncology (IEO), IRCCS, Milan 20139, Italy
- Corresponding author.
| |
Collapse
|
4
|
Fioravanti R, Romanelli A, Mautone N, Di Bello E, Rovere A, Corinti D, Zwergel C, Valente S, Rotili D, Botrugno OA, Dessanti P, Vultaggio S, Vianello P, Cappa A, Binda C, Mattevi A, Minucci S, Mercurio C, Varasi M, Mai A. Tranylcypromine-Based LSD1 Inhibitors: Structure-Activity Relationships, Antiproliferative Effects in Leukemia, and Gene Target Modulation. ChemMedChem 2020; 15:643-658. [PMID: 32003940 DOI: 10.1002/cmdc.201900730] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Indexed: 01/07/2023]
Abstract
LSD1 is a lysine demethylase highly involved in initiation and development of cancer. To design highly effective covalent inhibitors, a strategy is to fill its large catalytic cleft by designing tranylcypromine (TCP) analogs decorated with long, hindered substituents. We prepared three series of TCP analogs, carrying aroyl- and arylacetylamino (1 a-h), Z-amino acylamino (2 a-o), or double-substituted benzamide (3 a-n) residues at the C4 or C3 position of the phenyl ring. Further fragments obtained by chemical manipulation applied on the TCP scaffold (compounds 4 a-i) were also prepared. When tested against LSD1, most of 1 and 3 exhibited IC50 values in the low nanomolar range, with 1 e and 3 a,d,f,g being also the most selective respect to monoamine oxidases. In MV4-11 AML and NB4 APL cells compounds 3 were the most potent, displaying up to sub-micromolar cell growth inhibition against both cell lines (3 a) or against NB4 cells (3 c). The most potent compounds in cellular assays were also able to induce the expression of LSD1 target genes, such as GFI-1b, ITGAM, and KCTD12, as functional read-out for LSD1 inhibition. Mouse and human intrinsic clearance data highlighted the high metabolic stability of compounds 3 a, 3 d and 3 g. Further studies will be performed on the new compounds 3 a and 3 c to assess their anticancer potential in different cancer contexts.
Collapse
Affiliation(s)
- Rossella Fioravanti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Annalisa Romanelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Nicola Mautone
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Elisabetta Di Bello
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Annarita Rovere
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Davide Corinti
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy.,Department of Medicine of Precision, University of Studi della Campania Luigi Vanvitelli, Vico L. De Crecchio 7, 80138, Naples, Italy
| | - Sergio Valente
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| | - Oronza A Botrugno
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy.,IRCCS San Raffaele Scientific Institute, Via Olgettina Milano, 58, 20132, Milan, Italy
| | - Paola Dessanti
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy.,Oryzon Genomics S.A., Sant Ferran, 08940 Cornellà de Llobregat, Barcelona, Spain
| | - Stefania Vultaggio
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy
| | - Paola Vianello
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy
| | - Anna Cappa
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy.,Experimental Therapeutics Program, IFOM-FIRC Institute of Molecular Oncology Foundation, via Adamello 16, 20139, Milan, Italy
| | - Claudia Binda
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Andrea Mattevi
- Department of Biology and Biotechnology, University of Pavia, Via Ferrata 9, 27100, Pavia, Italy
| | - Saverio Minucci
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy.,Department of Biosciences, University of Milan, Via Festa del Perdono 7, 20122, Milano, Italy
| | - Ciro Mercurio
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy.,Experimental Therapeutics Program, IFOM-FIRC Institute of Molecular Oncology Foundation, via Adamello 16, 20139, Milan, Italy
| | - Mario Varasi
- Department of Experimental Oncology, IEO - European Institute of Oncology IRCCS, via Adamello 16, 20139, Milan, Italy.,Experimental Therapeutics Program, IFOM-FIRC Institute of Molecular Oncology Foundation, via Adamello 16, 20139, Milan, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, P. le A. Moro 5, 00185, Rome, Italy
| |
Collapse
|
5
|
Tomaselli D, Lucidi A, Rotili D, Mai A. Epigenetic polypharmacology: A new frontier for epi-drug discovery. Med Res Rev 2020; 40:190-244. [PMID: 31218726 PMCID: PMC6917854 DOI: 10.1002/med.21600] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 05/10/2019] [Accepted: 05/14/2019] [Indexed: 12/11/2022]
Abstract
Recently, despite the great success achieved by the so-called "magic bullets" in the treatment of different diseases through a marked and specific interaction with the target of interest, the pharmacological research is moving toward the development of "molecular network active compounds," embracing the related polypharmacology approach. This strategy was born to overcome the main limitations of the single target therapy leading to a superior therapeutic effect, a decrease of adverse reactions, and a reduction of potential mechanism(s) of drug resistance caused by robustness and redundancy of biological pathways. It has become clear that multifactorial diseases such as cancer, neurological, and inflammatory disorders, may require more complex therapeutic approaches hitting a certain biological system as a whole. Concerning epigenetics, the goal of the multi-epi-target approach consists in the development of small molecules able to simultaneously and (often) reversibly bind different specific epi-targets. To date, two dual histone deacetylase/kinase inhibitors (CUDC-101 and CUDC-907) are in an advanced stage of clinical trials. In the last years, the growing interest in polypharmacology encouraged the publication of high-quality reviews on combination therapy and hybrid molecules. Hence, to update the state-of-the-art of these therapeutic approaches avoiding redundancy, herein we focused only on multiple medication therapies and multitargeting compounds exploiting epigenetic plus nonepigenetic drugs reported in the literature in 2018. In addition, all the multi-epi-target inhibitors known in literature so far, hitting two or more epigenetic targets, have been included.
Collapse
Affiliation(s)
- Daniela Tomaselli
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Alessia Lucidi
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Dante Rotili
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs,
“Sapienza” University of Rome, P.le A. Moro 5, 00185 Roma, Italy
- Pasteur Institute - Cenci Bolognetti Foundation, Viale
Regina Elena 291, 00161 Roma, Italy
| |
Collapse
|
6
|
Lee A, Borrello MT, Ganesan A. LSD
(Lysine‐Specific Demethylase): A Decade‐Long Trip from Discovery to Clinical Trials. ACTA ACUST UNITED AC 2019. [DOI: 10.1002/9783527809257.ch10] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
7
|
Duan Y, Qin W, Suo F, Zhai X, Guan Y, Wang X, Zheng Y, Liu H. Design, synthesis and in vitro evaluation of stilbene derivatives as novel LSD1 inhibitors for AML therapy. Bioorg Med Chem 2018; 26:6000-6014. [PMID: 30448189 DOI: 10.1016/j.bmc.2018.10.037] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/17/2018] [Accepted: 10/29/2018] [Indexed: 12/11/2022]
Abstract
LSD1 is implicated in a number of malignancies and has emerged as an exciting target. As part of our sustained efforts to develop novel reversible LSD1 inhibitors for epigenetic therapy of cancers, in this study, we reported a series of stilbene derivatives and evaluated their LSD1 inhibitory activities, obtaining several compounds as potent LSD1 inhibitors with IC50 values in submicromolar range. Enzyme kinetics studies and SPR assay suggested that compound 8c, the most active LSD1 inhibitor (IC50 = 283 nM), potently inhibited LSD1 in a reversible and FAD competitive manner. Consistent with the kinetics data, molecular docking showed that compound 8c can be well docked into the FAD binding site of LSD1. Flow cytometry analysis showed that compound 8c was capable of up-regulating the expression of the surrogate cellular biomarker CD86 in THP-1 human leukemia cells, suggesting the ability to block LSD1 activity in cells. Compound 8c showed good inhibition against THP-1 and MOLM-13 cells with IC50 values of 5.76 and 8.34 μM, respectively. Moreover, compound 8c significantly inhibited colony formation of THP-1 cells dose dependently.
Collapse
Affiliation(s)
- Yingchao Duan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Wenping Qin
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Fengzhi Suo
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Xiaoyu Zhai
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Yuanyuan Guan
- School of Pharmacy, Xinxiang Medical University, Xinxiang, Henan 453003, China
| | - Xiaojuan Wang
- College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, Henan 476000, China
| | - Yichao Zheng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| | - Hongmin Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New Drug R & D and Preclinical Safety, Institute of Drug Discovery and Development, School of Pharmaceutical Sciences, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China.
| |
Collapse
|
8
|
Niwa H, Umehara T. Structural insight into inhibitors of flavin adenine dinucleotide-dependent lysine demethylases. Epigenetics 2017; 12:340-352. [PMID: 28277979 PMCID: PMC5453194 DOI: 10.1080/15592294.2017.1290032] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Until 2004, many researchers believed that protein methylation in eukaryotic cells was an irreversible reaction. However, the discovery of lysine-specific demethylase 1 in 2004 drastically changed this view and the concept of chromatin regulation. Since then, the enzymes responsible for lysine demethylation and their cellular substrates, biological significance, and selective regulation have become major research topics in epigenetics and chromatin biology. Many cell-permeable inhibitors for lysine demethylases have been developed, including both target-specific and nonspecific inhibitors. Structural understanding of how these inhibitors bind to lysine demethylases is crucial both for validation of the inhibitors as chemical probes and for the rational design of more potent, target-specific inhibitors. This review focuses on published small-molecule inhibitors targeted at the two flavin adenine dinucleotide-dependent lysine demethylases, lysine-specific demethylases 1 and 2, and how the inhibitors interact with the tertiary structures of the enzymes.
Collapse
Affiliation(s)
- Hideaki Niwa
- a Epigenetics Drug Discovery Unit , RIKEN Center for Life Science Technologies , Suehiro-cho, Tsurumi, Yokohama , Kanagawa , Japan
| | - Takashi Umehara
- a Epigenetics Drug Discovery Unit , RIKEN Center for Life Science Technologies , Suehiro-cho, Tsurumi, Yokohama , Kanagawa , Japan.,b PRESTO, Japan Science and Technology Agency (JST) , Honcho, Kawaguchi , Saitama , Japan
| |
Collapse
|
9
|
Ourailidou ME, Lenoci A, Zwergel C, Rotili D, Mai A, Dekker FJ. Towards the development of activity-based probes for detection of lysine-specific demethylase-1 activity. Bioorg Med Chem 2017; 25:847-856. [PMID: 27989416 PMCID: PMC5292237 DOI: 10.1016/j.bmc.2016.11.043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 11/21/2016] [Accepted: 11/23/2016] [Indexed: 01/08/2023]
Abstract
The implications of lysine-specific demethylase-1 (LSD1) in tumorigenesis have urged scientists to develop diagnostic tools in order to explore the function of this enzyme. In this work, we present our efforts on the development of tranylcypromine (TCP)-based functionalized probes for activity-based protein profiling (ABPP) of LSD1 activity. Biotinylated forms of selected compounds enabled dose-dependent enzyme labeling of recombinant LSD1. However, treatment with LSD1 inhibitors did not clearly reduce the LSD1 labeling efficiency thus indicating that labeling using these probes is not activity dependent. This calls for alternative strategies to develop probes for ABPP of the enzyme LSD1.
Collapse
Affiliation(s)
- Maria E Ourailidou
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands
| | - Alessia Lenoci
- Department of Drug Chemistry and Technologies, 'Sapienza' University, P.le A. Moro 5, 00185 Rome, Italy
| | - Clemens Zwergel
- Department of Drug Chemistry and Technologies, 'Sapienza' University, P.le A. Moro 5, 00185 Rome, Italy
| | - Dante Rotili
- Department of Drug Chemistry and Technologies, 'Sapienza' University, P.le A. Moro 5, 00185 Rome, Italy
| | - Antonello Mai
- Department of Drug Chemistry and Technologies, 'Sapienza' University, P.le A. Moro 5, 00185 Rome, Italy; Pasteur Institute, Cenci Bolognetti Foundation, 'Sapienza' University, P.le A. Moro 5, 00185 Rome, Italy.
| | - Frank J Dekker
- Department of Chemical and Pharmaceutical Biology, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, Groningen 9713 AV, The Netherlands.
| |
Collapse
|
10
|
Jambhekar A, Anastas JN, Shi Y. Histone Lysine Demethylase Inhibitors. Cold Spring Harb Perspect Med 2017; 7:cshperspect.a026484. [PMID: 28049654 DOI: 10.1101/cshperspect.a026484] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The dynamic regulation of covalent modifications to histones is essential for maintaining genomic integrity and cell identity and is often compromised in cancer. Aberrant expression of histone lysine demethylases has been documented in many types of blood and solid tumors, and thus demethylases represent promising therapeutic targets. Recent advances in high-throughput chemical screening, structure-based drug design, and structure-activity relationship studies have improved both the specificity and the in vivo efficacy of demethylase inhibitors. This review will briefly outline the connection between demethylases and cancer and will provide a comprehensive overview of the structure, specificity, and utility of currently available demethylase inhibitors. To date, a select group of demethylase inhibitors is being evaluated in clinical trials, and additional compounds may soon follow from the bench to the bedside.
Collapse
Affiliation(s)
- Ashwini Jambhekar
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115
| | - Jamie N Anastas
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| | - Yang Shi
- Division of Newborn Medicine and Epigenetics Program, Department of Medicine, Boston Children's Hospital, Boston, Massachusetts 02115.,Department of Cell Biology, Harvard Medical School, Boston, Massachusetts 02115
| |
Collapse
|
11
|
Zheng YC, Yu B, Chen ZS, Liu Y, Liu HM. TCPs: privileged scaffolds for identifying potent LSD1 inhibitors for cancer therapy. Epigenomics 2016; 8:651-66. [DOI: 10.2217/epi-2015-0002] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Since the first lysine-specific demethylase (KDM), lysine-specific demethylase 1 (LSD1), was characterized in 2004, several families of KDMs have been identified. LSD1 can specifically demethylate H3K4me1/2, H3K9me1/2 as well as some nonhistone substrates. It has been demonstrated to be an oncogene as well as a drug target. Hence, tens of small-molecule LSD1 inhibitors have been designed, synthesized and applied for cancer treatment. However, the two LSD1 inhibitors that have been advanced into early phase clinical trials are trans-2-phenylcyclopropylamine (TCP) derivatives, which indicate that TCP is a druggable scaffold for LSD1 inhibitor. Here, we review the design, synthesis and properties of reported TCP-based LSD1 inhibitors as well as their biological roles.
Collapse
Affiliation(s)
- Yi-Chao Zheng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; Co-innovation Center of Henan Province for New drug R&D & Preclinical Safety; Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Bin Yu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; Co-innovation Center of Henan Province for New drug R&D & Preclinical Safety; Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Zhe-Sheng Chen
- College of Pharmacy & Health Sciences, St. John’s University, 8000 Utopia Parkway, Queens, New York, NY 11439, USA
| | - Ying Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; Co-innovation Center of Henan Province for New drug R&D & Preclinical Safety; Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Hong-Min Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China; Co-innovation Center of Henan Province for New drug R&D & Preclinical Safety; Institute of Drug Discovery & Development, Zhengzhou University, 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| |
Collapse
|
12
|
McAllister TE, England KS, Hopkinson RJ, Brennan PE, Kawamura A, Schofield CJ. Recent Progress in Histone Demethylase Inhibitors. J Med Chem 2016; 59:1308-29. [PMID: 26710088 DOI: 10.1021/acs.jmedchem.5b01758] [Citation(s) in RCA: 145] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
There is increasing interest in targeting histone N-methyl-lysine demethylases (KDMs) with small molecules both for the generation of probes for target exploration and for therapeutic purposes. Here we update on previous reviews on the inhibition of the lysine-specific demethylases (LSDs or KDM1s) and JmjC families of N-methyl-lysine demethylases (JmjC KDMs, KDM2-7), focusing on the academic and patent literature from 2014 to date. We also highlight recent biochemical, biological, and structural studies which are relevant to KDM inhibitor development.
Collapse
Affiliation(s)
- Tom E McAllister
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7BN, U.K
| | - Katherine S England
- Structural Genomics Consortium, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, U.K
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Headington, OX3 7FZ, U.K
| | - Richard J Hopkinson
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
| | - Paul E Brennan
- Structural Genomics Consortium, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7DQ, U.K
- Target Discovery Institute, University of Oxford , NDM Research Building, Roosevelt Drive, Headington, OX3 7FZ, U.K
| | - Akane Kawamura
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford , Old Road Campus, Roosevelt Drive, Headington, OX3 7BN, U.K
| | - Christopher J Schofield
- Chemistry Research Laboratory, University of Oxford , 12 Mansfield Road, Oxford, OX1 3TA, U.K
| |
Collapse
|
13
|
Wang X, Huang B, Suzuki T, Liu X, Zhan P. Medicinal chemistry insights in the discovery of novel LSD1 inhibitors. Epigenomics 2015; 7:1379-96. [PMID: 26646727 DOI: 10.2217/epi.15.86] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
LSD1 is an epigenetic modulator associated with transcriptional regulation of genes involved in a broad spectrum of key cellular processes, and its activity is often altered under pathological conditions. LSD1 inhibitors are considered to be candidates for therapy of cancer, viral diseases and neurodegeneration. Many LSD1 inhibitors with various scaffolds have been disclosed, and a few potent molecules are in different stages of clinical development. In this review, we summarize recent biological findings on the roles of LSD1 and the current understanding of the clinical significance of LSD1, and focus on the medicinal chemistry strategies used in the design and development of LSD1 inhibitors as drug-like epigenetic modulators since 2012, including a brief consideration of structure–activity relationships.
Collapse
Affiliation(s)
- Xueshun Wang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Takayoshi Suzuki
- Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-Cho, Sakyo-Ku, Kyoto 606-0823, Japan
- CREST, Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama 332-0012, Japan
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| |
Collapse
|
14
|
Zheng YC, Ma J, Wang Z, Li J, Jiang B, Zhou W, Shi X, Wang X, Zhao W, Liu HM. A Systematic Review of Histone Lysine-Specific Demethylase 1 and Its Inhibitors. Med Res Rev 2015; 35:1032-71. [PMID: 25990136 DOI: 10.1002/med.21350] [Citation(s) in RCA: 146] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Revised: 04/02/2015] [Accepted: 04/19/2015] [Indexed: 12/11/2022]
Abstract
Histone lysine-specific demethylase 1 (LSD1) is the first discovered and reported histone demethylase by Dr. Shi Yang's group in 2004. It is classified as a member of amine oxidase superfamily, the common feature of which is using the flavin adenine dinucleotide (FAD) as its cofactor. Since it is located in cell nucleus and acts as a histone methylation eraser, LSD1 specifically removes mono- or dimethylated histone H3 lysine 4 (H3K4) and H3 lysine 9 (H3K9) through formaldehyde-generating oxidation. It has been indicated that LSD1 and its downstream targets are involved in a wide range of biological courses, including embryonic development and tumor-cell growth and metastasis. LSD1 has been reported to be overexpressed in variety of tumors. Inactivating LSD1 or downregulating its expression inhibits cancer-cell development. LSD1 targeting inhibitors may represent a new insight in anticancer drug discovery. This review summarizes recent studies about LSD1 and mainly focuses on the basic physiological function of LSD1 and its involved mechanisms in pathophysiologic conditions, as well as the development of LSD1 inhibitors as potential anticancer therapeutic agents.
Collapse
Affiliation(s)
- Yi-Chao Zheng
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Jinlian Ma
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Zhiru Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Jinfeng Li
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Bailing Jiang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Wenjuan Zhou
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Xiaojing Shi
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Xixin Wang
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Wen Zhao
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| | - Hong-Min Liu
- Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Co-innovation Center of Henan Province for New drug R & D and Preclinical Safety, Zhengzhou University School of Pharmaceutical Sciences, 100 Kexue Avenue, Zhengzhou, Henan, 450001, P. R. China
| |
Collapse
|